Search results for: health data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30693

Search results for: health data

23703 The Relationship between Spiritual Well-Being and the Quality of Life among Older Adults Who Live in Aged Institutions

Authors: Li-Fen Wu

Abstract:

Spiritual well-being is one aspect of quality of life that can significantly improve the quality of life of individuals. However, the reports of older adults’ spiritual well-being that live in aged institutions were few. This study aims to identify the relationship between spiritual well-being and quality of life among older adults residing in aged institutions in Taiwan. The correlative study design is used. Data collected by basic personal information, Spiritual Index of Well-being Scale and EuroQol-5D-3L. Case managers help participants complete the questionnaires. This study uses descriptive statistics and correlation test analysis data. The study finds the positive correlation between spiritual well-being and quality of life. According to the correlation between spiritual well-being and quality-of-life score, awareness of the importance of spiritual well-being in caring for these people is recommended.

Keywords: older adult, spiritual well-being, quality of life, aged institution

Procedia PDF Downloads 265
23702 The Regulation of Reputational Information in the Sharing Economy

Authors: Emre Bayamlıoğlu

Abstract:

This paper aims to provide an account of the legal and the regulative aspects of the algorithmic reputation systems with a special emphasis on the sharing economy (i.e., Uber, Airbnb, Lyft) business model. The first section starts with an analysis of the legal and commercial nature of the tripartite relationship among the parties, namely, the host platform, individual sharers/service providers and the consumers/users. The section further examines to what extent an algorithmic system of reputational information could serve as an alternative to legal regulation. Shortcomings are explained and analyzed with specific examples from Airbnb Platform which is a pioneering success in the sharing economy. The following section focuses on the issue of governance and control of the reputational information. The section first analyzes the legal consequences of algorithmic filtering systems to detect undesired comments and how a delicate balance could be struck between the competing interests such as freedom of speech, privacy and the integrity of the commercial reputation. The third section deals with the problem of manipulation by users. Indeed many sharing economy businesses employ certain techniques of data mining and natural language processing to verify consistency of the feedback. Software agents referred as "bots" are employed by the users to "produce" fake reputation values. Such automated techniques are deceptive with significant negative effects for undermining the trust upon which the reputational system is built. The third section is devoted to explore the concerns with regard to data mobility, data ownership, and the privacy. Reputational information provided by the consumers in the form of textual comment may be regarded as a writing which is eligible to copyright protection. Algorithmic reputational systems also contain personal data pertaining both the individual entrepreneurs and the consumers. The final section starts with an overview of the notion of reputation as a communitarian and collective form of referential trust and further provides an evaluation of the above legal arguments from the perspective of public interest in the integrity of reputational information. The paper concludes with certain guidelines and design principles for algorithmic reputation systems, to address the above raised legal implications.

Keywords: sharing economy, design principles of algorithmic regulation, reputational systems, personal data protection, privacy

Procedia PDF Downloads 469
23701 Algorithm and Software Based on Multilayer Perceptron Neural Networks for Estimating Channel Use in the Spectral Decision Stage in Cognitive Radio Networks

Authors: Danilo López, Johana Hernández, Edwin Rivas

Abstract:

The use of the Multilayer Perceptron Neural Networks (MLPNN) technique is presented to estimate the future state of use of a licensed channel by primary users (PUs); this will be useful at the spectral decision stage in cognitive radio networks (CRN) to determine approximately in which time instants of future may secondary users (SUs) opportunistically use the spectral bandwidth to send data through the primary wireless network. To validate the results, sequences of occupancy data of channel were generated by simulation. The results show that the prediction percentage is greater than 60% in some of the tests carried out.

Keywords: cognitive radio, neural network, prediction, primary user

Procedia PDF Downloads 375
23700 Estimation and Comparison of Delay at Signalized Intersections Based on Existing Methods

Authors: Arpita Saha, Satish Chandra, Indrajit Ghosh

Abstract:

Delay implicates the time loss of a traveler while crossing an intersection. Efficiency of traffic operation at signalized intersections is assessed in terms of delay caused to an individual vehicle. Highway Capacity Manual (HCM) method and Webster’s method are the most widely used in India for delay estimation purpose. However, in India, traffic is highly heterogeneous in nature with extremely poor lane discipline. Therefore, to explore best delay estimation technique for Indian condition, a comparison was made. In this study, seven signalized intersections from three different cities where chosen. Data was collected for both during morning and evening peak hours. Only under saturated cycles were considered for this study. Delay was estimated based on the field data. With the help of Simpson’s 1/3 rd rule, delay of under saturated cycles was estimated by measuring the area under the curve of queue length and cycle time. Moreover, the field observed delay was compared with the delay estimated using HCM, Webster, Probabilistic, Taylor’s expansion and Regression methods. The drawbacks of the existing delay estimation methods to be use in Indian heterogeneous traffic conditions were figured out, and best method was proposed. It was observed that direct estimation of delay using field measured data is more accurate than existing conventional and modified methods.

Keywords: delay estimation technique, field delay, heterogeneous traffic, signalised intersection

Procedia PDF Downloads 306
23699 Lessons Learned from Push-Plus Implementation in Northern Nigeria

Authors: Aisha Giwa, Mohammed-Faosy Adeniran, Olufunke Femi-Ojo

Abstract:

Four decades ago, the World Health Organization (WHO) launched the Expanded Programme on Immunization (EPI). The EPI blueprint laid out the technical and managerial functions necessary to routinely vaccinate children with a limited number of vaccines, providing protection against diphtheria, tetanus, whooping cough, measles, polio, and tuberculosis, and to prevent maternal and neonatal tetanus by vaccinating women of childbearing age with tetanus toxoid. Despite global efforts, the Routine Immunization (RI) coverage in two of the World Health Organization (WHO) regions; the African Region and the South-East Asia Region, still remains short of its targets. As a result, the WHO Regional Director for Africa declared 2012 as the year for intensifying RI in these regions and this also coincided with the declaration of polio as a programmatic emergency by the WHO Executive Board. In order to intensify routine immunization, the National Routine Immunization Strategic Plan (2013-2015) stated that its core priority is to ensure 100% adequacy and availability of vaccines for safe immunization. To achieve 100% availability, the “PUSH System” and then “Push-Plus” were adopted for vaccine distribution, which replaced the inefficient “PULL” method. The NPHCDA plays the key role in coordinating activities in area advocacy, capacity building, engagement of 3PL for the state as well as monitoring and evaluation of the vaccine delivery process. eHealth Africa (eHA) is a player as a 3PL service provider engaged by State Primary Health Care Boards (SPHCDB) to ensure vaccine availability through Vaccine Direct Delivery (VDD) project which is essential to successful routine immunization services. The VDD project ensures the availability and adequate supply of high-quality vaccines and immunization-related materials to last-mile facilities. eHA’s commitment to the VDD project saw the need for an assessment of the project vis-a-vis the overall project performance, evaluation of a process for necessary improvement suggestions as well as general impact across Kano State (Where eHA had transitioned to the state), Bauchi State (currently manage delivery to all LGAs except 3 LGAs currently being managed by the state), Sokoto State (eHA currently covers all LGAs) and Zamfara State (Currently, in-sourced and managed solely by the state).

Keywords: cold chain logistics, health supply chain system strengthening, logistics management information system, vaccine delivery traceability and accountability

Procedia PDF Downloads 323
23698 Influence of European Funds on the Sector of Bovine Milk and Meat in Romania in the Period 2007-2013

Authors: Andrei-Marius Sandu

Abstract:

This study aims to analyze the bovine meat and milk sector for the period 2007-2013. For the period analyzed, it is known that Romania has benefited from EU funding through the National Rural Development Programme 2007-2013. In this programme, there were measures that addressed exclusively the animal husbandry sector in Romania. This paper presents data on bovine production of meat, milk and livestock in Romania, but also data on the price and impact the European Funds implementation had on them.

Keywords: European funds, measures, national rural development programme, price

Procedia PDF Downloads 426
23697 Innovate, Educate, and Transform, Tailoring Sustainable Waste Handling Solutions for Nepal’s Small Populated Municipalities: Insights From Chandragiri Municipality

Authors: Anil Kumar Baral

Abstract:

The research introduces a ground-breaking approach to waste management, emphasizing innovation, education, and transformation. Using Chandragiri Municipality as a case study, the study advocates a shift from traditional to progressive waste management strategies, contributing an inventive waste framework, sustainability advocacy, and a transformative blueprint. The waste composition analysis highlights Chandragiri's representative profile, leading to a comprehensive plan addressing challenges and recommending a transition to a profitable waste treatment model, supported by relevant statistics. The data-driven approach incorporates the official data of waste Composition from Chandragiri Municipality as secondary data and incorporates the primary data from Chandragiri households, ensuring a nuanced perspective. Discussions on implementation, viability, and environmental preservation underscore the dual benefit of sustainability. The study includes a comparative analysis, monitoring, and evaluation framework, examining international relevance and collaboration, and conducting a social and environmental impact assessment. The results indicate the necessity for creative changes in Chandragiri's waste practices, recommending separate treatment centers in wards level rather than Municipal level, composting machines, and a centralized waste treatment plant. Educational reforms involve revising school curricula and awareness campaigns. The transformation's success hinges on reducing waste size, efficient treatment center operation, and ongoing public literacy. The conclusion summarizes key findings, envisioning a future with sustainable waste management practices deeply embedded in the community fabric.

Keywords: innovate, educate, transform, municipality, method

Procedia PDF Downloads 49
23696 Parent’s Perspective about the Impact of Digital Storytelling on a Child’s Moral Development in the Early Years

Authors: Hina Abdul Majeed

Abstract:

The story has a powerful impact on the human mind of all age groups. There are various ways to tell stories; one of the forms is digital storytelling. Digital storytelling is getting popular nowadays; it mainly catalyzes a child's holistic development in the early years. Thus, this study's primary purpose is to explore parents' perception of the impact of digital storytelling on developing children's moral values and the change that occurs in child's moral behavior and attitude using the digital storytelling tool. Literature was reviewed by exploring the recent studies on digital stories and their impact on child's development. This study was based on a mixed-method approach, considering qualitative and quantitative research designs. The population for this study included parents of early years children who resided in Karachi. However, parents of two to six years old children were targeted as samples by selecting using a purposive sample method. Thus, 100 parents were chosen for the quantitative survey, and five parents were interviewed to collect qualitative data. Questionnaires were developed for collecting data from parents through surveys and interviews. The SPSS was used to analyze the quantitative data, and the parents' responses collected during discussions were presented in narrative form. The findings show that the impact of digital storytelling, in most parents' opinion, is positive in inculcating moral values in their children. Moreover, parents also endorse the changes in child's behavior and attitude due to digital stories.

Keywords: digital storytelling, moral development, early years, parents

Procedia PDF Downloads 81
23695 Response of Insulin Resistance Indicators to Aerobic Exercise at Different Intensities in Obese College Students

Authors: Long-Shan Wu, Ming-Chen Ko, Chien-Chang Ho, Po-Fu Lee, Li-Yun Chen, Ching-Yu Tseng

Abstract:

The purpose of this study was to determine whether progressive aerobic exercise intensity effects the changes in insulin resistance indicators among obese college students in Taiwan. Forty-eight obese subjects [body mass index (BMI) ≧ 27 kg/m2, aged 18-26 years old] were randomized into four equal groups (n = 12): light-intensity training group (LITG): 40-50% of their heart rate reserve (HRR); middle-intensity training group (MITG): 50-70% of their HRR; high-intensity training group (HITG): 70-80% of their HRR, and control group (CG). The aerobic exercise training program was performed 60 minutes per day on a treadmill three days/week in a training period of 12 weeks. All subjects’ anthropometric data, blood biochemical parameters, and health-related physical fitness components were measured at baseline and after 12 weeks. At baseline, all insulin resistance indicators did not differ significantly among the four groups (p > 0.05). After 12-week exercise intervention, the HITG had significantly more changes in insulin level than the MITG, LITG, and CG. Our findings suggested that a short-term aerobic exercise program can play an important role in improving insulin resistance indicators; either middle-intensity training significantly increases the insulin level, but the high-intensity exercise training program effectively improves obese college students’ insulin resistance.

Keywords: aerobic training, exercise intensity, insulin resistance, obesity

Procedia PDF Downloads 299
23694 Energy Efficient Clustering with Reliable and Load-Balanced Multipath Routing for Wireless Sensor Networks

Authors: Alamgir Naushad, Ghulam Abbas, Shehzad Ali Shah, Ziaul Haq Abbas

Abstract:

Unlike conventional networks, it is particularly challenging to manage resources efficiently in Wireless Sensor Networks (WSNs) due to their inherent characteristics, such as dynamic network topology and limited bandwidth and battery power. To ensure energy efficiency, this paper presents a routing protocol for WSNs, namely, Enhanced Hybrid Multipath Routing (EHMR), which employs hierarchical clustering and proposes a next hop selection mechanism between nodes according to a maximum residual energy metric together with a minimum hop count. Load-balancing of data traffic over multiple paths is achieved for a better packet delivery ratio and low latency rate. Reliability is ensured in terms of higher data rate and lower end-to-end delay. EHMR also enhances the fast-failure recovery mechanism to recover a failed path. Simulation results demonstrate that EHMR achieves a higher packet delivery ratio, reduced energy consumption per-packet delivery, lower end-to-end latency, and reduced effect of data rate on packet delivery ratio when compared with eminent WSN routing protocols.

Keywords: energy efficiency, load-balancing, hierarchical clustering, multipath routing, wireless sensor networks

Procedia PDF Downloads 92
23693 Leveraging the Power of Dual Spatial-Temporal Data Scheme for Traffic Prediction

Authors: Yang Zhou, Heli Sun, Jianbin Huang, Jizhong Zhao, Shaojie Qiao

Abstract:

Traffic prediction is a fundamental problem in urban environment, facilitating the smart management of various businesses, such as taxi dispatching, bike relocation, and stampede alert. Most earlier methods rely on identifying the intrinsic spatial-temporal correlation to forecast. However, the complex nature of this problem entails a more sophisticated solution that can simultaneously capture the mutual influence of both adjacent and far-flung areas, with the information of time-dimension also incorporated seamlessly. To tackle this difficulty, we propose a new multi-phase architecture, DSTDS (Dual Spatial-Temporal Data Scheme for traffic prediction), that aims to reveal the underlying relationship that determines future traffic trend. First, a graph-based neural network with an attention mechanism is devised to obtain the static features of the road network. Then, a multi-granularity recurrent neural network is built in conjunction with the knowledge from a grid-based model. Subsequently, the preceding output is fed into a spatial-temporal super-resolution module. With this 3-phase structure, we carry out extensive experiments on several real-world datasets to demonstrate the effectiveness of our approach, which surpasses several state-of-the-art methods.

Keywords: traffic prediction, spatial-temporal, recurrent neural network, dual data scheme

Procedia PDF Downloads 119
23692 Administration of Lactobacillus plantarum PS128 Improves Animal Behavior and Monoamine Neurotransmission in Germ-Free Mice

Authors: Liu Wei-Hsien, Chuang Hsiao-Li, Huang Yen-Te, Wu Chien-Chen, Chou Geng-Ting, Tsai Ying-Chieh

Abstract:

Intestinal microflora play an important role in communication along the gut-brain axis. Probiotics, defined as live bacteria or bacterial products, confer a significant health benefit to the host. Here we administered Lactobacillus plantarum PS128 (PS128) to the germ-free (GF) mouse to investigate the impact of the gut-brain axis on emotional behavior. Administration of live PS128 significantly increased the total distance traveled in the open field test; it decreased the time spent in the closed arm and increased the time spent and total entries into the open arm in the elevated plus maze. In contrast, heat-killed PS128 caused no significant changes in the GF mice. Treatment with live PS128 significantly increased levels of both serotonin and dopamine in the striatum, but not in the prefrontal cortex or hippocampus. However, live PS128 did not alter pro- or anti-inflammatory cytokine production by mitogen-stimulated splenocytes. The above data indicate that the normalization of emotional behavior correlated with monoamine neurotransmission, but not with immune activity. Our findings suggest that daily intake of the probiotic PS128 could ameliorate neuropsychiatric disorders such as anxiety and excessive psychological stress.

Keywords: dopamine, hypothalamic-pituitary-adrenal axis, intestinal microflora, serotonin

Procedia PDF Downloads 417
23691 Religious Beliefs versus Child’s Rights: Anti-Vaccine Movement in Indonesia

Authors: Ni Luh Bayu PurwaEka Payani, Destin Ristanti

Abstract:

Every child has the right to be healthy, and it is a parents’ obligation to fulfill their rights. In order to be healthy and prevented from the outbreak of infectious diseases, some vaccines are required. However, there are groups of people, who consider that vaccines consist of religiously forbidden ingredients. The government of Indonesia legally set the rule that all children must be vaccinated. However, merely based on religious beliefs and not supported by scientific evidence, these people ignore the vaccination. As a result, this anti-vaccine movement caused diphtheria outbreak in 2017. Categorized as a vulnerable group, child`s rights must be fulfilled in any forms. This paper tries to analyze the contradiction between religious beliefs and the fulfillment of child`s rights. Furthermore, it tries to identify the anti-vaccine movement as a form of human rights violation, especially regarding child's rights. This has been done by examining the event of the outbreak of diphtheria in 20 provinces of Indonesia. Furthermore, interview and literature reviews have been done to support the analysis. Through this process, it becomes clear that the anti-vaccine movements driven by religious beliefs did influence the outbreak of diphtheria. Hence, the anti-vaccine movements ignore the long-term effects not only on their own children’s health but also others.

Keywords: anti-vaccine movement, child rights, religious beliefs, right to health

Procedia PDF Downloads 217
23690 Practicing Inclusion for Hard of Hearing and Deaf Students in Regular Schools in Ethiopia

Authors: Mesfin Abebe Molla

Abstract:

This research aims to examine the practices of inclusion of the hard of hearing and deaf students in regular schools. It also focuses on exploring strategies for optimal benefits of students with Hard of Hearing and Deaf (HH-D) from inclusion. Concurrent mixed methods research design was used to collect quantitative and qualitative data. The instruments used to gather data for this study were questionnaire, semi- structured interview, and observations. A total of 102 HH-D students and 42 primary and High School teachers were selected using simple random sampling technique and used as participants to collect quantitative data. Non-probability sampling technique was also employed to select 14 participants (4-school principals, 6-teachers and 4-parents of HH-D students) and they were interviewed to collect qualitative data. Descriptive and inferential statistical techniques (independent sample t-test, one way ANOVA and Multiple regressions) were employed to analyze quantitative data. Qualitative data were also analyzed qualitatively by theme analysis. The findings reported that there were individual principals’, teachers’ and parents’ strong commitment and efforts for practicing inclusion of HH-D students effectively; however, most of the core values of inclusion were missing in both schools. Most of the teachers (78.6 %) and HH-D students (75.5%) had negative attitude and considerable reservations about the feasibility of inclusion of HH-D students in both schools. Furthermore, there was a statistically significant difference of attitude toward to inclusion between the two school’s teachers and the teachers’ who had taken and had not taken additional training on IE and sign language. The study also indicated that there was a statistically significant difference of attitude toward to inclusion between hard of hearing and deaf students. However, the overall contribution of the demographic variables of teachers and HH-D students on their attitude toward inclusion is not statistically significant. The finding also showed that HH-D students did not have access to modified curriculum which would maximize their abilities and help them to learn together with their hearing peers. In addition, there is no clear and adequate direction for the medium of instruction. Poor school organization and management, lack of commitment, financial resources, collaboration and teachers’ inadequate training on Inclusive Education (IE) and sign language, large class size, inappropriate assessment procedure, lack of trained deaf adult personnel who can serve as role model for HH-D students and lack of parents and community members’ involvement were some of the major factors that affect the practicing inclusion of students HH-D. Finally, recommendations are made to improve the practices of inclusion of HH-D students and to make inclusion of HH-D students an integrated part of Ethiopian education based on the findings of the study.

Keywords: deaf, hard of hearing, inclusion, regular schools

Procedia PDF Downloads 348
23689 Analysis and Identification of Different Factors Affecting Students’ Performance Using a Correlation-Based Network Approach

Authors: Jeff Chak-Fu Wong, Tony Chun Yin Yip

Abstract:

The transition from secondary school to university seems exciting for many first-year students but can be more challenging than expected. Enabling instructors to know students’ learning habits and styles enhances their understanding of the students’ learning backgrounds, allows teachers to provide better support for their students, and has therefore high potential to improve teaching quality and learning, especially in any mathematics-related courses. The aim of this research is to collect students’ data using online surveys, to analyze students’ factors using learning analytics and educational data mining and to discover the characteristics of the students at risk of falling behind in their studies based on students’ previous academic backgrounds and collected data. In this paper, we use correlation-based distance methods and mutual information for measuring student factor relationships. We then develop a factor network using the Minimum Spanning Tree method and consider further study for analyzing the topological properties of these networks using social network analysis tools. Under the framework of mutual information, two graph-based feature filtering methods, i.e., unsupervised and supervised infinite feature selection algorithms, are used to analyze the results for students’ data to rank and select the appropriate subsets of features and yield effective results in identifying the factors affecting students at risk of failing. This discovered knowledge may help students as well as instructors enhance educational quality by finding out possible under-performers at the beginning of the first semester and applying more special attention to them in order to help in their learning process and improve their learning outcomes.

Keywords: students' academic performance, correlation-based distance method, social network analysis, feature selection, graph-based feature filtering method

Procedia PDF Downloads 136
23688 Good Environmental Governance Realization among the Three King Mongkut's Institutes of Technology in Bangkok, Thailand

Authors: Pastraporn Thipayasothorn, Vipawan Tadapratheep, Jintana Nokyoo

Abstract:

A physical realization of good environmental governance about an environmental principle, educational psychology and architecture in the three King Mongkut's Institutes of Technology, is generated for researching physical environmental factors which related to the good environmental governance, communication between the good environmental governance and a physical environmental, and a physical environmental design policy. Moreover, we collected data by a survey, observation and questionnaire that participants are students of the three King Mongkut's Institutes of Technology, and analyzed a relationship between a building utilization and the good environmental governance awareness. We found that, from the data analysis, a balance and creativity participation which played as the project users and communities of the good governance environmental promotion in the institutes helps the good governance and environmental development in the future.

Keywords: built environment, good governance, environmental governance, physical environmental

Procedia PDF Downloads 442
23687 Using Computer Vision to Detect and Localize Fractures in Wrist X-ray Images

Authors: John Paul Q. Tomas, Mark Wilson L. de los Reyes, Kirsten Joyce P. Vasquez

Abstract:

The most frequent type of fracture is a wrist fracture, which often makes it difficult for medical professionals to find and locate. In this study, fractures in wrist x-ray pictures were located and identified using deep learning and computer vision. The researchers used image filtering, masking, morphological operations, and data augmentation for the image preprocessing and trained the RetinaNet and Faster R-CNN models with ResNet50 backbones and Adam optimizers separately for each image filtering technique and projection. The RetinaNet model with Anisotropic Diffusion Smoothing filter trained with 50 epochs has obtained the greatest accuracy of 99.14%, precision of 100%, sensitivity/recall of 98.41%, specificity of 100%, and an IoU score of 56.44% for the Posteroanterior projection utilizing augmented data. For the Lateral projection using augmented data, the RetinaNet model with an Anisotropic Diffusion filter trained with 50 epochs has produced the highest accuracy of 98.40%, precision of 98.36%, sensitivity/recall of 98.36%, specificity of 98.43%, and an IoU score of 58.69%. When comparing the test results of the different individual projections, models, and image filtering techniques, the Anisotropic Diffusion filter trained with 50 epochs has produced the best classification and regression scores for both projections.

Keywords: Artificial Intelligence, Computer Vision, Wrist Fracture, Deep Learning

Procedia PDF Downloads 82
23686 Information Communication Technologies and Renewable Technologies' Impact on Irish People's Lifestyle: A Constructivist Grounded Theory Study

Authors: Hamilton V. Niculescu

Abstract:

This paper discusses findings relating to people's engagement with mobile communication technologies and remote automated systems. This interdisciplinary study employs a constructivist grounded theory methodology, with qualitative data that was generated following in-depth semi-structured interviews with 18 people living in Ireland being corroborated with participants' observations and quantitative data. Additional data was collected following participants' remote interaction with six custom-built automated enclosures, located at six different sites around Dublin, Republic of Ireland. This paper argues that ownership and education play a vital role in people engaging with and adoption of new technologies. Analysis of participants' behavior and attitude towards Information Communication Technologies (ICT) suggests that innovations do not always improve peoples' social inclusion. Technological innovations are sometimes perceived as destroying communities and create a dysfunctional society. Moreover, the findings indicate that a lack of public information and support from Irish governmental institutions, as well as limited off-the-shelves availability, has led to low trust and adoption of renewable technologies. A limited variation in participants' behavior and interaction patterns with technologies was observed during the study. This suggests that people will eventually adopt new technologies according to their needs and experience, even though they initially rejected the idea of changing their lifestyle.

Keywords: automation, communication, ICT, renewables

Procedia PDF Downloads 118
23685 Association of Depression with Physical Inactivity and Time Watching Television: A Cross-Sectional Study with the Brazilian Population PNS, 2013

Authors: Margareth Guimaraes Lima, Marilisa Berti A. Barros, Deborah Carvalho Malta

Abstract:

The relationship between physical activity (PA) and depression has been investigated, in both, observational and clinical studies: PA can integrate the treatments for depression; the physical inactivity (PI) may contribute to increase depression symptoms; and on the other hand, emotional problems can decrease PA. The main of this study was analyze the association among leisure and transportation PI and time watching television (TV) according to depression (minor and major), evaluated with the Patient Health Questionnaire (PHQ-9). The association was also analyzed by gender. This is a cross-sectional study. Data were obtained from the National Health Survey 2013 (PNS), performed with representative sample of the Brazilian adult population, in 2013. The PNS collected information from 60,202 individuals, aged 18 years or more. The independent variable were: leisure time physical inactivity (LTPI), considering inactive or insufficiently actives (categories were linked for analyzes), those who do not performed a minimum of 150 or 74 minutes of moderate or vigorous LTPA, respectively, by week; transportation physical inactivity (TPI), individuals who did not reached 150 minutes, by week, travelling by bicycle or on foot to work or other activities; daily time watching TV > 5 hours. The principal independent variable was depression, identified by PHQ-9. Individuals were classified with major depression, with > 5 symptoms, more than seven days, but one of the symptoms was “depressive mood” or “lack of interest or pleasure”. The others had minor depression. The variables used to adjustment were gender, age, schooling and chronic disease. The prevalence of LTPI, TPI and TV time were estimated according to depression, and differences were tested with Chi-Square test. Adjusted prevalence ratios were estimated using multiple Poisson regression models. The analyzes also had stratification by gender. Mean age of the studied population was 42.9 years old (CI95%:42.6-43.2) and 52.9% were women. 77.5% and 68.1% were inactive or insufficiently active in leisure and transportation, respectively and 13.3% spent time watching TV 5 > hours. 6% and 4.1% of the Brazilian population were diagnosed with minor or major depression. LTPI prevalence was 5% and 9% higher among individuals with minor and major depression, respectively, comparing with no depression. The prevalence of TPI was 7% higher in those with major depression. Considering larger time watching TV, the prevalence was 45% and 74% higher among those with minor and major depression, respectively. Analyzing by gender, the associations were greater in men than women and TPI was note be associated, in women. The study detected the higher prevalence of leisure time physical inactivity and, especially, time spent watching TV, among individuals with major and minor depression, after to adjust for a number of potential confounding factors. TPI was only associated with major disorders and among men. Considering the cross-sectional design of the research, these associations can point out the importance of the mental problems control of the population to increase PA and decrease the sedentary lifestyle; on the other hand, the study highlight the need of interventions by encouraging people with depression, to practice PA, even to transportation.

Keywords: depression, physical activity, PHQ-9, sedentary lifestyle

Procedia PDF Downloads 157
23684 Validating Quantitative Stormwater Simulations in Edmonton Using MIKE URBAN

Authors: Mohamed Gaafar, Evan Davies

Abstract:

Many municipalities within Canada and abroad use chloramination to disinfect drinking water so as to avert the production of the disinfection by-products (DBPs) that result from conventional chlorination processes and their consequential public health risks. However, the long-lasting monochloramine disinfectant (NH2Cl) can pose a significant risk to the environment. As, it can be introduced into stormwater sewers, from different water uses, and thus freshwater sources. Little research has been undertaken to monitor and characterize the decay of NH2Cl and to study the parameters affecting its decomposition in stormwater networks. Therefore, the current study was intended to investigate this decay starting by building a stormwater model and validating its hydraulic and hydrologic computations, and then modelling water quality in the storm sewers and examining the effects of different parameters on chloramine decay. The presented work here is only the first stage of this study. The 30th Avenue basin in Southern Edmonton was chosen as a case study, because the well-developed basin has various land-use types including commercial, industrial, residential, parks and recreational. The City of Edmonton has already built a MIKE-URBAN stormwater model for modelling floods. Nevertheless, this model was built to the trunk level which means that only the main drainage features were presented. Additionally, this model was not calibrated and known to consistently compute pipe flows higher than the observed values; not to the benefit of studying water quality. So the first goal was to complete modelling and updating all stormwater network components. Then, available GIS Data was used to calculate different catchment properties such as slope, length and imperviousness. In order to calibrate and validate this model, data of two temporary pipe flow monitoring stations, collected during last summer, was used along with records of two other permanent stations available for eight consecutive summer seasons. The effect of various hydrological parameters on model results was investigated. It was found that model results were affected by the ratio of impervious areas. The catchment length was tested, however calculated, because it is approximate representation of the catchment shape. Surface roughness coefficients were calibrated using. Consequently, computed flows at the two temporary locations had correlation coefficients of values 0.846 and 0.815, where the lower value pertained to the larger attached catchment area. Other statistical measures, such as peak error of 0.65%, volume error of 5.6%, maximum positive and negative differences of 2.17 and -1.63 respectively, were all found in acceptable ranges.

Keywords: stormwater, urban drainage, simulation, validation, MIKE URBAN

Procedia PDF Downloads 304
23683 Evaluation of the Impact of Pavement Roughness on Vehicle Emissions by HDM-4

Authors: Muhammad Azhar, Arshad Hussain

Abstract:

Vehicular emissions have increased in recent years due to rapid growth in world traffic resulting in an increase in associated problems such as air pollution and climate change, therefore it’s necessary to control vehicle emissions. This study looks at the effect of road maintenance on vehicle emissions. The Highway Development and Management Tool (HDM-4) was used to find the effect of road maintenance on vehicle emissions. Key data collected were traffic volume and composition, vehicle characteristics, pavement characteristics and climate data of the study area. Two options were analysed using the HDM-4 software; the base case or do nothing while the second is overlay maintenance. The study also showed a strong correlation between average roughness and yearly emission levels in both the alternatives. Finally, the study showed that proper maintenance reduces the roughness and emissions.

Keywords: vehicle emissions, road roughness, IRI, maintenance, HDM-4, CO2

Procedia PDF Downloads 266
23682 Assessing the Sheltering Response in the Middle East: Studying Syrian Camps in Jordan

Authors: Lara A. Alshawawreh, R. Sean Smith, John B. Wood

Abstract:

This study focuses on the sheltering response in the Middle East, specifically through reviewing two Syrian refugee camps in Jordan, involving Zaatari and Azraq. Zaatari camp involved the rapid deployment of tents and shelters over a very short period of time and Azraq was purpose built and pre-planned over a longer period. At present, both camps collectively host more than 133,000 occupants. Field visits were taken to both camps and the main issues and problems in the sheltering response were highlighted through focus group discussions with camp occupants and inspection of shelter habitats. This provided both subjective and objective research data sources. While every case has its own significance and deployment to meet humanitarian needs, there are some common requirements irrespective of geographical region. The results suggest that there is a gap in the suitability of the required habitat needs and what has been provided. It is recommended that the global international response and support could be improved in relation to the habitat form, construction type, layout, function and critically the cultural aspects. Services, health and hygiene are key elements to the shelter habitat provision. The study also identified the amendments to shelters undertaken by the beneficiaries providing insight into their key main requirements. The outcomes from this study could provide an important learning opportunity to develop improved habitat response for future shelters.

Keywords: culture, post-disaster, refugees, shelters

Procedia PDF Downloads 491
23681 Malaysian Students' Identity in Seminars by Observing, Interviewing and Conducting Focus Group Discussion

Authors: Zurina Khairuddin

Abstract:

The objective of this study is to explore the identities constructed and negotiated by Malaysian students in the UK and Malaysia when they interact in seminars. The study utilised classroom observation, interview and focus group discussion to collect the data. The participants of this study are the first year Malaysian students studying in the UK and Malaysia. The data collected was analysed utilising a combination of Conversation Analysis and framework. This study postulates that Malaysian students in the UK construct and negotiate flexible and different identities depending on the contexts they were in. It also shows that most Malaysian students in the UK and Malaysia are similar in the identities they construct and negotiate. This study suggests implications and recommendations for Malaysian students in the UK and Malaysia, and other stakeholders such as UK and Malaysian academic community.

Keywords: conversation analysis, interaction patterns, Malaysian students, students' identity

Procedia PDF Downloads 188
23680 Differentially Expressed Protein Biomarkers in Early and Advanced Stage Young Triple-Negative Breast Cancer Patients

Authors: Shamim Mushtaq, Moazzam Shahid

Abstract:

Breast cancer (BC) claims the lives of half a million women every year and is the most common cause of death in the developing world. In 2019, it was estimated that BC alone accounts for 15% of all cancer deaths in younger women (aged < 45 years old) with advanced-stage lung metastasis. According to the World Health Organization & International Union against Cancer, in Asia, a high number of cancer-related deaths will be observed in 2020, whereas the burden will be reduced in Western countries due to awareness about the disease, better health facilities and advanced treatments. In the last 15 years, it has been reported that the incidence of BC has increased by 1.1% among Asian compared to the US population from 2003 to 2012. To date, several BC biological subtypes have been reported so far, which are associated with different treatment responses. The heterogeneity and diversity of BC reflected these different subtypes, including Luminal A (23.7% prevalence) and B (38.8% prevalence) that have pathological estrogen receptor (ER+)-positive tumors, the human epidermal growth factor receptor 2 (HER2) (11.2% prevalence) and triple-negative breast cancer (TNBC) (25% prevalence). According to Shaukat Khanum Memorial Cancer Hospital and Research Centre – Pakistan, ten years of data showed that among 636 BC patients, 30.5% had TNBC who were <40 years of age, which is an extremely alarming situation. Therefore, there is a dire need to explore and develop therapeutic targets for the treatment of early TNBC. Since the last decade, unfortunately, there has been little success in understanding the complexity of TNBC and in discovering new biological therapeutic targets. However, conventional chemotherapy is the only choice of treatment for TNBC patients. Many investigators revealed advances in multi-omics (multiple "omes", e.g., genome, proteome, transcriptome, epigenome, and microbiome) which were later identified as actionable targets and increased prevalence in TNBC patients. However, various drugs have been identified so far which are related to a particular diagnostic and prognostic biomarker. For example, Epidermal growth factor receptor ( EGFR or ErbB-1), HER-2/neu (ErbB-2), HER-3 (ErbB-3), and HER-4 (ErbB-4). Protein Transglin-2 (TAGLN 2 ) and Profilins-1 (Pfn-1 ) are the ubiquitously expressed large family of proteins present in all eukaryotes, enabling actin cytoskeletal reorganization. It is known that the oncogenic transformation of cells is accompanied by alteration in the actin cytoskeleton. There are causal connections between altered expression of actin cytoskeletal regulators and cancer progression. Our case-control study identified TAGLN-2 and Pfn-1 proteins in TNBC blood by mass spectrometry. Both TAGLN-2 and Pfn-1 proteins are differentially expressed in early and advanced stages of TNBS patients, which could be potential predictors or therapeutic targets for TNBC.

Keywords: TNBC, blood biomarkers, mass spectrometry, qPCR, ELISA

Procedia PDF Downloads 47
23679 Generation of Knowlege with Self-Learning Methods for Ophthalmic Data

Authors: Klaus Peter Scherer, Daniel Knöll, Constantin Rieder

Abstract:

Problem and Purpose: Intelligent systems are available and helpful to support the human being decision process, especially when complex surgical eye interventions are necessary and must be performed. Normally, such a decision support system consists of a knowledge-based module, which is responsible for the real assistance power, given by an explanation and logical reasoning processes. The interview based acquisition and generation of the complex knowledge itself is very crucial, because there are different correlations between the complex parameters. So, in this project (semi)automated self-learning methods are researched and developed for an enhancement of the quality of such a decision support system. Methods: For ophthalmic data sets of real patients in a hospital, advanced data mining procedures seem to be very helpful. Especially subgroup analysis methods are developed, extended and used to analyze and find out the correlations and conditional dependencies between the structured patient data. After finding causal dependencies, a ranking must be performed for the generation of rule-based representations. For this, anonymous patient data are transformed into a special machine language format. The imported data are used as input for algorithms of conditioned probability methods to calculate the parameter distributions concerning a special given goal parameter. Results: In the field of knowledge discovery advanced methods and applications could be performed to produce operation and patient related correlations. So, new knowledge was generated by finding causal relations between the operational equipment, the medical instances and patient specific history by a dependency ranking process. After transformation in association rules logically based representations were available for the clinical experts to evaluate the new knowledge. The structured data sets take account of about 80 parameters as special characteristic features per patient. For different extended patient groups (100, 300, 500), as well one target value as well multi-target values were set for the subgroup analysis. So the newly generated hypotheses could be interpreted regarding the dependency or independency of patient number. Conclusions: The aim and the advantage of such a semi-automatically self-learning process are the extensions of the knowledge base by finding new parameter correlations. The discovered knowledge is transformed into association rules and serves as rule-based representation of the knowledge in the knowledge base. Even more, than one goal parameter of interest can be considered by the semi-automated learning process. With ranking procedures, the most strong premises and also conjunctive associated conditions can be found to conclude the interested goal parameter. So the knowledge, hidden in structured tables or lists can be extracted as rule-based representation. This is a real assistance power for the communication with the clinical experts.

Keywords: an expert system, knowledge-based support, ophthalmic decision support, self-learning methods

Procedia PDF Downloads 254
23678 Exposure and Satisfaction toward Online News of Undergraduate Students in Thailand

Authors: Ekapon Thienthaworn

Abstract:

This research aims to study the exposure and satisfaction toward online news of undergraduate students in Bangkok, Thailand. This research is the survey research which 400 questionnaires are used to collect data with the accidental sampling technique and the data collected are analyzed with descriptive statistics. The result can be divided into 2 sections as follow: (1) Undergraduate students in Bangkok consume online news via most of the Smartphone. In most cases, they use average more than 2 hours per day. Most times to consume news are 22.01- 02.00 pm. Primary source is Facebook and the most interested news genre is entertainment news and headline of the day. (2) Undergraduate students in Bangkok have positive attitude in online news is a fastness and easy-to-access. Negative attitude is piracy. Finally, average satisfaction in consuming online news is in high levels.

Keywords: exposure, satisfaction, online news, Bangkok

Procedia PDF Downloads 249
23677 Using Real Truck Tours Feedback for Address Geocoding Correction

Authors: Dalicia Bouallouche, Jean-Baptiste Vioix, Stéphane Millot, Eric Busvelle

Abstract:

When researchers or logistics software developers deal with vehicle routing optimization, they mainly focus on minimizing the total travelled distance or the total time spent in the tours by the trucks, and maximizing the number of visited customers. They assume that the upstream real data given to carry the optimization of a transporter tours is free from errors, like customers’ real constraints, customers’ addresses and their GPS-coordinates. However, in real transporter situations, upstream data is often of bad quality because of address geocoding errors and the irrelevance of received addresses from the EDI (Electronic Data Interchange). In fact, geocoders are not exempt from errors and could give impertinent GPS-coordinates. Also, even with a good geocoding, an inaccurate address can lead to a bad geocoding. For instance, when the geocoder has trouble with geocoding an address, it returns those of the center of the city. As well, an obvious geocoding issue is that the mappings used by the geocoders are not regularly updated. Thus, new buildings could not exist on maps until the next update. Even so, trying to optimize tours with impertinent customers GPS-coordinates, which are the most important and basic input data to take into account for solving a vehicle routing problem, is not really useful and will lead to a bad and incoherent solution tours because the locations of the customers used for the optimization are very different from their real positions. Our work is supported by a logistics software editor Tedies and a transport company Upsilon. We work with Upsilon's truck routes data to carry our experiments. In fact, these trucks are equipped with TOMTOM GPSs that continuously save their tours data (positions, speeds, tachograph-information, etc.). We, then, retrieve these data to extract the real truck routes to work with. The aim of this work is to use the experience of the driver and the feedback of the real truck tours to validate GPS-coordinates of well geocoded addresses, and bring a correction to the badly geocoded addresses. Thereby, when a vehicle makes its tour, for each visited customer, the vehicle might have trouble with finding this customer’s address at most once. In other words, the vehicle would be wrong at most once for each customer’s address. Our method significantly improves the quality of the geocoding. Hence, we achieve to automatically correct an average of 70% of GPS-coordinates of a tour addresses. The rest of the GPS-coordinates are corrected in a manual way by giving the user indications to help him to correct them. This study shows the importance of taking into account the feedback of the trucks to gradually correct address geocoding errors. Indeed, the accuracy of customer’s address and its GPS-coordinates play a major role in tours optimization. Unfortunately, address writing errors are very frequent. This feedback is naturally and usually taken into account by transporters (by asking drivers, calling customers…), to learn about their tours and bring corrections to the upcoming tours. Hence, we develop a method to do a big part of that automatically.

Keywords: driver experience feedback, geocoding correction, real truck tours

Procedia PDF Downloads 677
23676 Filmic and Verbal Metafphors

Authors: Manana Rusieshvili, Rusudan Dolidze

Abstract:

This paper aims at 1) investigating the ways in which a traditional, monomodal written verbal metaphor can be transposed as a monomodal non-verbal (visual) or multimodal (aural and -visual) filmic metaphor ; 2) exploring similarities and differences in the process of encoding and decoding of monomodal and multimodal metaphors. The empiric data, on which the research is based, embrace three sources: the novel by Harry Gray ‘The Hoods’, the script of the film ‘Once Upon a Time in America’ (English version by David Mills) and the resultant film by Sergio Leone. In order to achieve the above mentioned goals, the research focuses on the following issues: 1) identification of verbal and non-verbal monomodal and multimodal metaphors in the above-mentioned sources and 2) investigation of the ways and modes the specific written monomodal metaphors appearing in the novel and the script are enacted in the film and become visual, aural or visual-aural filmic metaphors ; 3) study of the factors which play an important role in contributing to the encoding and decoding of the filmic metaphor. The collection and analysis of the data were carried out in two stages: firstly, the relevant data, i.e. the monomodal metaphors from the novel, the script and the film were identified and collected. In the second, final stage the metaphors taken from all of the three sources were analysed, compared and two types of phenomena were selected for discussion: (1) the monomodal written metaphors found in the novel and/or in the script which become monomodal visual/aural metaphors in the film; (2) the monomodal written metaphors found in the novel and/or in the script which become multimodal, filmic (visual-aural) metaphors in the film.

Keywords: encoding, decoding, filmic metaphor, multimodality

Procedia PDF Downloads 532
23675 Flavonoids: Essential Players in Nutrition

Authors: D. Baranova, E. Neborak

Abstract:

Polyphenols, particularly flavonoids like quercetin, fisetin, and kaempferol, have gained significant attention in nutrition due to their antioxidant, senolytic, and anti-inflammatory properties. These compounds are commonly found in various plant-based foods and are represented by diverse subclasses, each with unique health benefits. Understanding their absorption, metabolism, and bioactivity within the human body is crucial for unlocking their full potential. Quercetin, for instance, exists in multiple forms, impacting its solubility and absorption in the intestine. Its intake, often derived from sources like apples, is affected by cooking methods, with medium heat retaining its potency. Fisetin, also present in fruits and vegetables, demonstrates neuroprotective qualities and stability under varied conditions compared to quercetin. Similarly, kaempferol, found in fruits and vegetables, displays antioxidative effects but is influenced by cooking techniques, with specific methods preserving its polyphenolic content better. Overall, these polyphenols offer promising health benefits, yet their optimal dosage and specific dietary recommendations warrant further research to harness their full nutritional potential.

Keywords: polyphenols, flavonoids, absorption, quercetin, kaempferol, fisetin, senolytics, absorption, cooking method

Procedia PDF Downloads 75
23674 Normalized P-Laplacian: From Stochastic Game to Image Processing

Authors: Abderrahim Elmoataz

Abstract:

More and more contemporary applications involve data in the form of functions defined on irregular and topologically complicated domains (images, meshs, points clouds, networks, etc). Such data are not organized as familiar digital signals and images sampled on regular lattices. However, they can be conveniently represented as graphs where each vertex represents measured data and each edge represents a relationship (connectivity or certain affinities or interaction) between two vertices. Processing and analyzing these types of data is a major challenge for both image and machine learning communities. Hence, it is very important to transfer to graphs and networks many of the mathematical tools which were initially developed on usual Euclidean spaces and proven to be efficient for many inverse problems and applications dealing with usual image and signal domains. Historically, the main tools for the study of graphs or networks come from combinatorial and graph theory. In recent years there has been an increasing interest in the investigation of one of the major mathematical tools for signal and image analysis, which are Partial Differential Equations (PDEs) variational methods on graphs. The normalized p-laplacian operator has been recently introduced to model a stochastic game called tug-of-war-game with noise. Part interest of this class of operators arises from the fact that it includes, as particular case, the infinity Laplacian, the mean curvature operator and the traditionnal Laplacian operators which was extensiveley used to models and to solve problems in image processing. The purpose of this paper is to introduce and to study a new class of normalized p-Laplacian on graphs. The introduction is based on the extension of p-harmonious function introduced in as discrete approximation for both infinity Laplacian and p-Laplacian equations. Finally, we propose to use these operators as a framework for solving many inverse problems in image processing.

Keywords: normalized p-laplacian, image processing, stochastic game, inverse problems

Procedia PDF Downloads 515