Search results for: Indigenous forest
957 Even When the Passive Resistance Is Obligatory: Civil Intellectuals’ Solidarity Activism in Tea Workers Movement
Authors: Moshreka Aditi Huq
Abstract:
This study shows how a progressive portion of civil intellectuals in Bangladesh contributed as the solidarity activist entities in a movement of tea workers that became the symbol of their unique moral struggle. Their passive yet sharp way of resistance, with the integration of mass tea workers of a tea estate, got demonstrated against certain private companies and government officials who approached to establish a special economic zone inside the tea garden without offering any compensation and rehabilitation for poor tea workers. Due to massive protests and rebellion, the authorized entrepreneurs had to step back and called off the project immediately. The extraordinary features of this movement generated itself from the deep core social need of indigenous tea workers who are still imprisoned in the colonial cage. Following an anthropological and ethnographic perspective, this study adopted the main three techniques of intensive interview, focus group discussion, and laborious observation, to extract empirical data. The intensive interviews were undertaken informally using a mostly conversational approach. Focus group discussions were piloted among various representative groups where observations prevailed as part of the regular documentation process. These were conducted among civil intellectual entities, tea workers, tea estate authorities, civil service authorities, and business officials to obtain a holistic view of the situation. The fieldwork was executed in capital Dhaka city, along with northern areas like Chandpur-Begumkhan Tea Estate of Chunarughat Upazilla and Habiganj city of Habiganj District of Bangladesh. Correspondingly, secondary data were accessed through books, scholarly papers, archives, newspapers, reports, leaflets, posters, writing blog, and electronic pages of social media. The study results find that: (1) civil intellectuals opposed state-sponsored business impositions by producing counter-discourse and struggled against state hegemony through the phases of the movement; (2) instead of having the active physical resistance, civil intellectuals’ strength was preferably in passive form which was portrayed through their intellectual labor; (3) the combined movement of tea workers and civil intellectuals reflected on social security of ethnic worker communities that contrasts state’s pseudo-development motives which ultimately supports offensive and oppressive neoliberal growths of economy; (4) civil intellectuals are revealed as having certain functional limitations in the process of movement organization as well as resource mobilization; (5) in specific contexts, the genuine need of protest by indigenous subaltern can overshadow intellectual elitism and helps to raise the voices of ‘subjugated knowledge’. This study is quite likely to represent two sets of apparent protagonist entities in the discussion of social injustice and oppressive development intervention. On the one, hand it may help us to find the basic functional characteristics of civil intellectuals in Bangladesh when they are in a passive mode of resistance in social movement issues. On the other hand, it represents the community ownership and inherent protest tendencies of indigenous workers when they feel threatened and insecure. The study seems to have the potential to understand the conditions of ‘subjugated knowledge’ of subalterns. Furthermore, being the memory and narratives, these ‘activism mechanisms’ of social entities broadens the path to understand ‘power’ and ‘resistance’ in more fascinating ways.Keywords: civil intellectuals, resistance, subjugated knowledge, indigenous
Procedia PDF Downloads 127956 Determination of Klebsiella Pneumoniae Susceptibility to Antibiotics Using Infrared Spectroscopy and Machine Learning Algorithms
Authors: Manal Suleiman, George Abu-Aqil, Uraib Sharaha, Klaris Riesenberg, Itshak Lapidot, Ahmad Salman, Mahmoud Huleihel
Abstract:
Klebsiella pneumoniae is one of the most aggressive multidrug-resistant bacteria associated with human infections resulting in high mortality and morbidity. Thus, for an effective treatment, it is important to diagnose both the species of infecting bacteria and their susceptibility to antibiotics. Current used methods for diagnosing the bacterial susceptibility to antibiotics are time-consuming (about 24h following the first culture). Thus, there is a clear need for rapid methods to determine the bacterial susceptibility to antibiotics. Infrared spectroscopy is a well-known method that is known as sensitive and simple which is able to detect minor biomolecular changes in biological samples associated with developing abnormalities. The main goal of this study is to evaluate the potential of infrared spectroscopy in tandem with Random Forest and XGBoost machine learning algorithms to diagnose the susceptibility of Klebsiella pneumoniae to antibiotics within approximately 20 minutes following the first culture. In this study, 1190 Klebsiella pneumoniae isolates were obtained from different patients with urinary tract infections. The isolates were measured by the infrared spectrometer, and the spectra were analyzed by machine learning algorithms Random Forest and XGBoost to determine their susceptibility regarding nine specific antibiotics. Our results confirm that it was possible to classify the isolates into sensitive and resistant to specific antibiotics with a success rate range of 80%-85% for the different tested antibiotics. These results prove the promising potential of infrared spectroscopy as a powerful diagnostic method for determining the Klebsiella pneumoniae susceptibility to antibiotics.Keywords: urinary tract infection (UTI), Klebsiella pneumoniae, bacterial susceptibility, infrared spectroscopy, machine learning
Procedia PDF Downloads 170955 The Role of Urban Development Patterns for Mitigating Extreme Urban Heat: The Case Study of Doha, Qatar
Authors: Yasuyo Makido, Vivek Shandas, David J. Sailor, M. Salim Ferwati
Abstract:
Mitigating extreme urban heat is challenging in a desert climate such as Doha, Qatar, since outdoor daytime temperature area often too high for the human body to tolerate. Recent studies demonstrate that cities in arid and semiarid areas can exhibit ‘urban cool islands’ - urban areas that are cooler than the surrounding desert. However, the variation of temperatures as a result of the time of day and factors leading to temperature change remain at the question. To address these questions, we examined the spatial and temporal variation of air temperature in Doha, Qatar by conducting multiple vehicle-base local temperature observations. We also employed three statistical approaches to model surface temperatures using relevant predictors: (1) Ordinary Least Squares, (2) Regression Tree Analysis and (3) Random Forest for three time periods. Although the most important determinant factors varied by day and time, distance to the coast was the significant determinant at midday. A 70%/30% holdout method was used to create a testing dataset to validate the results through Pearson’s correlation coefficient. The Pearson’s analysis suggests that the Random Forest model more accurately predicts the surface temperatures than the other methods. We conclude with recommendations about the types of development patterns that show the greatest potential for reducing extreme heat in air climates.Keywords: desert cities, tree-structure regression model, urban cool Island, vehicle temperature traverse
Procedia PDF Downloads 393954 Determining the Sources of Sediment at Different Areas of the Catchment: A Case Study of Welbedacht Reservoir, South Africa
Authors: D. T. Chabalala, J. M. Ndambuki, M. F. Ilunga
Abstract:
Sedimentation includes the processes of erosion, transportation, deposition, and the compaction of sediment. Sedimentation in reservoir results in a decrease in water storage capacity, downstream problems involving aggregation and degradation, blockage of the intake, and change in water quality. A study was conducted in Caledon River catchment in the upstream of Welbedacht Reservoir located in the South Eastern part of Free State province, South Africa. The aim of this research was to investigate and develop a model for an Integrated Catchment Modelling of Sedimentation processes and management for the Welbedacht reservoir. Revised Universal Soil Loss Equation (RUSLE) was applied to determine sources of sediment at different areas of the catchment. The model has been also used to determine the impact of changes from management practice on erosion generation. The results revealed that the main sources of sediment in the watershed are cultivated land (273 ton per hectare), built up and forest (103.3 ton per hectare), and grassland, degraded land, mining and quarry (3.9, 9.8 and 5.3 ton per hectare) respectively. After application of soil conservation practices to developed Revised Universal Soil Loss Equation model, the results revealed that the total average annual soil loss in the catchment decreased by 76% and sediment yield from cultivated land decreased by 75%, while the built up and forest area decreased by 42% and 99% respectively. Thus, results of this study will be used by government departments in order to develop sustainable policies.Keywords: Welbedacht reservoir, sedimentation, RUSLE, Caledon River
Procedia PDF Downloads 196953 Object-Based Image Analysis for Gully-Affected Area Detection in the Hilly Loess Plateau Region of China Using Unmanned Aerial Vehicle
Authors: Hu Ding, Kai Liu, Guoan Tang
Abstract:
The Chinese Loess Plateau suffers from serious gully erosion induced by natural and human causes. Gully features detection including gully-affected area and its two dimension parameters (length, width, area et al.), is a significant task not only for researchers but also for policy-makers. This study aims at gully-affected area detection in three catchments of Chinese Loess Plateau, which were selected in Changwu, Ansai, and Suide by using unmanned aerial vehicle (UAV). The methodology includes a sequence of UAV data generation, image segmentation, feature calculation and selection, and random forest classification. Two experiments were conducted to investigate the influences of segmentation strategy and feature selection. Results showed that vertical and horizontal root-mean-square errors were below 0.5 and 0.2 m, respectively, which were ideal for the Loess Plateau region. The segmentation strategy adopted in this paper, which considers the topographic information, and optimal parameter combination can improve the segmentation results. Besides, the overall extraction accuracy in Changwu, Ansai, and Suide achieved was 84.62%, 86.46%, and 93.06%, respectively, which indicated that the proposed method for detecting gully-affected area is more objective and effective than traditional methods. This study demonstrated that UAV can bridge the gap between field measurement and satellite-based remote sensing, obtaining a balance in resolution and efficiency for catchment-scale gully erosion research.Keywords: unmanned aerial vehicle (UAV), object-analysis image analysis, gully erosion, gully-affected area, Loess Plateau, random forest
Procedia PDF Downloads 218952 Intrusion Detection in Cloud Computing Using Machine Learning
Authors: Faiza Babur Khan, Sohail Asghar
Abstract:
With an emergence of distributed environment, cloud computing is proving to be the most stimulating computing paradigm shift in computer technology, resulting in spectacular expansion in IT industry. Many companies have augmented their technical infrastructure by adopting cloud resource sharing architecture. Cloud computing has opened doors to unlimited opportunities from application to platform availability, expandable storage and provision of computing environment. However, from a security viewpoint, an added risk level is introduced from clouds, weakening the protection mechanisms, and hardening the availability of privacy, data security and on demand service. Issues of trust, confidentiality, and integrity are elevated due to multitenant resource sharing architecture of cloud. Trust or reliability of cloud refers to its capability of providing the needed services precisely and unfailingly. Confidentiality is the ability of the architecture to ensure authorization of the relevant party to access its private data. It also guarantees integrity to protect the data from being fabricated by an unauthorized user. So in order to assure provision of secured cloud, a roadmap or model is obligatory to analyze a security problem, design mitigation strategies, and evaluate solutions. The aim of the paper is twofold; first to enlighten the factors which make cloud security critical along with alleviation strategies and secondly to propose an intrusion detection model that identifies the attackers in a preventive way using machine learning Random Forest classifier with an accuracy of 99.8%. This model uses less number of features. A comparison with other classifiers is also presented.Keywords: cloud security, threats, machine learning, random forest, classification
Procedia PDF Downloads 320951 Tracing Ethnic Identity through Prehistoric Paintings and Tribal Art in Central India
Authors: Indrani Chattopadhyaya
Abstract:
This paper seeks to examine how identity – a cultural self-image of a group of people develops – how they live, they think, they celebrate and express their world view through language, gesture, symbols, and rituals. 'Culture' is a way of life and 'identity' is assertion of that cultural self-image practiced by the group. The way in which peoples live varies from time to time and from place to place. This variation is important for their identity. Archaeologists have classified these patterns of spacial variations as 'archaeological culture.' These cultures are identified 'self-consciously' with a particular social group indicating ethnicity. The ethnic identity as archaeological cultures also legitimizes the claims of modern groups to territory. In prehistoric research problems of ethnicity and multiculturalism, stylistic attributes significantly reflect both group membership and individuality. In India, anthropologists feel that though tribes have suffered relative isolation through history, they have remained an integral part of Indian civilization. The term 'tribe' calls for substitution with a more meaningful name with an indigenous flavour 'Adivasi' (original inhabitants of the land).While studying prehistoric rock paintings from central India - Sonbhadra (Uttar Pradesh) and Bhimbetka (Madhya Pradesh), one is struck by the similarity between stylistic attributes of painted motifs in the prehistoric rock shelters and the present day indigenous art of Kol and Bhil tribes in the area, who have not seen these prehistoric rock paintings, yet are carrying on with the tradition of painting and decorating their houses in the same way. They worship concretionary sandstone blocks with triangular laminae as Goddess, Devi, Shakti. This practice is going on since Upper Palaeolithic period confirmed by archaeological excavation. The past is legitimizing the role of the present groups by allowing them to trace their roots from earlier times.Keywords: ethnic identity, hermeneutics, semiotics, Adivasi
Procedia PDF Downloads 310950 Customer Churn Prediction by Using Four Machine Learning Algorithms Integrating Features Selection and Normalization in the Telecom Sector
Authors: Alanoud Moraya Aldalan, Abdulaziz Almaleh
Abstract:
A crucial component of maintaining a customer-oriented business as in the telecom industry is understanding the reasons and factors that lead to customer churn. Competition between telecom companies has greatly increased in recent years. It has become more important to understand customers’ needs in this strong market of telecom industries, especially for those who are looking to turn over their service providers. So, predictive churn is now a mandatory requirement for retaining those customers. Machine learning can be utilized to accomplish this. Churn Prediction has become a very important topic in terms of machine learning classification in the telecommunications industry. Understanding the factors of customer churn and how they behave is very important to building an effective churn prediction model. This paper aims to predict churn and identify factors of customers’ churn based on their past service usage history. Aiming at this objective, the study makes use of feature selection, normalization, and feature engineering. Then, this study compared the performance of four different machine learning algorithms on the Orange dataset: Logistic Regression, Random Forest, Decision Tree, and Gradient Boosting. Evaluation of the performance was conducted by using the F1 score and ROC-AUC. Comparing the results of this study with existing models has proven to produce better results. The results showed the Gradients Boosting with feature selection technique outperformed in this study by achieving a 99% F1-score and 99% AUC, and all other experiments achieved good results as well.Keywords: machine learning, gradient boosting, logistic regression, churn, random forest, decision tree, ROC, AUC, F1-score
Procedia PDF Downloads 134949 Model-Driven and Data-Driven Approaches for Crop Yield Prediction: Analysis and Comparison
Authors: Xiangtuo Chen, Paul-Henry Cournéde
Abstract:
Crop yield prediction is a paramount issue in agriculture. The main idea of this paper is to find out efficient way to predict the yield of corn based meteorological records. The prediction models used in this paper can be classified into model-driven approaches and data-driven approaches, according to the different modeling methodologies. The model-driven approaches are based on crop mechanistic modeling. They describe crop growth in interaction with their environment as dynamical systems. But the calibration process of the dynamic system comes up with much difficulty, because it turns out to be a multidimensional non-convex optimization problem. An original contribution of this paper is to propose a statistical methodology, Multi-Scenarios Parameters Estimation (MSPE), for the parametrization of potentially complex mechanistic models from a new type of datasets (climatic data, final yield in many situations). It is tested with CORNFLO, a crop model for maize growth. On the other hand, the data-driven approach for yield prediction is free of the complex biophysical process. But it has some strict requirements about the dataset. A second contribution of the paper is the comparison of these model-driven methods with classical data-driven methods. For this purpose, we consider two classes of regression methods, methods derived from linear regression (Ridge and Lasso Regression, Principal Components Regression or Partial Least Squares Regression) and machine learning methods (Random Forest, k-Nearest Neighbor, Artificial Neural Network and SVM regression). The dataset consists of 720 records of corn yield at county scale provided by the United States Department of Agriculture (USDA) and the associated climatic data. A 5-folds cross-validation process and two accuracy metrics: root mean square error of prediction(RMSEP), mean absolute error of prediction(MAEP) were used to evaluate the crop prediction capacity. The results show that among the data-driven approaches, Random Forest is the most robust and generally achieves the best prediction error (MAEP 4.27%). It also outperforms our model-driven approach (MAEP 6.11%). However, the method to calibrate the mechanistic model from dataset easy to access offers several side-perspectives. The mechanistic model can potentially help to underline the stresses suffered by the crop or to identify the biological parameters of interest for breeding purposes. For this reason, an interesting perspective is to combine these two types of approaches.Keywords: crop yield prediction, crop model, sensitivity analysis, paramater estimation, particle swarm optimization, random forest
Procedia PDF Downloads 232948 Supervised Machine Learning Approach for Studying the Effect of Different Joint Sets on Stability of Mine Pit Slopes Under the Presence of Different External Factors
Authors: Sudhir Kumar Singh, Debashish Chakravarty
Abstract:
Slope stability analysis is an important aspect in the field of geotechnical engineering. It is also important from safety, and economic point of view as any slope failure leads to loss of valuable lives and damage to property worth millions. This paper aims at mitigating the risk of slope failure by studying the effect of different joint sets on the stability of mine pit slopes under the influence of various external factors, namely degree of saturation, rainfall intensity, and seismic coefficients. Supervised machine learning approach has been utilized for making accurate and reliable predictions regarding the stability of slopes based on the value of Factor of Safety. Numerous cases have been studied for analyzing the stability of slopes using the popular Finite Element Method, and the data thus obtained has been used as training data for the supervised machine learning models. The input data has been trained on different supervised machine learning models, namely Random Forest, Decision Tree, Support vector Machine, and XGBoost. Distinct test data that is not present in training data has been used for measuring the performance and accuracy of different models. Although all models have performed well on the test dataset but Random Forest stands out from others due to its high accuracy of greater than 95%, thus helping us by providing a valuable tool at our disposition which is neither computationally expensive nor time consuming and in good accordance with the numerical analysis result.Keywords: finite element method, geotechnical engineering, machine learning, slope stability
Procedia PDF Downloads 102947 Comparison of Different Machine Learning Algorithms for Solubility Prediction
Authors: Muhammet Baldan, Emel Timuçin
Abstract:
Molecular solubility prediction plays a crucial role in various fields, such as drug discovery, environmental science, and material science. In this study, we compare the performance of five machine learning algorithms—linear regression, support vector machines (SVM), random forests, gradient boosting machines (GBM), and neural networks—for predicting molecular solubility using the AqSolDB dataset. The dataset consists of 9981 data points with their corresponding solubility values. MACCS keys (166 bits), RDKit properties (20 properties), and structural properties(3) features are extracted for every smile representation in the dataset. A total of 189 features were used for training and testing for every molecule. Each algorithm is trained on a subset of the dataset and evaluated using metrics accuracy scores. Additionally, computational time for training and testing is recorded to assess the efficiency of each algorithm. Our results demonstrate that random forest model outperformed other algorithms in terms of predictive accuracy, achieving an 0.93 accuracy score. Gradient boosting machines and neural networks also exhibit strong performance, closely followed by support vector machines. Linear regression, while simpler in nature, demonstrates competitive performance but with slightly higher errors compared to ensemble methods. Overall, this study provides valuable insights into the performance of machine learning algorithms for molecular solubility prediction, highlighting the importance of algorithm selection in achieving accurate and efficient predictions in practical applications.Keywords: random forest, machine learning, comparison, feature extraction
Procedia PDF Downloads 42946 Coprophagus Beetles (Scarabaeidae: Coleoptera) of Buxa Tiger Reserve, West Bengal, India
Authors: Subhankar Kumar Sarkar
Abstract:
Scarab beetles composing the family Scarabaeidae is one of the largest families in the order Coleoptera. The family is comprised of 11 subfamilies. Of these, the subfamily Scarabaeinae includes 13 tribes globally. Indian species are however considered within 2 tribes Scarabaeini and Coprini. Scarab beetles under this subfamily also known as Coprophagus beetles play an indispensable role in forestry and agriculture. Both adults and larvae of these beetles do a remarkable job of carrying excrement into the soil thus enriching the soil to a great extent. Eastern and North Eastern states of India are heavily rich in diversity of organisms as this region exhibits the tropical rain forests of the eastern Himalayas, which exhibits one of the 18 biodiversity hotspots of the world and one of the three of India. Buxa Tiger Reserve located in Dooars between latitudes 26°30” to 26°55” North & longitudes 89°20” to 89°35” East is one such fine example of rain forests of the eastern Himalayas. Despite this, the subfamily is poorly known, particularly from this part of the globe and demands serious revisionary studies. It is with this background; the attempt is being made to assess the Scarabaeinae fauna of the forest. Both extensive and intensive surveys were conducted in different beats under different ranges of Buxa Tiger Reserve. For collection sweep nets, bush beating and collection in inverted umbrella, hand picking techniques were used. Several pit fall traps were laid in the collection localities of the Reserve to trap ground dwelling scarabs. Dung of various animals was also examined to make collections. In the evening hours UV light, trap was used to collect nocturnal beetles. The collected samples were studied under Stereozoom Binocular Microscopes Zeiss SV6, SV11 and Olympus SZ 30. The faunistic investigation of the forest revealed in the recognition of 19 species under 6 genera distributed over 2 tribes. Of these Heliocopris tyrannus Thomson, 1859 was recorded new from the Country, while Catharsius javanus Lansberge, 1886, Copris corpulentus Gillet, 1910, C. doriae Harold, 1877 and C. sarpedon Harold, 1868 from the state. 4 species are recorded as endemic to India. The forest is dominated by the members of the Genus Onthophagus, of which Onthophagus (Colobonthophagus) dama (Fabricius, 1798) is represented by highest number of individuals. Their seasonal distribution is most during Premonsoon followed by Monsoon and Postmonsoon. Zoogeographically all the recorded species are of oriental distribution.Keywords: buxa tiger reserve, diversity, India, new records, scarabaeinae, scarabaeidae
Procedia PDF Downloads 242945 Evidence of Natural Selection Footprints among Some African Chicken Breeds and Village Ecotypes
Authors: Ahmed Elbeltagy, Francesca Bertolini, Damarius Fleming, Angelica Van Goor, Chris Ashwell, Carl Schmidt, Donald Kugonza, Susan Lamont, Max Rothschild
Abstract:
The major factor in shaping genomic variation of the African indigenous rural chicken is likely natural selection drives the development genetic footprints in the chicken genomes. To investigate such a hypothesis of a selection footprint, a total of 292 birds were randomly sampled from three indigenous ecotypes from East Africa (Uganda, Rwanda) and North Africa (Egypt) and two registered Egyptian breeds (Fayoumi and Dandarawi), and from the synthetic Kuroiler breed. Samples were genotyped using the Affymetrix 600K Axiom® Array. A total of 526,652 SNPs were utilized in the downstream analysis after quality control measures. The intra-population runs of homozygosity (ROH) that were consensuses in > 50% of individuals of an ecotype or > 75% of a breed were studied. To identify inter-population differentiation due to genetic structure, FST was calculated for North- vs. East- African populations in addition to population-pairwise combinations for overlapping windows (500Kb with an overlap of 250Kb). A total of 28,563 ROH were determined and were classified into three length categories. ROH and Fst detected sweeps were identified on several autosomes. Several genes in these regions are likely to be related to adaptation to local environmental stresses that include high altitude, diseases resistance, poor nutrition, oxidative and heat stresses and were linked to gene ontology terms (GO) related to immune response, oxygen consumption and heme binding, carbohydrate metabolism, oxidation-reduction, and behavior. Results indicated a possible effect of natural selection forces on shaping genomic structure for adaptation to local environmental stresses.Keywords: African Chicken, runs of homozygosity, FST, selection footprints
Procedia PDF Downloads 313944 An Approach to Addressing Homelessness in Hong Kong: Life Story Approach
Authors: Tak Mau Simon Chan, Ying Chuen Lance Chan
Abstract:
Homelessness has been a popular and controversial debate in Hong Kong, a city which is densely populated and well-known for very expensive housing. The constitution of the homeless as threats to the community and environmental hygiene is ambiguous and debatable in the Hong Kong context. The lack of an intervention model is the critical research gap thus far, aside from the tangible services delivered. The life story approach (LSA), with its unique humanistic orientation, has been well applied in recent decades to depict the needs of various target groups, but not the homeless. It is argued that the life story approach (LSA), which has been employed by health professionals in the landscape of dementia, and health and social care settings, can be used as a reference in the local Chinese context through indigenization. This study, therefore, captures the viewpoints of service providers and users by constructing an indigenous intervention model that refers to the LSA in serving the chronically homeless. By informing 13 social workers and 27 homeless individuals in 8 focus groups whilst 12 homeless individuals have participated in individual in-depth interviews, a framework of LSA in homeless people is proposed. Through thematic analysis, three main themes of their life stories was generated, namely, the family, negative experiences and identity transformation. The three domains solidified framework that not only can be applied to the homeless, but also other disadvantaged groups in the Chinese context. Based on the three domains of family, negative experiences and identity transformation, the model is applied in the daily practices of social workers who help the homeless. The domain of family encompasses familial relationships from the past to the present to the speculated future with ten sub-themes. The domain of negative experiences includes seven sub-themes, with reference to the deviant behavior committed. The last domain, identity transformation, incorporates the awareness and redefining of one’s identity and there are a total of seven sub-themes. The first two domains are important components of personal histories while the third is more of an unknown, exploratory and yet to-be-redefined territory which has a more positive and constructive orientation towards developing one’s identity and life meaning. The longitudinal temporal dimension of moving from the past – present - future enriches the meaning making process, facilitates the integration of life experiences and maintains a more hopeful dialogue. The model is tested and its effectiveness is measured by using qualitative and quantitative methods to affirm the extent that it is relevant to the local context. First, it contributes to providing a clear guideline for social workers who can use the approach as a reference source. Secondly, the framework acts as a new intervention means to address problem saturated stories and the intangible needs of the homeless. Thirdly, the model extends the application to beyond health related issues. Last but not least, the model is highly relevant to the local indigenous context.Keywords: homeless, indigenous intervention, life story approach, social work practice
Procedia PDF Downloads 296943 Assessing the Legacy Effects of Wildfire on Eucalypt Canopy Structure of South Eastern Australia
Authors: Yogendra K. Karna, Lauren T. Bennett
Abstract:
Fire-tolerant eucalypt forests are one of the major forest ecosystems of south-eastern Australia and thought to be highly resistant to frequent high severity wildfires. However, the impact of different severity wildfires on the canopy structure of fire-tolerant forest type is under-studied, and there are significant knowledge gaps in relation to the assessment of tree and stand level canopy structural dynamics and recovery after fire. Assessment of canopy structure is a complex task involving accurate measurements of the horizontal and vertical arrangement of the canopy in space and time. This study examined the utility of multitemporal, small-footprint lidar data to describe the changes in the horizontal and vertical canopy structure of fire-tolerant eucalypt forests seven years after wildfire of different severities from the tree to stand level. Extensive ground measurements were carried out in four severity classes to describe and validate canopy cover and height metrics as they change after wildfire. Several metrics such as crown height and width, crown base height and clumpiness of crown were assessed at tree and stand level using several individual tree top detection and measurement algorithm. Persistent effects of high severity fire 8 years after both on tree crowns and stand canopy were observed. High severity fire increased the crown depth but decreased the crown projective cover leading to more open canopy.Keywords: canopy gaps, canopy structure, crown architecture, crown projective cover, multi-temporal lidar, wildfire severity
Procedia PDF Downloads 175942 Re-Conceptualizing the Indigenous Learning Space for Children in Bangladesh Placing Built Environment as Third Teacher
Authors: Md. Mahamud Hassan, Shantanu Biswas Linkon, Nur Mohammad Khan
Abstract:
Over the last three decades, the primary education system in Bangladesh has experienced significant improvement, but it has failed to cope with different social and cultural aspects, which present many challenges for children, families, and the public school system. Neglecting our own contextual learning environment, it is a matter of sorrow that much attention has been paid to the more physical outcome-focused model, which is nothing but mere infrastructural development, and less subtle to the environment that suits the child's psychology and improves their social, emotional, physical, and moral competency. In South Asia, the symbol of education was never the little red house of colonial architecture but “A Guru sitting under a tree", whereas a responsive and inclusive design approach could help to create more innovative learning environments. Such an approach incorporates how the built, natural, and cultural environment shapes the learner; in turn, learners shape the learning. This research will be conducted to, i) identify the major issues and drawbacks of government policy for primary education development programs; ii) explore and evaluate the morphology of the conventional model of school, and iii) propose an alternative model in a collaborative design process with the stakeholders for maximizing the relationship between the physical learning environments and learners by treating “the built environment” as “the third teacher.” Based on observation, this research will try to find out to what extent built, and natural environments can be utilized as a teaching tool for a more optimal learning environment. It should also be evident that there is a significant gap in the state policy, predetermined educational specifications, and implementation process in response to stakeholders’ involvement. The outcome of this research will contribute to a people-place sensitive design approach through a more thoughtful and responsive architectural process.Keywords: built environment, conventional planning, indigenous learning space, responsive design
Procedia PDF Downloads 108941 Woodfuels as Alternative Source of Energy in Rural and Urban Areas in the Philippines
Authors: R. T. Aggangan
Abstract:
Woodfuels continue to be a major component of the energy supply mix of the Philippines due to increasing demand for energy that are not adequately met by decreasing supply and increasing prices of fuel oil such as liquefied petroleum gas (LPG) and kerosene. The Development Academy of the Philippines projects the demand of woodfuels in 2016 as 28.3 million metric tons in the household sector and about 105.4 million metric tons combined supply potentials of both forest and non-forest lands. However, the Revised Master Plan for Forestry Development projects a demand of about 50 million cu meters of fuelwood in 2016 but the capability to supply from local sources is only about 28 million cu meters indicating a 44 % deficiency. Household demand constitutes 82% while industries demand is 18%. Domestic household demand for energy is for cooking needs while the industrial demand is for steam power generation, curing barns of tobacco: brick, ceramics and pot making; bakery; lime production; and small scale food processing. Factors that favour increased use of wood-based energy include the relatively low prices (increasing oil-based fuel prices), availability of efficient wood-based energy utilization technology, increasing supply, and increasing population that cannot afford conventional fuels. Moreover, innovations in combustion technology and cogeneration of heat and power from biomass for modern applications favour biomass energy development. This paper recommends policies and strategic directions for the development of the woodfuel industry with the twin goals of sustainably supplying the energy requirements of households and industry.Keywords: biomass energy development, fuelwood, households and industry, innovations in combustion technology, supply and demand
Procedia PDF Downloads 334940 Response of Yield and Morphological Characteristic of Rice Cultivars to Heat Stress at Different Growth Stages
Authors: Mohammad Taghi Karbalaei Aghamolki, Mohd Khanif Yusop, Fateh Chand Oad, Hamed Zakikhani, Hawa Zee Jaafar, Sharifh Kharidah, Mohamed Hanafi Musa, Shahram Soltani
Abstract:
The high temperatures during sensitive growth phases are changing rice morphology as well as influencing yield. In the glass house study, the treatments were: growing conditions [normal growing (32oC+2) and heat stress (38oC+2) day time and 22oC+2 night time], growth stages (booting, flowering and ripening) and four cultivars (Hovaze, Hashemi, Fajr, as exotic and MR219 as indigenous). The heat chamber was prepared covered with plastic, and automatic heater was adjusted at 38oC+2 (day) and 22oC+2 (night) for two weeks in every growth stages. Rice morphological and yield under the influence of heat stress during various growth stages showed taller plants in Hashsemi due to its tall character. The total tillers per hill were significantly higher in Fajr receiving heat stress during booting stage. In all growing conditions and growth stages, Hashemi recorded higher panicle exertion and flag leaf length. The flag leaf width in all situations was found higher in Hovaze. The total tillers per hill were more in Fajr, although heat stress was imposed during booting and flowering stages. The indigenous MR219 in all situations of growing conditions, growth stages recorded higher grain yield. However, its grain yield slightly decreased when heat stress was imposed during booting and flowering. Similar results were found in all other exotic cultivars recording to lower grain yield in the heat stress condition during booting and flowering. However, plants had no effect on heat stress during ripening stage.Keywords: rice, growth, heat, temperature, stress, morphology, yield
Procedia PDF Downloads 278939 Governing Ecosystem Services for Poverty Reduction: Empirical Evidences from Purulia District, India
Authors: Soma Sarkar
Abstract:
A number of authors have recently argued that there are strong links between ecosystem services and sustainable development, particularly development efforts that aim to reduce rural poverty. We see two distinct routes by which the science of ecosystem services can contribute to both nature conservation and sustainable development. First, a thorough accounting of ecosystem services and a better understanding of how and at what rates ecosystems produce these services can be used to motivate payment for nature conservation. At least part of the generated funds can be used to compensate people who suffer lost economic opportunities to protect these services. For example, if rural poor are asked to take actions that reduce farm productivity to protect and regulate water supply, those farmers could be compensated for the reduced productivity they experience. When the benefits of natural ecosystems are explicitly quantified, those benefits are more valued both by the people who directly interact with the ecosystems and the governmental and other agencies that would have to pay for substitute sources of these services if these ecosystems should become impaired. Appreciating the value of ecosystem services can motivate increased conservation investment to prevent having to pay for substitutes later. This approach could be characterized as a ‘‘government investment’’ approach because the payments will generally come from beneficiaries outside of the local area, and a governmental or other agency is typically responsible for collecting and redistributing the funds. Second, a focus on the conservation of ecosystem services could improve the success of projects that attempt to both conserve nature and improve the welfare of the rural poor by fostering markets for the goods and services that local people produce or extract from ecosystems. These projects could be characterized as more ‘‘community based’’ because the goal is to foster the more organic, or grassroots, development of cottage industries, such as ecotourism, or the production of non-timber forest products, that are enhanced by better protection of local ecosystems. Using this framework, we discuss the factors that may have contributed to failure or success for several projects in the district of Purulia, one of the most backward districts of India and inhabited by indigenous group of people. A large majority of people in this district are dependent on environment based incomes for their sustenance. The erosion of natural resource base owing to poor governance in the district has led to the reductions in the household incomes of these people. The scale of our analysis is local or project level. The plight of poor has little to do with the production functions of ecosystem services. But for rural poor, at the local level, the status of ecosystem services can make a big difference in their daily lives.Keywords: ecosystem services, governance, rural poor, community based natural resource management
Procedia PDF Downloads 373938 Desertification of Earth and Reverting Strategies
Authors: V. R. Venugopal
Abstract:
Human being evolved 200,000 years ago in an area which is now the Sahara desert and lived all along in the northern part of Africa. It was around 10,000 to15,00 years that he moved out of Africa. Various ancient civilizations – mainly the Egyptian, Mesopotamian, Indus valley and the Chinese yellow river valley civilizations - developed and perished till the beginning of the Christian era. Strangely the regions where all these civilizations flourished are no deserts. After the ancient civilizations the two major religions of the world the Christianity and Islam evolved. These too evolved in the regions of Jerusalem and Mecca which are now in the deserts of the present Israel and Saudi Arabia. Human activity since ancient age right from his origin was in areas which are now deserts. This is only because wherever Man lived in large numbers he has turned them into deserts. Unfortunately, this is not the case with the ancient days alone. Over the last 500 years the forest cover on the earth is reduced by 80 percent. Even more currently Just over the last forty decades human population has doubled but the number of bugs, beetles, worms and butterflies (micro fauna) have declined by 45%. Deforestation and defaunation are the first signs of desertification and Desertification is a process parallel to the extinction of life. There is every possibility that soon most of the earth will be in deserts. This writer has been involved in the process of forestation and increase of fauna as a profession since twenty years and this is a report of his efforts made in the process, the results obtained and concept generated to revert the ongoing desertification of this earth. This paper highlights how desertification can be reverted by applying these basic principles. 1) Man is not owner of this earth and has no right destroy vegetation and micro fauna. 2) Land owner shall not have the freedom to do anything that he wishes with the land. 3) The land that is under agriculture shall be reduced at least by a half. 4) Irrigation and modern technology shall be used for the forest growth also. 5) Farms shall have substantial permanent vegetation and the practice of all in all out shall stop.Keywords: desertification, extinction, micro fauna, reverting
Procedia PDF Downloads 312937 Sustainable Capacity Building on Tourism Management of Touristic Destinations in Ghana: The Case of James and Ussher Forts in the Accra Metropolis
Authors: Fiona Gibson
Abstract:
This study is on sustainable capacity building in tourism management of the touristic destination of forts and castles within the Accra Metropolis, of the Greater Accra Region of Ghana, notably, the Christianbough Castle, the James and Ussher Forts. These forts and castle mentioned above have a rich colonial historical past that emerged from the 17th century onwards on the Gulf Coast of Guinea of the West Africa Sub-Region. Unfortunately, apart from the Christianbough Castle, which used to be the seat of government until recently, the environment of James and Ussher Forts are in a deployable state of decay due to years of neglect. Jamestown and Usshertown fishing communities with historical colonial past of a rich touristic heritage sites are predominantly indigenous Gas who speak only the Ga language, one of the languages of the six local languages spoken in Ghana, as a medium for sustainable tourism management. The purpose of this study is to investigate the reasons for years of decay and neglect, using both qualitative and quantitative research approach for individual interviews, to develop a rich picture of life situational story of the people of James and Ussher Forts environs and finding solutions to their predicaments through internal generated funds for sustainability of tourism management within the communities. The study recommends nation-wide educational campaigns and programmes on culture of maintenance and management for sustainable tourism development and management at all historical heritage sites in the country, specifically with the aim of promoting tourism in Ghana, using the indigenous local languages. The study also recommends formal and informal education for the residents, especially the youth to help them learn skills, either through local training or the formal education and this call for collaboration between the government of Ghana and other local and international bodies.Keywords: sustainable capacity building, tourism management, forts, castles
Procedia PDF Downloads 497936 Shale Gas and Oil Resource Assessment in Middle and Lower Indus Basin of Pakistan
Authors: Amjad Ali Khan, Muhammad Ishaq Saqi, Kashif Ali
Abstract:
The focus of hydrocarbon exploration in Pakistan has been primarily on conventional hydrocarbon resources. Directorate General Petroleum Concessions (DGPC) has taken the lead on the assessment of indigenous unconventional oil and gas resources, which has resulted in a ‘Shale Oil/Gas Resource Assessment Study’ conducted with the help of USAID. This was critically required in the energy-starved Pakistan, where the gap between indigenous oil & gas production and demand continues to widen for a long time. Exploration & exploitation of indigenous unconventional resources of Pakistan have become vital to meet our energy demand and reduction of oil and gas import bill of the country. This study has attempted to bridge a critical gap in geological information about the potential of shale gas & oil in Pakistan in the four formations, i.e., Sembar, Lower Goru, Ranikot and Ghazij in the Middle and Lower Indus Basins, which were selected for the study as for resource assessment for shale gas & oil. The primary objective of the study was to estimate and establish shale oil/gas resource assessment of the study area by carrying out extensive geological analysis of exploration, appraisal and development wells drilled in the Middle and Lower Indus Basins, along with identification of fairway(s) and sweet spots in the study area. The Study covers the Lower parts of the Middle Indus basins located in Sindh, southern Punjab & eastern parts of the Baluchistan provinces, with a total sedimentary area of 271,795 km2. Initially, 1611 wells were reviewed, including 1324 wells drilled through different shale formations. Based on the availability of required technical data, a detailed petrophysical analysis of 124 wells (21 Confidential & 103 in the public domain) has been conducted for the shale gas/oil potential of the above-referred formations. The core & cuttings samples of 32 wells and 33 geochemical reports of prospective Shale Formations were available, which were analyzed to calibrate the results of petrophysical analysis with petrographic/ laboratory analyses to increase the credibility of the Shale Gas Resource assessment. This study has identified the most prospective intervals, mainly in Sembar and Lower Goru Formations, for shale gas/oil exploration in the Middle and Lower Indus Basins of Pakistan. The study recommends seven (07) sweet spots for undertaking pilot projects, which will enable to evaluate of the actual production capability and production sustainability of shale oil/gas reservoirs of Pakistan for formulating future strategies to explore and exploit shale/oil resources of Pakistan including fiscal incentives required for developing shale oil/gas resources of Pakistan. Some E&P Companies are being persuaded to make a consortium for undertaking pilot projects that have shown their willingness to participate in the pilot project at appropriate times. The location for undertaking the pilot project has been finalized as a result of a series of technical sessions by geoscientists of the potential consortium members after the review and evaluation of available studies.Keywords: conventional resources, petrographic analysis, petrophysical analysis, unconventional resources, shale gas & oil, sweet spots
Procedia PDF Downloads 51935 Landscape Pattern Evolution and Optimization Strategy in Wuhan Urban Development Zone, China
Abstract:
With the rapid development of urbanization process in China, its environmental protection pressure is severely tested. So, analyzing and optimizing the landscape pattern is an important measure to ease the pressure on the ecological environment. This paper takes Wuhan Urban Development Zone as the research object, and studies its landscape pattern evolution and quantitative optimization strategy. First, remote sensing image data from 1990 to 2015 were interpreted by using Erdas software. Next, the landscape pattern index of landscape level, class level, and patch level was studied based on Fragstats. Then five indicators of ecological environment based on National Environmental Protection Standard of China were selected to evaluate the impact of landscape pattern evolution on the ecological environment. Besides, the cost distance analysis of ArcGIS was applied to simulate wildlife migration thus indirectly measuring the improvement of ecological environment quality. The result shows that the area of land for construction increased 491%. But the bare land, sparse grassland, forest, farmland, water decreased 82%, 47%, 36%, 25% and 11% respectively. They were mainly converted into construction land. On landscape level, the change of landscape index all showed a downward trend. Number of patches (NP), Landscape shape index (LSI), Connection index (CONNECT), Shannon's diversity index (SHDI), Aggregation index (AI) separately decreased by 2778, 25.7, 0.042, 0.6, 29.2%, all of which indicated that the NP, the degree of aggregation and the landscape connectivity declined. On class level, the construction land and forest, CPLAND, TCA, AI and LSI ascended, but the Distribution Statistics Core Area (CORE_AM) decreased. As for farmland, water, sparse grassland, bare land, CPLAND, TCA and DIVISION, the Patch Density (PD) and LSI descended, yet the patch fragmentation and CORE_AM increased. On patch level, patch area, Patch perimeter, Shape index of water, farmland and bare land continued to decline. The three indexes of forest patches increased overall, sparse grassland decreased as a whole, and construction land increased. It is obvious that the urbanization greatly influenced the landscape evolution. Ecological diversity and landscape heterogeneity of ecological patches clearly dropped. The Habitat Quality Index continuously declined by 14%. Therefore, optimization strategy based on greenway network planning is raised for discussion. This paper contributes to the study of landscape pattern evolution in planning and design and to the research on spatial layout of urbanization.Keywords: landscape pattern, optimization strategy, ArcGIS, Erdas, landscape metrics, landscape architecture
Procedia PDF Downloads 167934 Machine Learning Techniques for Estimating Ground Motion Parameters
Authors: Farid Khosravikia, Patricia Clayton
Abstract:
The main objective of this study is to evaluate the advantages and disadvantages of various machine learning techniques in forecasting ground-motion intensity measures given source characteristics, source-to-site distance, and local site condition. Intensity measures such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Estimating these variables for future earthquake events is a key step in seismic hazard assessment and potentially subsequent risk assessment of different types of structures. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as a statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The algorithms are adjusted to quantify event-to-event and site-to-site variability of the ground motions by implementing them as random effects in the proposed models to reduce the aleatory uncertainty. All the algorithms are trained using a selected database of 4,528 ground-motions, including 376 seismic events with magnitude 3 to 5.8, recorded over the hypocentral distance range of 4 to 500 km in Oklahoma, Kansas, and Texas since 2005. The main reason of the considered database stems from the recent increase in the seismicity rate of these states attributed to petroleum production and wastewater disposal activities, which necessities further investigation in the ground motion models developed for these states. Accuracy of the models in predicting intensity measures, generalization capability of the models for future data, as well as usability of the models are discussed in the evaluation process. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available.Keywords: artificial neural network, ground-motion models, machine learning, random forest, support vector machine
Procedia PDF Downloads 123933 Unsupervised Detection of Burned Area from Remote Sensing Images Using Spatial Correlation and Fuzzy Clustering
Authors: Tauqir A. Moughal, Fusheng Yu, Abeer Mazher
Abstract:
Land-cover and land-use change information are important because of their practical uses in various applications, including deforestation, damage assessment, disasters monitoring, urban expansion, planning, and land management. Therefore, developing change detection methods for remote sensing images is an important ongoing research agenda. However, detection of change through optical remote sensing images is not a trivial task due to many factors including the vagueness between the boundaries of changed and unchanged regions and spatial dependence of the pixels to its neighborhood. In this paper, we propose a binary change detection technique for bi-temporal optical remote sensing images. As in most of the optical remote sensing images, the transition between the two clusters (change and no change) is overlapping and the existing methods are incapable of providing the accurate cluster boundaries. In this regard, a methodology has been proposed which uses the fuzzy c-means clustering to tackle the problem of vagueness in the changed and unchanged class by formulating the soft boundaries between them. Furthermore, in order to exploit the neighborhood information of the pixels, the input patterns are generated corresponding to each pixel from bi-temporal images using 3×3, 5×5 and 7×7 window. The between images and within image spatial dependence of the pixels to its neighborhood is quantified by using Pearson product moment correlation and Moran’s I statistics, respectively. The proposed technique consists of two phases. At first, between images and within image spatial correlation is calculated to utilize the information that the pixels at different locations may not be independent. Second, fuzzy c-means technique is used to produce two clusters from input feature by not only taking care of vagueness between the changed and unchanged class but also by exploiting the spatial correlation of the pixels. To show the effectiveness of the proposed technique, experiments are conducted on multispectral and bi-temporal remote sensing images. A subset (2100×1212 pixels) of a pan-sharpened, bi-temporal Landsat 5 thematic mapper optical image of Los Angeles, California, is used in this study which shows a long period of the forest fire continued from July until October 2009. Early forest fire and later forest fire optical remote sensing images were acquired on July 5, 2009 and October 25, 2009, respectively. The proposed technique is used to detect the fire (which causes change on earth’s surface) and compared with the existing K-means clustering technique. Experimental results showed that proposed technique performs better than the already existing technique. The proposed technique can be easily extendable for optical hyperspectral images and is suitable for many practical applications.Keywords: burned area, change detection, correlation, fuzzy clustering, optical remote sensing
Procedia PDF Downloads 170932 Early Gastric Cancer Prediction from Diet and Epidemiological Data Using Machine Learning in Mizoram Population
Authors: Brindha Senthil Kumar, Payel Chakraborty, Senthil Kumar Nachimuthu, Arindam Maitra, Prem Nath
Abstract:
Gastric cancer is predominantly caused by demographic and diet factors as compared to other cancer types. The aim of the study is to predict Early Gastric Cancer (ECG) from diet and lifestyle factors using supervised machine learning algorithms. For this study, 160 healthy individual and 80 cases were selected who had been followed for 3 years (2016-2019), at Civil Hospital, Aizawl, Mizoram. A dataset containing 11 features that are core risk factors for the gastric cancer were extracted. Supervised machine algorithms: Logistic Regression, Naive Bayes, Support Vector Machine (SVM), Multilayer perceptron, and Random Forest were used to analyze the dataset using Python Jupyter Notebook Version 3. The obtained classified results had been evaluated using metrics parameters: minimum_false_positives, brier_score, accuracy, precision, recall, F1_score, and Receiver Operating Characteristics (ROC) curve. Data analysis results showed Naive Bayes - 88, 0.11; Random Forest - 83, 0.16; SVM - 77, 0.22; Logistic Regression - 75, 0.25 and Multilayer perceptron - 72, 0.27 with respect to accuracy and brier_score in percent. Naive Bayes algorithm out performs with very low false positive rates as well as brier_score and good accuracy. Naive Bayes algorithm classification results in predicting ECG showed very satisfactory results using only diet cum lifestyle factors which will be very helpful for the physicians to educate the patients and public, thereby mortality of gastric cancer can be reduced/avoided with this knowledge mining work.Keywords: Early Gastric cancer, Machine Learning, Diet, Lifestyle Characteristics
Procedia PDF Downloads 164931 A Study on Soil Micro-Arthropods Assemblage in Selected Plantations in The Nilgiris, Tamilnadu
Authors: J. Dharmaraj, C. Gunasekaran
Abstract:
Invertebrates are the reliable ecological indicators of disturbance of the forest ecosystems and they respond to environment changes more quickly than other fauna. Among these the terrestrial invertebrates are vital to functioning ecosystems, contributing to processes such as decomposition, nutrient cycling and soil fertility. The natural ecosystems of the forests have been subject to various types of disturbances, which lead to decline of flora and fauna. The comparative diversity of micro-arthropods in natural forest, wattle plantation and eucalyptus plantations were studied in Nilgiris. The study area was divided in to five major sites (Emerald (Site-I), Thalaikundha (Site-II), Kodapmund (Site-III), Aravankad (Site-IV), Kattabettu (Site-V). The research was conducted during period from March 2014 to August 2014. The leaf and soil samples were collected and isolated by using Berlese funnel extraction methods. Specimens were isolated and identified according to their morphology (Balogh 1972). In the present study results clearly showed the variation in soil pH, NPK (Major Nutrients) and organic carbon among the study sites. The chemical components of the leaf litters of the plantation decreased the diversity of micro-arthropods and decomposition rate leads to low amount of carbon and other nutrients present in the soil. Moreover eucalyptus and wattle plantations decreases the availability of the ground water source to other plantations and micro-arthropods and hences affects the soil fertility. Hence, the present study suggests to minimize the growth of wattle and eucalyptus tree plantations in the natural areas which may help to reduce the decline of forests.Keywords: micro-arthropods, assemblage, berlese funnel, morphology, NPK, nilgiris
Procedia PDF Downloads 309930 Effects of Work Stress and Chinese Indigenous Ren-Qing Shi-Ku Social Wisdom on Emotional Exhaustion, Work Satisfaction and Well-Being of Insurance Workers
Authors: Wang Chung-Kwei, Lo Kuo Ying
Abstract:
This study is aimed to examine main and moderation effect of Chinese traditional social wisdom ‘Ren-qing Shi-kuo’ on the adjustment of insurance workers. Rationale: Ren-qing Shi-ku as a social wisdom has been emphasized and practiced by collective-oriented Chinese for thousand years. The concept of‘Ren-qing Shi-ku’includes values, beliefs and behavior rituals, which helps Chinese to cope with interpersonal conflicts in a sophisticated and closely tied collective society. Based on interview and literature review, we found out Chinese still emphasized the importance of ‘Ren-qing Shi-ku’. The concepts contains five factors, including ‘proper emotion display’, ‘social ritual abiding’, ‘ make empathetic concession’, ‘harmonious and proper behavior’ and ‘tolerance for the interest of the whole’. We developed an indigenous ‘Ren-qing Shi-ku’scale based on interview data and a survey on social worker students. Research methods: We conduct a dyad survey between 294 insurance worker and their supervisors. Insurance workers’ response on ‘Ren-qing Shi-ku,emotion labor, emotional exhaustion, work stress and load, work satisfaction and well-being were collected. We also ask their supervisors to rate these workers ‘empathy, social rule abiding, work performance, and Ren-qing Shi-ku performance. Results: Students’self-ratings on Ren-qing Shi-ku scale are positively correlated with rating from their supervisors on all above indexes. Workers who have higher Ren-qing Shi-ku score also have lower work stress and emotion exhaustion, higher work satisfaction and well-being, more emotion deep acting. They also have higher work performance, social rule abiding, and Ren-qing Shi-ku performance rating from their supervisor. The finding of this study suggested Ren-qing Shi-ku is an effective indicator on insurance workers ‘adjustment. Since Ren-qing Shi-ku is trainable, we suggested that Ren-qing Shi-ku training might be beneficial to service industry in a collective-oriented culture.Keywords: work stress, Ren-qing Shi-ku, emotional exhaustion, work satisfaction, well-being
Procedia PDF Downloads 477929 Biofiltration Odour Removal at Wastewater Treatment Plant Using Natural Materials: Pilot Scale Studies
Authors: D. Lopes, I. I. R. Baptista, R. F. Vieira, J. Vaz, H. Varela, O. M. Freitas, V. F. Domingues, R. Jorge, C. Delerue-Matos, S. A. Figueiredo
Abstract:
Deodorization is nowadays a need in wastewater treatment plants. Nitrogen and sulphur compounds, volatile fatty acids, aldehydes and ketones are responsible for the unpleasant odours, being ammonia, hydrogen sulphide and mercaptans the most common pollutants. Although chemical treatments of the air extracted are efficient, these are more expensive than biological treatments, namely due the use of chemical reagents (commonly sulphuric acid, sodium hypochlorite and sodium hydroxide). Biofiltration offers the advantage of avoiding the use of reagents (only in some cases, nutrients are added in order to increase the treatment efficiency) and can be considered a sustainable process when the packing medium used is of natural origin. In this work the application of some natural materials locally available was studied both at laboratory and pilot scale, in a real wastewater treatment plant. The materials selected for this study were indigenous Portuguese forest materials derived from eucalyptus and pinewood, such as woodchips and bark, and coconut fiber was also used for comparison purposes. Their physico-chemical characterization was performed: density, moisture, pH, buffer and water retention capacity. Laboratory studies involved batch adsorption studies for ammonia and hydrogen sulphide removal and evaluation of microbiological activity. Four pilot-scale biofilters (1 cubic meter volume) were installed at a local wastewater treatment plant treating odours from the effluent receiving chamber. Each biofilter contained a different packing material consisting of mixtures of eucalyptus bark, pine woodchips and coconut fiber, with added buffering agents and nutrients. The odour treatment efficiency was monitored over time, as well as other operating parameters. The operation at pilot scale suggested that between the processes involved in biofiltration - adsorption, absorption and biodegradation - the first dominates at the beginning, while the biofilm is developing. When the biofilm is completely established, and the adsorption capacity of the material is reached, biodegradation becomes the most relevant odour removal mechanism. High odour and hydrogen sulphide removal efficiencies were achieved throughout the testing period (over 6 months), confirming the suitability of the materials selected, and mixtures thereof prepared, for biofiltration applications.Keywords: ammonia hydrogen sulphide and removal, biofiltration, natural materials, odour control in wastewater treatment plants
Procedia PDF Downloads 302928 Antioxidant Activity of Some Important Indigenous Plant Foods of the North Eastern Region of India
Authors: L. Bidyalakshmi, R. Ananthan, T. Longvah
Abstract:
Antioxidants are substances that can prevent or delay oxidative damage of lipids, proteins and nucleic acids by reactive oxygen species. These help in lowering incidence of degenerative diseases such as cancer, arthritis, atherosclerosis, heart disease, inflammation, brain dysfunction and acceleration of the ageing process. The north eastern part of India falls among the global hotspots of biodiversity. Over the years, the local communities in the region have developed ingenious uses of many wild plants within their environment as food sources. Many of these less familiar foods form an integral part of the diet of these communities, and some are traditionally valued for its therapeutic effects. So the study was carried to estimate the antioxidant activity of some of these indigenous foods. Twenty-eight indigenous plant foods were studied for their antioxidant activity. Antioxidant activities were determined by using DPPH (2, 2-diphenyl-1-picrylhydrazyl) assay, FRAP (Ferric Reducing Antioxidant Power) assay and SOSA (Super Oxide Scavenging Assay). Out of the twenty-eight plant foods, there were thirteen leafy vegetables, four fruits, five roots and tubers, four spices and two mushrooms. Water extract and methanol extract of the samples were used for the analysis. The leafy vegetable samples exhibited antioxidant capacity with IC50 ranging from 8-1414 mg/ml for lipid extract and 34-37878 mg/ml for aqueous extract in DPPH assay. Total FRAP value ranging from 58-1005 mmol FeSO4 Eq/100g of the sample, which is comparatively higher than the antioxidant capacity of some commonly consumed leafy vegetables. In SOSA, water extract of leafy vegetables show a range of 0.05-193.68 µmol ascorbic acid equivalent/g of the samples. While the methanol extract of the samples show 0.20-21.94 µmol Trolox equivalent/g of the samples. Polygonum barbatum, Wendlandia glabrata and Polygonum posumbu have higher antioxidant activity among the leafy vegetables analysed. Among the fruits, Rhus hookerii showed the highest antioxidant activities in both FRAP and SOSA methods while Spondias magnifera exhibited higher antioxidant activity in DPPH method. Alocasia cucullata exhibited higher antioxidant activity in DPPH and FRAP assays while Alpinia galanga showed higher antioxidant activity in SOSA assay when compared to the other samples of roots and tubers. Elsholtzia communis showed high antioxidant activity in all the three parameters among the spices. For the mushrooms, Pleurotus ostreatus exhibited higher antioxidant activity than Auricularia delicate in DPPH and SOSA. The samples analysed exhibited antioxidant activity at varying levels and some exhibited higher antioxidant activity than the commonly consumed foods. So consumption of these less familiar foods may play a role in preventing human disease in which free radicals are involved. Further studies on these food samples on phytonutrients and its contribution to the antioxidant activities are required.Keywords: antioxidant activity, DPPH, FRAP, SOSA
Procedia PDF Downloads 278