Search results for: POTUS presidential performance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12876

Search results for: POTUS presidential performance

5856 Water Distribution Uniformity of Solid-Set Sprinkler Irrigation under Low Operating Pressure

Authors: Manal Osman

Abstract:

Sprinkler irrigation system became more popular to reduce water consumption and increase irrigation efficiency. The water distribution uniformity plays an important role in the performance of the sprinkler irrigation system. The use of low operating pressure instead of high operating pressure can be achieved many benefits including energy and water saving. An experimental study was performed to investigate the water distribution uniformity of the solid-set sprinkler irrigation system under low operating pressure. Different low operating pressures (62, 82, 102 and 122 kPa) were selected. The range of operating pressure was lower than the recommended in the previous studies to investigate the effect of low pressure on the water distribution uniformity. Different nozzle diameters (4, 5, 6 and 7 mm) were used. The outdoor single sprinkler test was performed. The water distribution of single sprinkler, the coefficients of uniformity such as coefficient of uniformity (CU), distribution uniformity of low quarter (DUlq), distribution uniformity of low half (DUlh), coefficient of variation (CV) and the distribution characteristics like rotation speed, throw radius and overlapping distance are presented in this paper.

Keywords: low operating pressure, sprinkler irrigation system, water distribution uniformity

Procedia PDF Downloads 587
5855 Wind Power Forecast Error Simulation Model

Authors: Josip Vasilj, Petar Sarajcev, Damir Jakus

Abstract:

One of the major difficulties introduced with wind power penetration is the inherent uncertainty in production originating from uncertain wind conditions. This uncertainty impacts many different aspects of power system operation, especially the balancing power requirements. For this reason, in power system development planing, it is necessary to evaluate the potential uncertainty in future wind power generation. For this purpose, simulation models are required, reproducing the performance of wind power forecasts. This paper presents a wind power forecast error simulation models which are based on the stochastic process simulation. Proposed models capture the most important statistical parameters recognized in wind power forecast error time series. Furthermore, two distinct models are presented based on data availability. First model uses wind speed measurements on potential or existing wind power plant locations, while the seconds model uses statistical distribution of wind speeds.

Keywords: wind power, uncertainty, stochastic process, Monte Carlo simulation

Procedia PDF Downloads 482
5854 Modelling of Composite Steel and Concrete Beam with the Lightweight Concrete Slab

Authors: Veronika Přivřelová

Abstract:

Well-designed composite steel and concrete structures highlight the good material properties and lower the deficiencies of steel and concrete, in particular they make use of high tensile strength of steel and high stiffness of concrete. The most common composite steel and concrete structure is a simply supported beam, which concrete slab transferring the slab load to a beam is connected to the steel cross-section. The aim of this paper is to find the most adequate numerical model of a simply supported composite beam with the cross-sectional and material parameters based on the results of a processed parametric study and numerical analysis. The paper also evaluates the suitability of using compact concrete with the lightweight aggregates for composite steel and concrete beams. The most adequate numerical model will be used in the resent future to compare the results of laboratory tests.

Keywords: composite beams, high-performance concrete, high-strength steel, lightweight concrete slab, modeling

Procedia PDF Downloads 406
5853 An Enhanced Floor Estimation Algorithm for Indoor Wireless Localization Systems Using Confidence Interval Approach

Authors: Kriangkrai Maneerat, Chutima Prommak

Abstract:

Indoor wireless localization systems have played an important role to enhance context-aware services. Determining the position of mobile objects in complex indoor environments, such as those in multi-floor buildings, is very challenging problems. This paper presents an effective floor estimation algorithm, which can accurately determine the floor where mobile objects located. The proposed algorithm is based on the confidence interval of the summation of online Received Signal Strength (RSS) obtained from the IEEE 802.15.4 Wireless Sensor Networks (WSN). We compare the performance of the proposed algorithm with those of other floor estimation algorithms in literature by conducting a real implementation of WSN in our facility. The experimental results and analysis showed that the proposed floor estimation algorithm outperformed the other algorithms and provided highest percentage of floor accuracy up to 100% with 95-percent confidence interval.

Keywords: floor estimation algorithm, floor determination, multi-floor building, indoor wireless systems

Procedia PDF Downloads 417
5852 Review of Innovation Management Frameworks and Assessment Tools

Authors: Qiang Fu, Abu Saleh

Abstract:

Research studies are highly fragmented when an innovation management framework is being discussed. With the aim to identify an innovation management framework/assessment tool suitable for small & medium enterprises (SMEs) in the service industry, this researcher critically reviewed existing innovation management frameworks and assessment models/tools and discovered a number of literature gaps. It is established that existing literature lacks generally agreed innovation management dimensions, commonly accepted knowledge creation through empirical studies on innovation management in SMEs, effective innovation management performance measurements, and studies on innovation management in the service industry, in particular in retail SMEs. As such, there is a dire need to develop an appropriate firm-level innovation management framework suitable for SMEs in the service industry for a future research project and further study. In addition, this researcher also discussed the significance of establishing such an innovation management framework.

Keywords: innovation management, innovation management framework, innovation management assessment tools, SMEs, service industry

Procedia PDF Downloads 213
5851 Projection of Solar Radiation for the Extreme South of Brazil

Authors: Elison Eduardo Jardim Bierhals, Claudineia Brazil, Rafael Haag, Elton Rossini

Abstract:

This work aims to validate and make the projections of solar energy for the Brazilian period from 2025 to 2100. As the plants designed by the HadGEM2-AO (Global Hadley Model 2 - Atmosphere) General Circulation Model UK Met Office Hadley Center, belonging to Phase 5 of the Intercomparison of Coupled Models (CMIP5). The simulation results of the model are compared with monthly data from 2006 to 2013, measured by a network of meteorological sections of the National Institute of Meteorology (INMET). The performance of HadGEM2-AO is evaluated by the efficiency coefficient (CEF) and bias. The results are shown in the table of maps and maps. HadGEM2-AO, in the most pessimistic scenario, RCP 8.5 had a very good accuracy, presenting efficiency coefficients between 0.94 and 0.98, the perfect setting being Solar radiation, which indicates a horizontal trend, is a climatic alternative for some regions of the Brazilian scenario, especially in spring.

Keywords: climate change, projections, solar radiation, scenarios climate change

Procedia PDF Downloads 149
5850 Efficient Feature Fusion for Noise Iris in Unconstrained Environment

Authors: Yao-Hong Tsai

Abstract:

This paper presents an efficient fusion algorithm for iris images to generate stable feature for recognition in unconstrained environment. Recently, iris recognition systems are focused on real scenarios in our daily life without the subject’s cooperation. Under large variation in the environment, the objective of this paper is to combine information from multiple images of the same iris. The result of image fusion is a new image which is more stable for further iris recognition than each original noise iris image. A wavelet-based approach for multi-resolution image fusion is applied in the fusion process. The detection of the iris image is based on Adaboost algorithm and then local binary pattern (LBP) histogram is then applied to texture classification with the weighting scheme. Experiment showed that the generated features from the proposed fusion algorithm can improve the performance for verification system through iris recognition.

Keywords: image fusion, iris recognition, local binary pattern, wavelet

Procedia PDF Downloads 366
5849 Wind Fragility for Honeycomb Roof Cladding Panels Using Screw Pull-Out Capacity

Authors: Viriyavudh Sim, Woo Young Jung

Abstract:

The failure of roof cladding mostly occurs due to the failing of the connection between claddings and purlins, which is the pull-out of the screw connecting the two parts when the pull-out load, i.e. typhoon, is higher than the resistance of the connection screw. As typhoon disasters in Korea are constantly on the rise, probability risk assessment (PRA) has become a vital tool to evaluate the performance of civil structures. In this study, we attempted to determine the fragility of roof cladding with the screw connection. Experimental study was performed to evaluate the pull-out resistance of screw joints between honeycomb panels and back frames. Subsequently, by means of Monte Carlo Simulation method, probability of failure for these types of roof cladding was determined. The results that the failure of roof cladding was depends on their location on the roof, for example, the edge most panel has the highest probability of failure.

Keywords: Monte Carlo Simulation, roof cladding, screw pull-out strength, wind fragility

Procedia PDF Downloads 251
5848 Empowering a New Frontier in Heart Disease Detection: Unleashing Quantum Machine Learning

Authors: Sadia Nasrin Tisha, Mushfika Sharmin Rahman, Javier Orduz

Abstract:

Machine learning is applied in a variety of fields throughout the world. The healthcare sector has benefited enormously from it. One of the most effective approaches for predicting human heart diseases is to use machine learning applications to classify data and predict the outcome as a classification. However, with the rapid advancement of quantum technology, quantum computing has emerged as a potential game-changer for many applications. Quantum algorithms have the potential to execute substantially faster than their classical equivalents, which can lead to significant improvements in computational performance and efficiency. In this study, we applied quantum machine learning concepts to predict coronary heart diseases from text data. We experimented thrice with three different features; and three feature sets. The data set consisted of 100 data points. We pursue to do a comparative analysis of the two approaches, highlighting the potential benefits of quantum machine learning for predicting heart diseases.

Keywords: quantum machine learning, SVM, QSVM, matrix product state

Procedia PDF Downloads 92
5847 Improving University Operations with Data Mining: Predicting Student Performance

Authors: Mladen Dragičević, Mirjana Pejić Bach, Vanja Šimičević

Abstract:

The purpose of this paper is to develop models that would enable predicting student success. These models could improve allocation of students among colleges and optimize the newly introduced model of government subsidies for higher education. For the purpose of collecting data, an anonymous survey was carried out in the last year of undergraduate degree student population using random sampling method. Decision trees were created of which two have been chosen that were most successful in predicting student success based on two criteria: Grade Point Average (GPA) and time that a student needs to finish the undergraduate program (time-to-degree). Decision trees have been shown as a good method of classification student success and they could be even more improved by increasing survey sample and developing specialized decision trees for each type of college. These types of methods have a big potential for use in decision support systems.

Keywords: data mining, knowledge discovery in databases, prediction models, student success

Procedia PDF Downloads 405
5846 A Study on Game Theory Approaches for Wireless Sensor Networks

Authors: M. Shoukath Ali, Rajendra Prasad Singh

Abstract:

Game Theory approaches and their application in improving the performance of Wireless Sensor Networks (WSNs) are discussed in this paper. The mathematical modeling and analysis of WSNs may have low success rate due to the complexity of topology, modeling, link quality, etc. However, Game Theory is a field, which can efficiently use to analyze the WSNs. Game Theory is related to applied mathematics that describes and analyzes interactive decision situations. Game theory has the ability to model independent, individual decision makers whose actions affect the surrounding decision makers. The outcome of complex interactions among rational entities can be predicted by a set of analytical tools. However, the rationality demands a stringent observance to a strategy based on measured of perceived results. Researchers are adopting game theory approaches to model and analyze leading wireless communication networking issues, which includes QoS, power control, resource sharing, etc.

Keywords: wireless sensor network, game theory, cooperative game theory, non-cooperative game theory

Procedia PDF Downloads 429
5845 A Facile and Room Temperature Growth of Pd-Pt Decorated Hexagonal-ZnO Framework and Their Selective H₂ Gas Sensing Properties

Authors: Gaurav Malik, Satyendra Mourya, Jyoti Jaiswal, Ramesh Chandra

Abstract:

The attractive and multifunctional properties of ZnO make it a promising material for the fabrication of highly sensitive and selective efficient gas sensors at room temperature. This presented article focuses on the development of highly selective and sensitive H₂ gas sensor based on the Pd-Pt decorated ZnO framework and its sensing mechanisms. The gas sensing performance of sputter made Pd-Pt/ZnO electrode on anodized porous silicon (PSi) substrate toward H₂ gas is studied under low detection limit (2–500 ppm) of H₂ in the air. The chemiresistive sensor demonstrated sublimate selectivity, good sensing response, and fast response/recovery time with excellent stability towards H₂ at low temperature operation under ambient environment. The elaborate selective measurement of Pd-Pt/ZnO/PSi structure was performed towards different oxidizing and reducing gases. This structure exhibited advance and reversible response to H₂ gas, which revealed that the acquired architecture with ZnO framework is a promising candidate for H₂ gas sensor.

Keywords: sputtering, porous silicon, ZnO framework, XPS spectra, gas sensor

Procedia PDF Downloads 390
5844 Influence of Partially-Replaced Coarse Aggregates with Date Palm Seeds on the Concrete Properties

Authors: Fahed Alrshoudi

Abstract:

Saudi Arabia is ranked the third of the largest suppliers of Dates worldwide (about 28.5 million palm trees), producing more than 2 million tons of dates yearly. These trees produce large quantity of dates palm seeds (DPS) which can be considered literally as a waste. The date seeds are stiff, therefore, it is possible to utilize DPS as coarse aggregates in lightweight concrete for certain structural applications and to participate at reusing the waste. The use of DPS as coarse aggregate in concrete can be an alternative choice as a partial replacement of the stone aggregates (SA). This paper reports the influence of partially replaced stone aggregates with DPS on the hardened properties of concrete performance. Based on the experimental results, the DPS has the potential use as an acceptable alternative aggregates in producing structural lightweight concrete members, instead of stone aggregates.

Keywords: compressive strength, tensile Strength, date palm seeds, aggregate

Procedia PDF Downloads 128
5843 Enhancing Predictive Accuracy in Pharmaceutical Sales through an Ensemble Kernel Gaussian Process Regression Approach

Authors: Shahin Mirshekari, Mohammadreza Moradi, Hossein Jafari, Mehdi Jafari, Mohammad Ensaf

Abstract:

This research employs Gaussian Process Regression (GPR) with an ensemble kernel, integrating Exponential Squared, Revised Matern, and Rational Quadratic kernels to analyze pharmaceutical sales data. Bayesian optimization was used to identify optimal kernel weights: 0.76 for Exponential Squared, 0.21 for Revised Matern, and 0.13 for Rational Quadratic. The ensemble kernel demonstrated superior performance in predictive accuracy, achieving an R² score near 1.0, and significantly lower values in MSE, MAE, and RMSE. These findings highlight the efficacy of ensemble kernels in GPR for predictive analytics in complex pharmaceutical sales datasets.

Keywords: Gaussian process regression, ensemble kernels, bayesian optimization, pharmaceutical sales analysis, time series forecasting, data analysis

Procedia PDF Downloads 68
5842 Blockchain’s Feasibility in Military Data Networks

Authors: Brenden M. Shutt, Lubjana Beshaj, Paul L. Goethals, Ambrose Kam

Abstract:

Communication security is of particular interest to military data networks. A relatively novel approach to network security is blockchain, a cryptographically secured distribution ledger with a decentralized consensus mechanism for data transaction processing. Recent advances in blockchain technology have proposed new techniques for both data validation and trust management, as well as different frameworks for managing dataflow. The purpose of this work is to test the feasibility of different blockchain architectures as applied to military command and control networks. Various architectures are tested through discrete-event simulation and the feasibility is determined based upon a blockchain design’s ability to maintain long-term stable performance at industry standards of throughput, network latency, and security. This work proposes a consortium blockchain architecture with a computationally inexpensive consensus mechanism, one that leverages a Proof-of-Identity (PoI) concept and a reputation management mechanism.

Keywords: blockchain, consensus mechanism, discrete-event simulation, fog computing

Procedia PDF Downloads 137
5841 A Study of the Performance Parameter for Recommendation Algorithm Evaluation

Authors: C. Rana, S. K. Jain

Abstract:

The enormous amount of Web data has challenged its usage in efficient manner in the past few years. As such, a range of techniques are applied to tackle this problem; prominent among them is personalization and recommender system. In fact, these are the tools that assist user in finding relevant information of web. Most of the e-commerce websites are applying such tools in one way or the other. In the past decade, a large number of recommendation algorithms have been proposed to tackle such problems. However, there have not been much research in the evaluation criteria for these algorithms. As such, the traditional accuracy and classification metrics are still used for the evaluation purpose that provides a static view. This paper studies how the evolution of user preference over a period of time can be mapped in a recommender system using a new evaluation methodology that explicitly using time dimension. We have also presented different types of experimental set up that are generally used for recommender system evaluation. Furthermore, an overview of major accuracy metrics and metrics that go beyond the scope of accuracy as researched in the past few years is also discussed in detail.

Keywords: collaborative filtering, data mining, evolutionary, clustering, algorithm, recommender systems

Procedia PDF Downloads 411
5840 Convergence of Strategic Tasks of Business Tourism and Hotel Industry Development: The Case of Georgia

Authors: Nana Katsitadze, Tamar Atanelishvili, Mariam Kutateladze, Alexandre Tushishvili

Abstract:

In the modern world, tourism has emerged as one of the most powerful economic sectors, and due to its high economic performance, it is attractive to the countries with various levels of economic development. The purpose of the present paper, dedicated to discussing the current problems of tourism development, is to find ways which will contribute to bringing more benefits to the country from the sector. Georgia has been successfully developing leisure tourism for the last ten years, and at the next stage of development business, tourism gains particular importance for Georgia as a means of mitigating the negative socio-economic effects caused by the seasonality of tourism and as a high-cost tourism market. Therefore, the object of the paper is to study the factors that contribute to the development of business tourism. The paper uses the research methods such as system analysis, synthesis, analogy, as well as historical, comparative, economic, and statistical methods of analysis. The information base for the research is made up of the statistics on the functioning of the tourism market of Georgia and foreign countries as well as official data provided by international organizations in the field of tourism. Based on the experience of business tourism around the world and identifying the successful start of business tourism development in Georgia and its causing factors, a business tourism development model for Georgia has been developed. The model might be useful as a methodological material for developing a business tourism development concept for the countries with limited financial resources but rich in tourism resources like Georgia. On the initial stage of development (in absence of conventional centers), the suggested concept of business tourism development involves organizing small and medium-sized meetings both in large cities and in regions by using high-class hotel infrastructure and event management services. Relocation of small meetings to the regions encourages inclusive development of the sector based on increasing the awareness of these regions as tourist sites as well as the increase in employment and sales of other tourism or consumer products. Business tourism increases the number of hotel visitors in the non-seasonal period and improves hotel performance indicators, which enhances the attractiveness of investing in the hotel business. According to the present concept of business tourism development, at the initial stage, development of business tourism is based on the existing markets, including internal market, neighboring markets and the markets of geographically relatively near countries and at the next stage, the concept involves generating tourists from other relatively distant target markets. As a result, by gaining experience in business tourism, enhancing professionalism, increasing awareness and stimulating infrastructure development, the country will prepare the basis to move to a higher stage of tourism development. In addition, the experience showed that for attracting large customers, peculiarities of the field require activation of state policy and active use of marketing mechanisms and tools of the state.

Keywords: hotel industry development, MICE model, MICE strategy, MICE tourism in Georgia

Procedia PDF Downloads 152
5839 Effect of Double-Skin Facade Configuration on the Energy Performance of Office Building in Maritime Desert Climate

Authors: B. Umaru Mohammed, Faris A. Al-Maziad, Mohammad Y. Numan

Abstract:

One of the most important factors affecting the energy performance within a building is a carefully and efficiently designed facade. The primary aim of this research was to identify and present the potentiality of utilising Double-Skin Facade (DSF) construction and critically examine its effect on the energy consumption of an office building located within a maritime desert climate as to the conventional single-skin curtain wall system. A comparative analysis of the effect on the overall energy consumption within an office building was investigated in which a combination of various Double-Skin Facade configurations, systems, and cavity depths, glazing types and orientations were utilised. A computer dynamic modelling was utilised in order to ensure accurate calculations and efficient simulations of the various DSF systems due to the complex nature of the various functions within the Facade cavity. Through the use of the dynamic thermal modelling simulations, the best cavity size glazed type and orientation were determined to lead to a detailed analysis of the efficiency of each respective combination of Double-Skin Facade construction. As such the optimal facade combination for use within an office building located in a maritime desert climate was identified. Results demonstrated that a multi-story Facade, depending on its configuration, save up to 5% on annual cooling loads respect to a Corridor Facade and while vented can save unto 12% when compared to the single skin façade, on annual cooling load in the maritime desert climate. The selected configuration of the DSF from SSF saves an overall annual cooling load of 32%.A comparative analysis of the effect on the overall energy consumption within an office building was investigated in which a combination of various Double-Skin Facade configurations, systems, and cavity depths, glazing types and orientations were utilized. A computer dynamic modelling was utilized in order to ensure accurate calculations and efficient simulations of the various DSF systems due to the complex nature of the various functions within the Facade cavity. Through the use of the dynamic thermal modelling simulations, the best cavity size glazed type and orientation were determined to lead to a detailed analysis of the efficiency of each respective combination of Double-Skin Facade construction. As such the optimal facade combination for use within an office building located in a maritime desert climate was identified. Results demonstrated that a multi-story Facade, depending on its configuration, save up to 5% on annual cooling loads respect to a Corridor Facade and while vented can save unto 12% when compared to the single skin facade, on annual cooling load in the maritime desert climate. The selected configuration of the DSF from SSF saves an overall annual cooling load of 32%.

Keywords: computer dynamics modelling, comparative analysis, energy computation, double skin facade, single skin curtain wall, maritime desert climate

Procedia PDF Downloads 340
5838 Effect of Equivalence Ratio on Performance of Fluidized Bed Gasifier Run with Sized Biomass

Authors: J. P. Makwana, A. K. Joshi, Rajesh N. Patel, Darshil Patel

Abstract:

Recently, fluidized bed gasification becomes an attractive technology for power generation due to its higher efficiency. The main objective pursued in this work is to investigate the producer gas production potential from sized biomass (sawdust and pigeon pea) by applying the air gasification technique. The size of the biomass selected for the study was in the range of 0.40-0.84 mm. An experimental study was conducted using a fluidized bed gasifier with 210 mm diameter and 1600 mm height. During the experiments, the fuel properties and the effects of operating parameters such as gasification temperatures 700 to 900 °C, equivalence ratio 0.16 to 0.46 were studied. It was concluded that substantial amounts of producer gas (up to 1110 kcal/m3) could be produced utilizing biomass such as sawdust and pigeon pea by applying this fluidization technique. For both samples, the rise of temperature till 900 °C and equivalence ratio of 0.4 favored further gasification reactions and resulted into producer gas with calorific value 1110 kcal/m3.

Keywords: sized biomass, fluidized bed gasifier, equivalence ratio, temperature profile, gas composition

Procedia PDF Downloads 308
5837 A Hybrid Model Tree and Logistic Regression Model for Prediction of Soil Shear Strength in Clay

Authors: Ehsan Mehryaar, Seyed Armin Motahari Tabari

Abstract:

Without a doubt, soil shear strength is the most important property of the soil. The majority of fatal and catastrophic geological accidents are related to shear strength failure of the soil. Therefore, its prediction is a matter of high importance. However, acquiring the shear strength is usually a cumbersome task that might need complicated laboratory testing. Therefore, prediction of it based on common and easy to get soil properties can simplify the projects substantially. In this paper, A hybrid model based on the classification and regression tree algorithm and logistic regression is proposed where each leaf of the tree is an independent regression model. A database of 189 points for clay soil, including Moisture content, liquid limit, plastic limit, clay content, and shear strength, is collected. The performance of the developed model compared to the existing models and equations using root mean squared error and coefficient of correlation.

Keywords: model tree, CART, logistic regression, soil shear strength

Procedia PDF Downloads 194
5836 A Survey of Feature Selection and Feature Extraction Techniques in Machine Learning

Authors: Samina Khalid, Shamila Nasreen

Abstract:

Dimensionality reduction as a preprocessing step to machine learning is effective in removing irrelevant and redundant data, increasing learning accuracy, and improving result comprehensibility. However, the recent increase of dimensionality of data poses a severe challenge to many existing feature selection and feature extraction methods with respect to efficiency and effectiveness. In the field of machine learning and pattern recognition, dimensionality reduction is important area, where many approaches have been proposed. In this paper, some widely used feature selection and feature extraction techniques have analyzed with the purpose of how effectively these techniques can be used to achieve high performance of learning algorithms that ultimately improves predictive accuracy of classifier. An endeavor to analyze dimensionality reduction techniques briefly with the purpose to investigate strengths and weaknesses of some widely used dimensionality reduction methods is presented.

Keywords: age related macular degeneration, feature selection feature subset selection feature extraction/transformation, FSA’s, relief, correlation based method, PCA, ICA

Procedia PDF Downloads 494
5835 Finite Element Modeling Techniques of Concrete in Steel and Concrete Composite Members

Authors: J. Bartus, J. Odrobinak

Abstract:

The paper presents a nonlinear analysis 3D model of composite steel and concrete beams with web openings using the Finite Element Method (FEM). The core of the study is the introduction of basic modeling techniques comprehending the description of material behavior, appropriate elements selection, and recommendations for overcoming problems with convergence. Results from various finite element models are compared in the study. The main objective is to observe the concrete failure mechanism and its influence on the structural performance of numerical models of the beams at particular load stages. The bearing capacity of beams, corresponding deformations, stresses, strains, and fracture patterns were determined. The results show how load-bearing elements consisting of concrete parts can be analyzed using FEM software with various options to create the most suitable numerical model. The paper demonstrates the versatility of Ansys software usage for structural simulations.

Keywords: Ansys, concrete, modeling, steel

Procedia PDF Downloads 121
5834 Photovoltaic Maximum Power-Point Tracking Using Artificial Neural Network

Authors: Abdelazziz Aouiche, El Moundher Aouiche, Mouhamed Salah Soudani

Abstract:

Renewable energy sources now significantly contribute to the replacement of traditional fossil fuel energy sources. One of the most potent types of renewable energy that has developed quickly in recent years is photovoltaic energy. We all know that solar energy, which is sustainable and non-depleting, is the best knowledge form of energy that we have at our disposal. Due to changing weather conditions, the primary drawback of conventional solar PV cells is their inability to track their maximum power point. In this study, we apply artificial neural networks (ANN) to automatically track and measure the maximum power point (MPP) of solar panels. In MATLAB, the complete system is simulated, and the results are adjusted for the external environment. The results are better performance than traditional MPPT methods and the results demonstrate the advantages of using neural networks in solar PV systems.

Keywords: modeling, photovoltaic panel, artificial neural networks, maximum power point tracking

Procedia PDF Downloads 88
5833 Air Cargo Overbooking Model under Stochastic Weight and Volume Cancellation

Authors: Naragain Phumchusri, Krisada Roekdethawesab, Manoj Lohatepanont

Abstract:

Overbooking is an approach of selling more goods or services than available capacities because sellers anticipate that some buyers will not show-up or may cancel their bookings. At present, many airlines deploy overbooking strategy in order to deal with the uncertainty of their customers. Particularly, some airlines sell more cargo capacity than what they have available to freight forwarders with beliefs that some of them will cancel later. In this paper, we propose methods to find the optimal overbooking level of volume and weight for air cargo in order to minimize the total cost, containing cost of spoilage and cost of offloaded. Cancellations of volume and weight are jointly random variables with a known joint distribution. Heuristic approaches applying the idea of weight and volume independency is considered to find an appropriate answer to the full problem. Computational experiments are used to explore the performance of approaches presented in this paper, as compared to a naïve method under different scenarios.

Keywords: air cargo overbooking, offloading capacity, optimal overbooking level, revenue management, spoilage capacity

Procedia PDF Downloads 319
5832 Kazakh Language Assessment in a New Multilingual Kazakhstan

Authors: Karlygash Adamova

Abstract:

This article is focused on the KazTest as one of the most important high-stakes tests and the key tool in Kazakh language assessment. The research will also include the brief introduction to the language policy in Kazakhstan. Particularly, it is going to be changed significantly and turn from bilingualism (Kazakh, Russian) to multilingual policy (three languages - Kazakh, Russian, English). Therefore, the current status of the abovementioned languages will be described. Due to the various educational reforms in the country, the language evaluation system should also be improved and moderated. The research will present the most significant test of Kazakhstan – the KazTest, which is aimed to evaluate the Kazakh language proficiency. Assessment is an ongoing process that encompasses a wide area of knowledge upon the productive performance of the learners. Test is widely defined as a standardized or standard method of research, testing, diagnostics, verification, etc. The two most important characteristics of any test, as the main element of the assessment - validity and reliability - will also be described in this paper. Therefore, the preparation and design of the test, which is assumed to be an indicator of knowledge, and it is highly important to take into account all these properties.

Keywords: multilingualism, language assessment, testing, language policy

Procedia PDF Downloads 136
5831 The Exploration of Psychosocial Risk and the Handling of Unsafe Acts and Misconduct

Authors: Jacquelene Swanepoel, J. C. Visagie, H. M. Linde

Abstract:

Purpose: The aim of this article is to investigate the psychosocial risk environment influencing employee behaviour, and subsequently the trust relationship between employer and employee. Design/methodology/approach: The unique nature and commonness of negative acts, such as unsafe behaviour, human errors, poor performance and negligence, also referred to as unsafe practice, are explored. A literature review is formulated to investigate the nature of negative acts or unsafe behaviour. The findings of this study are used to draw comparisons between unsafe behaviour/misconduct and accidents in the workplace and finally conclude how it should be addressed from a labour relations point of view. Findings: The results indicate comparisons between unsafe practice/misconduct and occupational injuries and accidents, as a result of system flaws, human error or psychosocial risk.

Keywords: occupational risks, unsafe practice, misconduct, organisational safety culture, ergonomics, management commitment and leadership, labour relations

Procedia PDF Downloads 356
5830 Stability of Ochratoxin a During Bread Making Process

Authors: Sara Heidari, Jafar Mohammadzadeh Milani, Elmira Pouladi Borj

Abstract:

In this research, stability of Ochratoxin A (OTA) during bread making process including fermentation with yeasts (Saccharomyces cerevisiae) and Sourdough (Lactobacillus casei, Lactobacillus rhamnosus, Lactobacillus acidophilus and Lactobacillus fermentum) and baking at 200°C were examined. Bread was prepared on a pilot-plant scale by using wheat flour spiked with standard solution of OTA. During this process, mycotoxin levels were determined after fermentation of the dough with sourdough and three types of yeast including active dry yeast, instant dry yeast and compressed yeast after further baking 200°C by high performance liquid chromatography (HPLC) with fluorescence detector after extraction and clean-up on an immunoaffinity column. According to the results, the highest stability of was observed in the first fermentation (first proof), while the lowest stability was observed in the baking stage in comparison to contaminated flour. In addition, compressed yeast showed the maximum impact on stability of OTA during bread making process.

Keywords: Ochratoxin A, bread, dough, yeast, sourdough

Procedia PDF Downloads 575
5829 Dynamic Behaviors of a Floating Bridge with Mooring Lines under Wind and Wave Excitations

Authors: Chungkuk Jin, Moohyun Kim, Woo Chul Chung

Abstract:

This paper presents global performance and dynamic behaviors of a discrete-pontoon-type floating bridge with mooring lines in time domain under wind and wave excitations. The structure is designed for long-distance and deep-water crossing and consists of the girder, columns, pontoons, and mooring lines. Their functionality and behaviors are investigated by using elastic-floater/mooring fully-coupled dynamic simulation computer program. Dynamic wind, first- and second-order wave forces, and current loads are considered as environmental loads. Girder’s dynamic responses and mooring tensions are analyzed under different analysis methods and environmental conditions. Girder’s lateral responses are highly influenced by the second-order wave and wind loads while the first-order wave load mainly influences its vertical responses.

Keywords: floating bridge, mooring line, pontoon, wave excitation

Procedia PDF Downloads 127
5828 Effect of Environmental Conditions on the Substrate Cu(In,Ga)Se2 Solar Cell Performances

Authors: Mekhannene Amine

Abstract:

In this paper, we began in the first step by two-dimensional simulation of a CIGS solar cell, in order to increase the current record efficiency of 20.48% for a single CIGS cell. Was created by utilizing a set of physical and technological parameters a solar cell of reference (such as layer thicknesses, gallium ratio, doping levels and materials properties) documented in bibliography and very known in the experimental field. This was accomplished through modeling and simulation using Atlas SILVACO-TCAD, an tool two and three dimensions very powerful and very adapted. This study has led us to determine the influence of different environmental parameters such as illumination (G) and temperature (T). In the second step, we continued our study by determining the influence of physical parameters (the acceptor of concentration NA) and geometric (thickness t) of the CIGS absorber layer, were varied to produce an optimum efficiency of 24.36%. This approach is promising to produce a CIGS classic solar cell to conduct a maximum performance.

Keywords: solar cell, cigs, photovoltaic generator, illumination, temperature, Atlas SILVACO-TCAD

Procedia PDF Downloads 643
5827 Quantification of Magnetic Resonance Elastography for Tissue Shear Modulus using U-Net Trained with Finite-Differential Time-Domain Simulation

Authors: Jiaying Zhang, Xin Mu, Chang Ni, Jeff L. Zhang

Abstract:

Magnetic resonance elastography (MRE) non-invasively assesses tissue elastic properties, such as shear modulus, by measuring tissue’s displacement in response to mechanical waves. The estimated metrics on tissue elasticity or stiffness have been shown to be valuable for monitoring physiologic or pathophysiologic status of tissue, such as a tumor or fatty liver. To quantify tissue shear modulus from MRE-acquired displacements (essentially an inverse problem), multiple approaches have been proposed, including Local Frequency Estimation (LFE) and Direct Inversion (DI). However, one common problem with these methods is that the estimates are severely noise-sensitive due to either the inverse-problem nature or noise propagation in the pixel-by-pixel process. With the advent of deep learning (DL) and its promise in solving inverse problems, a few groups in the field of MRE have explored the feasibility of using DL methods for quantifying shear modulus from MRE data. Most of the groups chose to use real MRE data for DL model training and to cut training images into smaller patches, which enriches feature characteristics of training data but inevitably increases computation time and results in outcomes with patched patterns. In this study, simulated wave images generated by Finite Differential Time Domain (FDTD) simulation are used for network training, and U-Net is used to extract features from each training image without cutting it into patches. The use of simulated data for model training has the flexibility of customizing training datasets to match specific applications. The proposed method aimed to estimate tissue shear modulus from MRE data with high robustness to noise and high model-training efficiency. Specifically, a set of 3000 maps of shear modulus (with a range of 1 kPa to 15 kPa) containing randomly positioned objects were simulated, and their corresponding wave images were generated. The two types of data were fed into the training of a U-Net model as its output and input, respectively. For an independently simulated set of 1000 images, the performance of the proposed method against DI and LFE was compared by the relative errors (root mean square error or RMSE divided by averaged shear modulus) between the true shear modulus map and the estimated ones. The results showed that the estimated shear modulus by the proposed method achieved a relative error of 4.91%±0.66%, substantially lower than 78.20%±1.11% by LFE. Using simulated data, the proposed method significantly outperformed LFE and DI in resilience to increasing noise levels and in resolving fine changes of shear modulus. The feasibility of the proposed method was also tested on MRE data acquired from phantoms and from human calf muscles, resulting in maps of shear modulus with low noise. In future work, the method’s performance on phantom and its repeatability on human data will be tested in a more quantitative manner. In conclusion, the proposed method showed much promise in quantifying tissue shear modulus from MRE with high robustness and efficiency.

Keywords: deep learning, magnetic resonance elastography, magnetic resonance imaging, shear modulus estimation

Procedia PDF Downloads 66