Search results for: business intelligence readiness model
19587 Computational Experiment on Evolution of E-Business Service Ecosystem
Authors: Xue Xiao, Sun Hao, Liu Donghua
Abstract:
E-commerce is experiencing rapid development and evolution, but traditional research methods are difficult to fully demonstrate the relationship between micro factors and macro evolution in the development process of e-commerce, which cannot provide accurate assessment for the existing strategies and predict the future evolution trends. To solve these problems, this paper presents the concept of e-commerce service ecosystem based on the characteristics of e-commerce and business ecosystem theory, describes e-commerce environment as a complex adaptive system from the perspective of ecology, constructs a e-commerce service ecosystem model by using Agent-based modeling method and Java language in RePast simulation platform and conduct experiment through the way of computational experiment, attempt to provide a suitable and effective researching method for the research on e-commerce evolution. By two experiments, it can be found that system model built in this paper is able to show the evolution process of e-commerce service ecosystem and the relationship between micro factors and macro emergence. Therefore, the system model constructed by Agent-based method and computational experiment provides proper means to study the evolution of e-commerce ecosystem.Keywords: e-commerce service ecosystem, complex system, agent-based modeling, computational experiment
Procedia PDF Downloads 35919586 A Comprehensive Review of Artificial Intelligence Applications in Sustainable Building
Authors: Yazan Al-Kofahi, Jamal Alqawasmi.
Abstract:
In this study, a comprehensive literature review (SLR) was conducted, with the main goal of assessing the existing literature about how artificial intelligence (AI), machine learning (ML), deep learning (DL) models are used in sustainable architecture applications and issues including thermal comfort satisfaction, energy efficiency, cost prediction and many others issues. For this reason, the search strategy was initiated by using different databases, including Scopus, Springer and Google Scholar. The inclusion criteria were used by two research strings related to DL, ML and sustainable architecture. Moreover, the timeframe for the inclusion of the papers was open, even though most of the papers were conducted in the previous four years. As a paper filtration strategy, conferences and books were excluded from database search results. Using these inclusion and exclusion criteria, the search was conducted, and a sample of 59 papers was selected as the final included papers in the analysis. The data extraction phase was basically to extract the needed data from these papers, which were analyzed and correlated. The results of this SLR showed that there are many applications of ML and DL in Sustainable buildings, and that this topic is currently trendy. It was found that most of the papers focused their discussions on addressing Environmental Sustainability issues and factors using machine learning predictive models, with a particular emphasis on the use of Decision Tree algorithms. Moreover, it was found that the Random Forest repressor demonstrates strong performance across all feature selection groups in terms of cost prediction of the building as a machine-learning predictive model.Keywords: machine learning, deep learning, artificial intelligence, sustainable building
Procedia PDF Downloads 6719585 The Importance of Information in Psychological Operations for Counterterrorism
Authors: Abbas Fazelinia
Abstract:
Terrorism is not a new phenomenon to the world, yet it remains difficult to define and to counter. Countering terrorism requires several measures that must be taken at the same time. Counterterrorism strategies of most countries depend on military measures. However, those strategies should also focus on nonlethal measures, such as economic, political, and social measures. The psychological dimensions of terrorism must be understood, evaluated, and used in countering terrorism. This study suggests that psychological operations, as nonlethal military operations, can be used to influence individuals not to join terrorist organizations and to facilitate defections from terrorist organizations. However, in order to implement effective psychological operations, one has to have appropriate intelligence about terrorist organizations. Examining terrorist organizations help us to identify their vulnerabilities and obtain this intelligence. This article concludes that terrorists’ motivations, terrorist organizations’ radicalization, recruitment, and conversion processes, ideology, goals, strategies, and general structure form the intelligence requirement for psychological operations in counterterrorism. The methodology used in this article is a mixed method.Keywords: psychological operations, terrorist, counterterrorism, terrorism
Procedia PDF Downloads 33219584 Artificial Intelligence Based Abnormality Detection System and Real Valuᵀᴹ Product Design
Authors: Junbeom Lee, Jaehyuck Cho, Wookyeong Jeong, Jonghan Won, Jungmin Hwang, Youngseok Song, Taikyeong Jeong
Abstract:
This paper investigates and analyzes meta-learning technologies that use multiple-cameras to monitor and check abnormal behavior in people in real-time in the area of healthcare fields. Advances in artificial intelligence and computer vision technologies have confirmed that cameras can be useful for individual health monitoring and abnormal behavior detection. Through this, it is possible to establish a system that can respond early by automatically detecting abnormal behavior of the elderly, such as patients and the elderly. In this paper, we use a technique called meta-learning to analyze image data collected from cameras and develop a commercial product to determine abnormal behavior. Meta-learning applies machine learning algorithms to help systems learn and adapt quickly to new real data. Through this, the accuracy and reliability of the abnormal behavior discrimination system can be improved. In addition, this study proposes a meta-learning-based abnormal behavior detection system that includes steps such as data collection and preprocessing, feature extraction and selection, and classification model development. Various healthcare scenarios and experiments analyze the performance of the proposed system and demonstrate excellence compared to other existing methods. Through this study, we present the possibility that camera-based meta-learning technology can be useful for monitoring and testing abnormal behavior in the healthcare area.Keywords: artificial intelligence, abnormal behavior, early detection, health monitoring
Procedia PDF Downloads 8619583 The Use of TRIZ to Map the Evolutive Pattern of Products
Authors: Fernando C. Labouriau, Ricardo M. Naveiro
Abstract:
This paper presents a model for mapping the evolutive pattern of products in order to generate new ideas, to perceive emerging technologies and to manage product’s portfolios in new product development (NPD). According to the proposed model, the information extracted from the patent system is filtered and analyzed with TRIZ tools to produce the input information to the NPD process. The authors acknowledge that the NPD process is well integrated within the enterprises business strategic planning and that new products are vital in the competitive market nowadays. In the other hand, it has been observed the proactive use of patent information in some methodologies for selecting projects, mapping technological change and generating product concepts. And one of these methodologies is TRIZ, a theory created to favor innovation and to improve product design that provided the analytical framework for the model. Initially, it is presented an introduction to TRIZ mainly focused on the patterns of evolution of technical systems and its strategic uses, a brief and absolutely non-comprehensive description as the theory has several others tools being widely employed in technical and business applications. Then, it is introduced the model for mapping the products evolutive pattern with its three basic pillars, namely patent information, TRIZ and NPD, and the methodology for implementation. Following, a case study of a Brazilian bike manufacturing is presented to proceed the mapping of a product evolutive pattern by decomposing and analyzing one of its assemblies along ten evolution lines in order to envision opportunities for further product development. Some of these lines are illustrated in more details to evaluate the features of the product in relation to the TRIZ concepts using a comparison perspective with patents in the state of the art to validate the product’s evolutionary potential. As a result, the case study provided several opportunities for a product improvement development program in different project categories, identifying technical and business impacts as well as indicating the lines of evolution that can mostly benefit from each opportunity.Keywords: product development, patents, product strategy, systems evolution
Procedia PDF Downloads 50019582 A Mixed-Methods Approach to Developing and Evaluating an SME Business Support Model for Innovation in Rural England
Authors: Steve Fish, Chris Lambert
Abstract:
Cumbria is a geo-political county in Northwest England within which the Lake District National Park, a UNESCO World Heritage site is located. Whilst the area has a formidable reputation for natural beauty and historic assets, the innovation ecosystem is described as ‘patchy’ for a number of reasons. The county is one of the largest in England by area and is sparsely populated. This paper describes the needs, development and delivery of an SME business-support programme funded by the European Regional Development Fund, Lancaster University and the University of Cumbria. The Cumbria Innovations Platform (CUSP) Project has been designed to respond to the nuanced needs of SMEs in this locale, whilst promoting the adoption of research and innovation. CUSP utilizes a funnel method to support rural businesses with access to university innovation intervention. CUSP has been built on a three-tier model: Communicate, Collaborate and Create. The paper describes this project in detail and presents results in terms of output indicators achieved, a beneficiary telephone survey and wider economic forecasts. From a pragmatic point-of-view, the paper provides experiences and reflections of those people who are delivering and evaluating knowledge exchange. The authors discuss some of the benefits, challenges and implications for both policy makers and practitioners. Finally, the paper aims to serve as an invitation to others who may consider adopting a similar method of university-industry collaboration in their own region.Keywords: regional business support, rural business support, university-industry collaboration, collaborative R&D, SMEs, knowledge exchange
Procedia PDF Downloads 12119581 Applying Theory of Self-Efficacy in Intelligent Transportation Systems by Potential Usage of Vehicle as a Sensor
Authors: Aby Nesan Raj, Sumil K. Raj, Sumesh Jayan
Abstract:
The objective of the study is to formulate a self-regulation model that shall enhance the usage of Intelligent Transportation Systems by understanding the theory of self-efficacy. The core logic of the self-regulation model shall monitor driver's behavior based on the situations related to the various sources of Self Efficacy like enactive mastery, vicarious experience, verbal persuasion and physiological arousal in addition to the vehicle data. For this study, four different vehicle data, speed, drowsiness, diagnostic data and surround camera views are considered. This data shall be given to the self-regulation model for evaluation. The oddness, which is the output of self-regulation model, shall feed to Intelligent Transportation Systems where appropriate actions are being taken. These actions include warning to the user as well as the input to the related transportation systems. It is also observed that the usage of vehicle as a sensor reduces the wastage of resource utilization or duplication. Altogether, this approach enhances the intelligence of the transportation systems especially in safety, productivity and environmental performance.Keywords: emergency management, intelligent transportation system, self-efficacy, traffic management
Procedia PDF Downloads 24419580 The Human Rights Code: Fundamental Rights as the Basis of Human-Robot Coexistence
Authors: Gergely G. Karacsony
Abstract:
Fundamental rights are the result of thousand years’ progress of legislation, adjudication and legal practice. They serve as the framework of peaceful cohabitation of people, protecting the individual from any abuse by the government or violation by other people. Artificial intelligence, however, is the development of the very recent past, being one of the most important prospects to the future. Artificial intelligence is now capable of communicating and performing actions the same way as humans; such acts are sometimes impossible to tell from actions performed by flesh-and-blood people. In a world, where human-robot interactions are more and more common, a new framework of peaceful cohabitation is to be found. Artificial intelligence, being able to take part in almost any kind of interaction where personal presence is not necessary without being recognized as a non-human actor, is now able to break the law, violate people’s rights, and disturb social peace in many other ways. Therefore, a code of peaceful coexistence is to be found or created. We should consider the issue, whether human rights can serve as the code of ethical and rightful conduct in the new era of artificial intelligence and human coexistence. In this paper, we will examine the applicability of fundamental rights to human-robot interactions as well as to the actions of artificial intelligence performed without human interaction whatsoever. Robot ethics has been a topic of discussion and debate of philosophy, ethics, computing, legal sciences and science fiction writing long before the first functional artificial intelligence has been introduced. Legal science and legislation have approached artificial intelligence from different angles, regulating different areas (e.g. data protection, telecommunications, copyright issues), but they are only chipping away at the mountain of legal issues concerning robotics. For a widely acceptable and permanent solution, a more general set of rules would be preferred to the detailed regulation of specific issues. We argue that human rights as recognized worldwide are able to be adapted to serve as a guideline and a common basis of coexistence of robots and humans. This solution has many virtues: people don’t need to adjust to a completely unknown set of standards, the system has proved itself to withstand the trials of time, legislation is easier, and the actions of non-human entities are more easily adjudicated within their own framework. In this paper we will examine the system of fundamental rights (as defined in the most widely accepted source, the 1966 UN Convention on Human Rights), and try to adapt each individual right to the actions of artificial intelligence actors; in each case we will examine the possible effects on the legal system and the society of such an approach, finally we also examine its effect on the IT industry.Keywords: human rights, robot ethics, artificial intelligence and law, human-robot interaction
Procedia PDF Downloads 24419579 Effects on Spiritual Intelligence on Young Adult Muslim Female: Integration of Planned Behaviour Theory in Predicting Consumer Attitude towards Halal Cosmetic
Authors: Azreen Jihan Che Mohd Hashim, Rosidah Musa
Abstract:
Although 'Spiritual Intelligence' (SI) is hard to measure, it is impossible without a noble value that may affect the attitude in purchasing behavior process, so this paper aims to report on a pilot study analysis results in order to evaluate the degree of SI towards consumers’ attitude in purchasing halal cosmetics and, in turn, to reaffirm intention to purchase by using Theory Planned Behaviour (TPB). It is a descriptive cross-sectional study among the Muslim women as the subjects, working and staying in Klang valley area in Malaysia. The purpose of the study is to develop a new measurement scale to unravel and decompose the underlying dimensions of SI from the perspective of the Muslim deemed imperative. About 200 respondents of users and non-users of halal cosmetics are selected. The structure equation modeling (SEM) was conducted to examine the relationships among god, society and self, which are the dimensions of SI. A finding indicates that, in influencing attitude, those who obligate high spiritual intelligence have a good relationship with god, society and self which may influence them to purchase halal cosmetic product. This study offers important findings and implications for future research as it presents a framework on the importance of SI.Keywords: spiritual intelligence, god, society, self, young adult Muslim female
Procedia PDF Downloads 36819578 Drivers of E-Participation: Case of Saudi Arabia
Authors: R. Alrashedi, A. Persaud
Abstract:
This study provides insights into the readiness of users to participate in e-government activities in Saudi Arabia. A user-centric model of e-participation is developed based on a review of the literature and empirically tested. The findings are based on an online survey of a sample of 200 hundred Saudi citizens and residents living in Saudi Arabia. The study found that trust of the government, attitude towards e-participation, e-participation through the use of social media, and social influence and social identity positively influence e-participation while perceived benefits of e-government is negatively related to e-participation. This study contributes to the literature by providing empirical evidence of the drivers of e-participation. The study also provides insights that could be used by policymakers to increase the level of e-participation in Saudi Arabia.Keywords: e-government, e-participation, social media, trust, social influence and social identity
Procedia PDF Downloads 46219577 Subway Ridership Estimation at a Station-Level: Focus on the Impact of Bus Demand, Commercial Business Characteristics and Network Topology
Authors: Jungyeol Hong, Dongjoo Park
Abstract:
The primary purpose of this study is to develop a methodological framework to predict daily subway ridership at a station-level and to examine the association between subway ridership and bus demand incorporating commercial business facility in the vicinity of each subway station. The socio-economic characteristics, land-use, and built environment as factors may have an impact on subway ridership. However, it should be considered not only the endogenous relationship between bus and subway demand but also the characteristics of commercial business within a subway station’s sphere of influence, and integrated transit network topology. Regarding a statistical approach to estimate subway ridership at a station level, therefore it should be considered endogeneity and heteroscedastic issues which might have in the subway ridership prediction model. This study focused on both discovering the impacts of bus demand, commercial business characteristics, and network topology on subway ridership and developing more precise subway ridership estimation accounting for its statistical bias. The spatial scope of the study covers entire Seoul city in South Korea and includes 243 stations with the temporal scope set at twenty-four hours with one-hour interval time panels each. The data for subway and bus ridership was collected Seoul Smart Card data from 2015 and 2016. Three-Stage Least Square(3SLS) approach was applied to develop daily subway ridership model as capturing the endogeneity and heteroscedasticity between bus and subway demand. Independent variables incorporating in the modeling process were commercial business characteristics, social-economic characteristics, safety index, transit facility attributes, and dummies for seasons and time zone. As a result, it was found that bus ridership and subway ridership were endogenous each other and they had a significantly positive sign of coefficients which means one transit mode could increase another transportation mode’s ridership. In other words, two transit modes of subway and bus have a mutual relationship instead of the competitive relationship. The commercial business characteristics are the most critical dimension among the independent variables. The variables of commercial business facility rate in the paper containing six types; medical, educational, recreational, financial, food service, and shopping. From the model result, a higher rate in medical, financial buildings, shopping, and food service facility lead to increment of subway ridership at a station, while recreational and educational facility shows lower subway ridership. The complex network theory was applied for estimating integrated network topology measures that cover the entire Seoul transit network system, and a framework for seeking an impact on subway ridership. The centrality measures were found to be significant and showed a positive sign indicating higher centrality led to more subway ridership at a station level. The results of model accuracy tests by out of samples provided that 3SLS model has less mean square error rather than OLS and showed the methodological approach for the 3SLS model was plausible to estimate more accurate subway ridership. Acknowledgement: This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science and ICT (2017R1C1B2010175).Keywords: subway ridership, bus ridership, commercial business characteristic, endogeneity, network topology
Procedia PDF Downloads 14419576 Fast-Tracking University Education for Youth Employment: Empirical Evidence from University Graduates in Rwanda
Authors: Fred Alinda, Marjorie Negesa, Gerald Karyeija
Abstract:
Like elsewhere in the world, youth unemployment remains a big problem more so to the most educated youth and female. In Rwanda, unemployment is estimated at 13.2% among youth graduates compared to 10.9% and 2.6 among secondary and primary graduates respectively. Though empirical evidence elsewhere associate youth unemployment with education level, relevance of skills and access to business support opportunities, mixed evidence still exist on the significance of these factors to youth employment. As youth employment strategies in countries like Rwanda continue to recognize the potential role university education can play to enhance employment, there is a need to understand the catalysts or barriers. This paper, therefore, draws empirical evidence from a survey on the influence of education qualification, skills relevance and access to business support opportunities on employment of the youth university graduates in Masaka sector, Rwanda. The analysis tested four hypotheses; access to university education significantly affects youth employment, Relevance of university education significantly contributes to youth employment; access to business support opportunities significantly contributes to youth employment, and significant gender differences exist in the employment of youth university graduates. A cross-section survey was used in lieu of the need to explore the prevailing status of youth employment and contributing factors across the sector. A questionnaire was used to collect data on a large sample of 269 youth to allow statistical analysis. This was beefed up with qualitative views of leaders and technical officials in the sector. The youth University graduates were selected using simple random sampling while the leaders and technical officials were selected purposively. Percentages were used to describe respondents in line with the variables under while a regression model for youth employment was fitted to determine the significant factors. The model results indicated a significant influence (p<0.05) of gender, education level and access to business support opportunities on employment of youth university graduates. This finding was also affirmed by the qualitative views of key informants. Qualitative views pointed to the fact that university education generally equipped the youth with skills that enabled their transition into employment mainly for a salary or wage. The skills were, however, deficient in technical and practical aspects. In addition, the youth generally lacked limited access to business support opportunities particularly guarantees for loans, business advisory, and grants for business as well as training in business skills that would help them gain salaried employment or transit into self-employment. The study findings bear an implication on the strategy for catalyzing youth employment through university education. The findings imply that university education should be embraced but with greater emphasis on or supplementation with specialized training in practical and technical skills as well as extending business support opportunities to the youth. This will accelerate the contribution of university education to youth employment.Keywords: education, employment, self-employment, youth
Procedia PDF Downloads 25619575 Artificial Intelligence and Development: The Missing Link
Authors: Driss Kettani
Abstract:
ICT4D actors are naturally attempted to include AI in the range of enabling technologies and tools that could support and boost the Development process, and to refer to these as AI4D. But, doing so, assumes that AI complies with the very specific features of ICT4D context, including, among others, affordability, relevance, openness, and ownership. Clearly, none of these is fulfilled, and the enthusiastic posture that AI4D is a natural part of ICT4D is not grounded and, to certain extent, does not serve the purpose of Technology for Development at all. In the context of Development, it is important to emphasize and prioritize ICT4D, in the national digital transformation strategies, instead of borrowing "trendy" waves of the IT Industry that are motivated by business considerations, with no specific care/consideration to Development.Keywords: AI, ICT4D, technology for development, position paper
Procedia PDF Downloads 8819574 Transformative Digital Trends in Supply Chain Management: The Role of Artificial Intelligence
Authors: Srinivas Vangari
Abstract:
With the technological advancements around the globe, artificial intelligence (AI) has boosted supply chain management (SCM) by improving efficiency, sensitivity, and promptness. Artificial intelligence-based SCM provides comprehensive perceptions of consumer behavior in dynamic market situations and trends, foreseeing the accurate demand. It reduces overproduction and stockouts while optimizing production planning and streamlining operations. Consequently, the AI-driven SCM produces a customer-centric supply with resilient and robust operations. Intending to delve into the transformative significance of AI in SCM, this study focuses on improving efficiency in SCM with the integration of AI, understanding the production demand, accurate forecasting, and particular production planning. The study employs a mixed-method approach and expert survey insights to explore the challenges and benefits of AI applications in SCM. Further, a case analysis is incorporated to identify the best practices and potential challenges with the critical success features in AI-driven SCM. Key findings of the study indicate the significant advantages of the AI-integrated SCM, including optimized inventory management, improved transportation and logistics management, cost optimization, and advanced decision-making, positioning AI as a pivotal force in the future of supply chain management.Keywords: artificial intelligence, supply chain management, accurate forecast, accurate planning of production, understanding demand
Procedia PDF Downloads 2119573 Drinking Water Quality Assessment Using Fuzzy Inference System Method: A Case Study of Rome, Italy
Authors: Yas Barzegar, Atrin Barzegar
Abstract:
Drinking water quality assessment is a major issue today; technology and practices are continuously improving; Artificial Intelligence (AI) methods prove their efficiency in this domain. The current research seeks a hierarchical fuzzy model for predicting drinking water quality in Rome (Italy). The Mamdani fuzzy inference system (FIS) is applied with different defuzzification methods. The Proposed Model includes three fuzzy intermediate models and one fuzzy final model. Each fuzzy model consists of three input parameters and 27 fuzzy rules. The model is developed for water quality assessment with a dataset considering nine parameters (Alkalinity, Hardness, pH, Ca, Mg, Fluoride, Sulphate, Nitrates, and Iron). Fuzzy-logic-based methods have been demonstrated to be appropriate to address uncertainty and subjectivity in drinking water quality assessment; it is an effective method for managing complicated, uncertain water systems and predicting drinking water quality. The FIS method can provide an effective solution to complex systems; this method can be modified easily to improve performance.Keywords: water quality, fuzzy logic, smart cities, water attribute, fuzzy inference system, membership function
Procedia PDF Downloads 7519572 Model for Remanufacture of Medical Equipment in Cross Border Collaboration
Authors: Kingsley Oturu, Winifred Ijomah, Wale Coker, Chibueze Achi
Abstract:
With the impact of BREXIT and the need for cross-border collaboration, this international research investigated the use of a conceptual model for remanufacturing medical equipment (with a focus on anesthetic machines and baby incubators). Early findings of the research suggest that contextual factors need to be taken into consideration, as well as an emphasis on cleaning (e.g., sterilization) during the process of remanufacturing medical equipment. For example, copper tubings may be more important in the remanufacturing of anesthetic equipment in tropical climates than in cold climates.Keywords: medical equipment remanufacture, sustainability, circular business models, remanufacture process model
Procedia PDF Downloads 17219571 A Study on the Application of Machine Learning and Deep Learning Techniques for Skin Cancer Detection
Authors: Hritwik Ghosh, Irfan Sadiq Rahat, Sachi Nandan Mohanty, J. V. R. Ravindra
Abstract:
In the rapidly evolving landscape of medical diagnostics, the early detection and accurate classification of skin cancer remain paramount for effective treatment outcomes. This research delves into the transformative potential of Artificial Intelligence (AI), specifically Deep Learning (DL), as a tool for discerning and categorizing various skin conditions. Utilizing a diverse dataset of 3,000 images representing nine distinct skin conditions, we confront the inherent challenge of class imbalance. This imbalance, where conditions like melanomas are over-represented, is addressed by incorporating class weights during the model training phase, ensuring an equitable representation of all conditions in the learning process. Our pioneering approach introduces a hybrid model, amalgamating the strengths of two renowned Convolutional Neural Networks (CNNs), VGG16 and ResNet50. These networks, pre-trained on the ImageNet dataset, are adept at extracting intricate features from images. By synergizing these models, our research aims to capture a holistic set of features, thereby bolstering classification performance. Preliminary findings underscore the hybrid model's superiority over individual models, showcasing its prowess in feature extraction and classification. Moreover, the research emphasizes the significance of rigorous data pre-processing, including image resizing, color normalization, and segmentation, in ensuring data quality and model reliability. In essence, this study illuminates the promising role of AI and DL in revolutionizing skin cancer diagnostics, offering insights into its potential applications in broader medical domains.Keywords: artificial intelligence, machine learning, deep learning, skin cancer, dermatology, convolutional neural networks, image classification, computer vision, healthcare technology, cancer detection, medical imaging
Procedia PDF Downloads 8619570 Graphical User Interface Testing by Using Deep Learning
Authors: Akshat Mathur, Sunil Kumar Khatri
Abstract:
This paper presents brief about how the use of Artificial intelligence in respect to GUI testing can reduce workload by using DL-fueled method. This paper also discusses about how graphical user interface and event driven software testing can derive benefits from the use of AI techniques. The use of AI techniques not only reduces the task and work load but also helps in getting better output than manual testing. Although results are same, but the use of Artifical intelligence techniques for GUI testing has proven to provide ideal results. DL-fueled framework helped us to find imperfections of the entire webpage and provides test failure result in a score format between 0 and 1which signifies that are test meets it quality criteria or not. This paper proposes DL-fueled method which helps us to find the genuine GUI bugs and defects and also helped us to scale the existing labour-intensive and skill-intensive methodologies.Keywords: graphical user interface, GUI, artificial intelligence, deep learning, ML technology
Procedia PDF Downloads 17719569 New Insights for Soft Skills Development in Vietnamese Business Schools: Defining Essential Soft Skills for Maximizing Graduates’ Career Success
Authors: Hang T. T. Truong, Ronald S. Laura, Kylie Shaw
Abstract:
Within Vietnam's system of higher education, its schools of business play a vital role in supporting the country’s economic objectives. However, the crucial contribution of soft skills for maximal success within the business sector has to date not been adequately recognized by its business schools. This being so, the development of the business school curriculum in Vietnam has not been able to 'catch up', so to say, with the burgeoning need of students for a comprehensive soft skills program designed to meet the national and global business objectives of their potential employers. The burden of the present paper is first to reveal the results of our survey in Vietnam which make explicit the extent to which major Vietnamese industrial employers’ value the potential role that soft skill competencies can play in maximizing business success. Our final task will be to determine which soft skills employers discern as best serving to maximize the economic interests of Vietnam within the global marketplace. Semi-structured telephone interviews have been conducted with the 15 representative Head Employers of Vietnam's reputedly largest and most successful of the diverse business enterprises across Vietnam. The findings of the study indicate that all respondents highly value the increasing importance of soft skills in business success. Our critical analysis of respondent data reveals that 19 essential soft skills are deemed by employers as integral to business workplace efficacy and should thus be integrated into the formal business curriculum. We are confident that our study represents the first comprehensive and specific survey yet undertaken within the business sector in Vietnam which accesses and analyses the opinions of representative employers from major companies across the country in regard to the growing importance of 19 specific soft skills essential for maximizing overall business success. Our research findings also reveal that the integration into business school curriculums nationwide of the soft skills we have identified is of paramount importance to advance the national and global economic interests of Vietnam.Keywords: business curriculum, business graduates, employers’ perception, soft skills
Procedia PDF Downloads 32019568 On the Framework of Contemporary Intelligent Mathematics Underpinning Intelligent Science, Autonomous AI, and Cognitive Computers
Authors: Yingxu Wang, Jianhua Lu, Jun Peng, Jiawei Zhang
Abstract:
The fundamental demand in contemporary intelligent science towards Autonomous AI (AI*) is the creation of unprecedented formal means of Intelligent Mathematics (IM). It is discovered that natural intelligence is inductively created rather than exhaustively trained. Therefore, IM is a family of algebraic and denotational mathematics encompassing Inference Algebra, Real-Time Process Algebra, Concept Algebra, Semantic Algebra, Visual Frame Algebra, etc., developed in our labs. IM plays indispensable roles in training-free AI* theories and systems beyond traditional empirical data-driven technologies. A set of applications of IM-driven AI* systems will be demonstrated in contemporary intelligence science, AI*, and cognitive computers.Keywords: intelligence mathematics, foundations of intelligent science, autonomous AI, cognitive computers, inference algebra, real-time process algebra, concept algebra, semantic algebra, applications
Procedia PDF Downloads 6119567 The Role of ChatGPT in Enhancing ENT Surgical Training
Authors: Laura Brennan, Ram Balakumar
Abstract:
ChatGPT has been developed by Open AI (Nov 2022) as a powerful artificial intelligence (AI) language model which has been designed to produce human-like text from user written prompts. To gain the most from the system, user written prompts must give context specific information. This article aims to give guidance on how to optimise the ChatGPT system in the context of education for otolaryngology. Otolaryngology is a specialist field which sees little time dedicated to providing education to both medical students and doctors. Additionally, otolaryngology trainees have seen a reduction in learning opportunities since the COVID-19 pandemic. In this article we look at these various barriers to medical education in Otolaryngology training and suggest ways that ChatGPT can overcome them and assist in simulation-based training. Examples provide how this can be achieved using the Authors’ experience to further highlight the practicalities. What this article has found is that while ChatGPT cannot replace traditional mentorship and practical surgical experience, it can serve as an invaluable supplementary resource to simulation based medical education in Otolaryngology.Keywords: artificial intelligence, otolaryngology, surgical training, medical education
Procedia PDF Downloads 15919566 Artificial Intelligence Methods in Estimating the Minimum Miscibility Pressure Required for Gas Flooding
Authors: Emad A. Mohammed
Abstract:
Utilizing the capabilities of Data Mining and Artificial Intelligence in the prediction of the minimum miscibility pressure (MMP) required for multi-contact miscible (MCM) displacement of reservoir petroleum by hydrocarbon gas flooding using Fuzzy Logic models and Artificial Neural Network models will help a lot in giving accurate results. The factors affecting the (MMP) as it is proved from the literature and from the dataset are as follows: XC2-6: Intermediate composition in the oil-containing C2-6, CO2 and H2S, in mole %, XC1: Amount of methane in the oil (%),T: Temperature (°C), MwC7+: Molecular weight of C7+ (g/mol), YC2+: Mole percent of C2+ composition in injected gas (%), MwC2+: Molecular weight of C2+ in injected gas. Fuzzy Logic and Neural Networks have been used widely in prediction and classification, with relatively high accuracy, in different fields of study. It is well known that the Fuzzy Inference system can handle uncertainty within the inputs such as in our case. The results of this work showed that our proposed models perform better with higher performance indices than other emprical correlations.Keywords: MMP, gas flooding, artificial intelligence, correlation
Procedia PDF Downloads 14419565 Progress of Legislation in Post-Colonial, Post-Communist and Socialist Countries for the Intellectual Property Protection of the Autonomous Output of Artificial Intelligence
Authors: Ammar Younas
Abstract:
This paper is an attempt to explore the legal progression in procedural laws related to “intellectual property protection for the autonomous output of artificial intelligence” in Post-Colonial, Post-Communist and Socialist Countries. An in-depth study of legal progression in Pakistan (Common Law), Uzbekistan (Post-Soviet Civil Law) and China (Socialist Law) has been conducted. A holistic attempt has been made to explore that how the ideological context of the legal systems can impact, not only on substantive components but on the procedural components of the formal laws related to IP Protection of autonomous output of Artificial Intelligence. Moreover, we have tried to shed a light on the prospective IP laws and AI Policy in the countries, which are planning to incorporate the concept of “Digital Personality” in their legal systems. This paper will also address the question: “How far IP of autonomous output of AI can be protected with the introduction of “Non-Human Legal Personality” in legislation?” By using the examples of China, Pakistan and Uzbekistan, a case has been built to highlight the legal progression in General Provisions of Civil Law, Artificial Intelligence Policy of the country and Intellectual Property laws. We have used a range of multi-disciplinary concepts and examined them on the bases of three criteria: accuracy of legal/philosophical presumption, applying to the real time situations and testing on rational falsification tests. It has been observed that the procedural laws are designed in a way that they can be seen correlating with the ideological contexts of these countries.Keywords: intellectual property, artificial intelligence, digital personality, legal progression
Procedia PDF Downloads 11819564 Stability Bound of Ruin Probability in a Reduced Two-Dimensional Risk Model
Authors: Zina Benouaret, Djamil Aissani
Abstract:
In this work, we introduce the qualitative and quantitative concept of the strong stability method in the risk process modeling two lines of business of the same insurance company or an insurance and re-insurance companies that divide between them both claims and premiums with a certain proportion. The approach proposed is based on the identification of the ruin probability associate to the model considered, with a stationary distribution of a Markov random process called a reversed process. Our objective, after clarifying the condition and the perturbation domain of parameters, is to obtain the stability inequality of the ruin probability which is applied to estimate the approximation error of a model with disturbance parameters by the considered model. In the stability bound obtained, all constants are explicitly written.Keywords: Markov chain, risk models, ruin probabilities, strong stability analysis
Procedia PDF Downloads 24919563 Evaluation of Free Technologies as Tools for Business Process Management
Authors: Julio Sotomayor, Daniel Yucra, Jorge Mayhuasca
Abstract:
The article presents an evaluation of free technologies for business process automation, with emphasis only on tools compatible with the general public license (GPL). The compendium of technologies was based on promoting a service-oriented enterprise architecture (SOA) and the establishment of a business process management system (BPMS). The methodology for the selection of tools was Agile UP. This proposal allows businesses to achieve technological sovereignty and independence, in addition to the promotion of service orientation and the development of free software based on components.Keywords: BPM, BPMS suite, open-source software, SOA, enterprise architecture, business process management
Procedia PDF Downloads 28819562 A New Nonlinear State-Space Model and Its Application
Authors: Abdullah Eqal Al Mazrooei
Abstract:
In this work, a new nonlinear model will be introduced. The model is in the state-space form. The nonlinearity of this model is in the state equation where the state vector is multiplied by its self. This technique makes our model generalizes many famous models as Lotka-Volterra model and Lorenz model which have many applications in the real life. We will apply our new model to estimate the wind speed by using a new nonlinear estimator which suitable to work with our model.Keywords: nonlinear systems, state-space model, Kronecker product, nonlinear estimator
Procedia PDF Downloads 69119561 Academic Knowledge Transfer Units in the Western Balkans: Building Service Capacity and Shaping the Business Model
Authors: Andrea Bikfalvi, Josep Llach, Ferran Lazaro, Bojan Jovanovski
Abstract:
Due to the continuous need to foster university-business cooperation in both developed and developing countries, some higher education institutions face the challenge of designing, piloting, operating, and consolidating knowledge and technology transfer units. University-business cooperation has different maturity stages worldwide, with some higher education institutions excelling in these practices, but with lots of others that could be qualified as intermediate, or even some situated at the very beginning of their knowledge transfer adventure. These latter face the imminent necessity to formally create the technology transfer unit and to draw its roadmap. The complexity of this operation is due to various aspects that need to align and coordinate, including a major change in mission, vision, structure, priorities, and operations. Qualitative in approach, this study presents 5 case studies, consisting of higher education institutions located in the Western Balkans – 2 in Albania, 2 in Bosnia and Herzegovina, 1 in Montenegro- fully immersed in the entrepreneurial journey of creating their knowledge and technology transfer unit. The empirical evidence is developed in a pan-European project, illustratively called KnowHub (reconnecting universities and enterprises to unleash regional innovation and entrepreneurial activity), which is being implemented in three countries and has resulted in at least 15 pilot cooperation agreements between academia and business. Based on a peer-mentoring approach including more experimented and more mature technology transfer models of European partners located in Spain, Finland, and Austria, a series of initial lessons learned are already available. The findings show that each unit developed its tailor-made approach to engage with internal and external stakeholders, offer value to the academic staff, students, as well as business partners. The latest technology underpinning KnowHub services and institutional commitment are found to be key success factors. Although specific strategies and plans differ, they are based on a general strategy jointly developed and based on common tools and methods of strategic planning and business modelling. The main output consists of providing good practice for designing, piloting, and initial operations of units aiming to fully valorise knowledge and expertise available in academia. Policymakers can also find valuable hints on key aspects considered vital for initial operations. The value of this contribution is its focus on the intersection of three perspectives (service orientation, organisational innovation, business model) since previous research has only relied on a single topic or dual approaches, most frequently in the business context and less frequently in higher education.Keywords: business model, capacity building, entrepreneurial education, knowledge transfer
Procedia PDF Downloads 14119560 Framework for Integrating Big Data and Thick Data: Understanding Customers Better
Authors: Nikita Valluri, Vatcharaporn Esichaikul
Abstract:
With the popularity of data-driven decision making on the rise, this study focuses on providing an alternative outlook towards the process of decision-making. Combining quantitative and qualitative methods rooted in the social sciences, an integrated framework is presented with a focus on delivering a much more robust and efficient approach towards the concept of data-driven decision-making with respect to not only Big data but also 'Thick data', a new form of qualitative data. In support of this, an example from the retail sector has been illustrated where the framework is put into action to yield insights and leverage business intelligence. An interpretive approach to analyze findings from both kinds of quantitative and qualitative data has been used to glean insights. Using traditional Point-of-sale data as well as an understanding of customer psychographics and preferences, techniques of data mining along with qualitative methods (such as grounded theory, ethnomethodology, etc.) are applied. This study’s final goal is to establish the framework as a basis for providing a holistic solution encompassing both the Big and Thick aspects of any business need. The proposed framework is a modified enhancement in lieu of traditional data-driven decision-making approach, which is mainly dependent on quantitative data for decision-making.Keywords: big data, customer behavior, customer experience, data mining, qualitative methods, quantitative methods, thick data
Procedia PDF Downloads 16219559 Motivational Factors Influencing Women’s Entrepreneurship: A Case Study of Female Entrepreneurship in South Africa
Authors: Natanya Meyer, Johann Landsberg
Abstract:
Globally, many women are still disadvantaged when it comes to business opportunities. Entrepreneurship development programs, specifically designed to assist women entrepreneurs, are assisting in solving this problem to a certain extent. The purpose of this study is to identify the factors that motivate females to start their own business. Females, from three different groups (2013, 2014, and 2015), who were all enrolled in a short learning program specifically designed for women in early start-up stage or intending to start a business, were asked what motivated them to start a business. The results indicated that, from all three groups, the majority of the women wanted to start a business to be independent and have freedom and to add towards a social goal. The results further indicated that, in general, women would enter into entrepreneurship activity due to pull factors rather than push factors.Keywords: entrepreneurship programs, female entrepreneur-ship, motivational factors, South Africa
Procedia PDF Downloads 46119558 The Driving Force for Taiwan Social Innovation Business Model Transformation: A Case Study of Social Innovation Internet Celebrity Training Project
Authors: Shih-Jie Ma, Jui-Hsu Hsiao, Ming-Ying Hsieh, Shin-Yan Yang, Chun-Han Yeh, Kuo-Chun Su
Abstract:
In Taiwan, social enterprises and non-profit organizations (NPOs) are not familiar with innovative business models, such as live streaming. In 2019, a brand new course called internet celebrity training project is introduced to them by the Social Innovation Lab. The Goal of this paper is to evaluate the effect of this project, to explore the role of new technology (internet live stream) in business process management (BPM), and to analyze how live stream programs can assist social enterprises in creating new business models. Social Innovation, with the purpose to solve social issues in innovative ways, is one of the most popular topics in the world. Social Innovation Lab was established in 2017 by Executive Yuan in Taiwan. The vision of Social Innovation Lab is to exploit technology, innovation and experimental methods to solve social issues, and to maximize the benefits from government investment. Social Innovation Lab aims at creating a platform for both supply and demand sides of social issues, to make social enterprises and start-ups communicate with each other, and to build an eco-system in which stakeholders can make a social impact. Social Innovation Lab keeps helping social enterprises and NPOs to gain better publicity and to enhance competitiveness by facilitating digital transformation. In this project, Social Innovation Lab exerted the influence of social media such as YouTube and Facebook, to make social enterprises and start-ups adjust their business models by using the live stream of social media, which becomes one of the tools to expand their market and diversify their sales channels. Internet live stream training courses were delivered in different regions of Taiwan in 2019, including Taitung, Taichung, Kaohsiung and Hualien. Through these courses, potential groups and enterprises were cultivated to become so-called internet celebrities. With their concern about social issues in mind, these internet celebrities know how to manipulate social media to make a social impact in different fields, such as aboriginal people, food and agriculture, LOHAS (Lifestyles of Health and Sustainability), environmental protection and senior citizens. Participants of live stream training courses in Taiwan are selected to take in-depth interviews and questionnaire surveys. Results indicate that the digital transformation process of social enterprises and NPOs can be successful by implementing business process reengineering, a significant change made by social innovation internet celebrities. Therefore, this project can be the new driving force to facilitate the business model transformation in Taiwan.Keywords: business process management, digital transformation, live stream, social innovation
Procedia PDF Downloads 146