Search results for: energy conversion efficiency
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13399

Search results for: energy conversion efficiency

6469 The Relationship of Aromatase Activity and Being Very Overweight in East Indian Women with or Without Polycystic Ovary Disease

Authors: Dipanshu Sur, Ratnabali Chakravorty, Rimi Pal, Siddhartha Chatterjee, Joyshree Chaterjee, Amal Mallik

Abstract:

Background: Women with polycystic ovary disease (PCOD) frequently suffer from metabolic disturbances. PCOD is a common ovulatory disorder in young women, which affects 5-10% of the population and results in infertility due to anovulation. Importantly, aromatase in ovarian granulosa and luteinized granulosa cells plays an important role for women of reproductive age. Generation and metabolism of androgen is directly related to aromatase activity. The E2/T ratio provides important information about aromatase activity because conversion of androgens to estrogens is mediated by CYP19, suggesting that the E2/T ratio may be a direct marker of aromatase activity. The nature of the interaction between ovarian aromatase activity and PCOD in women has been controversial, and the impact of weight gain on aromatase activity as well as E2 levels is unknown. Aim: The objective of this study was to investigate the association and relation between aromatase activity and levels of body mass index (BMI) from a reproductive hormone perspective in a group of women with or without PCOD. Methods: We designed a cohort study which included 200 individuals. It enrolled 100 cases of PCOD based on 2006 Rotterdam criteria and 100 ovulatory normal- non PCOD, healthy, age-matched controls. Plasma sex hormones viz. estradiol (E2), testosterone (T), follicle stimulating hormone (FSH), and luteinizing hormone (LH) were measured by ELISA on the second day of the menstrual cycle, together with BMI and E2/T were calculated. Aromatase activity in PCOD patients with different BMI, T and E2 levels were compared. Results: PCOD patients showed significantly increased levels of BMI, E2 (P=0.004), T and LH, while their E2/T (P= <0.001), FSH and FSH/LH values were decreased compared with the control group. Higher E2 levels correlated with a relatively enhanced E2/T as well as T and LH levels but reduced BMI, FSH and FSH/LH levels in women with PCOD. Hyperandrogenic PCOD patients had increased E2 levels but their aromatase activity was markedly inhibited independent of their BMI values. Conclusions: We found a significant decrease of ovarian aromatase activity in women with PCOD as compared to controls. Our study showed that ovarian aromatase activity in PCOD was decreased which was independent of BMI. Enhancing aromatase activity may become an optimized strategy for developing therapies for PCOD women, especially those with obesity.

Keywords: aromatase activity, polycystic ovary disease, obesity, body mass index

Procedia PDF Downloads 208
6468 Semi-Natural Meadows of Natura 2000 Habitats – Conservation and Renewable Energy Source

Authors: Mateusz Meserszmit, Mariusz Chrabąszcz, Adriana Trojanowska-Olichwer, Zygmunt Kącki

Abstract:

Semi-natural meadows are valuable communities from the point of view of biodiversity, but their survival is strongly related to human activity. Unfortunately, the current status of preservation of extensively used meadows in Europe is frequently assessed as “unfavorable”. This is due to agricultural activity, in particular the lack of appropriate conservation procedures such as the cutting of meadows or livestock grazing. However, for more effective protective measures, the preservation of the biological diversity of meadows requires an interdisciplinary approach from both scientists and practitioners from many fields. Our research aimed to present the possibility of conservation of semi-natural meadows using cut biomass for the production of bioenergy – biogas, taking into consideration the botanical characteristics of the studied habitat and the chemical properties of biomass. A field study was conducted in Poland, within an area covered by the European Union's nature conservation programme. The samples were collected on four dates (May 24th, July 1st, July 23rd, and September 1st) from a study site established within a Molinion meadow. The biomass collected at the earliest date mostly consisted of plants with flowers in bud or fully open flowers. At the later harvest dates, most plants were at the fruiting or seed shed stage. An earlier stage of plant growth contributed to a lower biomass yield, which also resulted in a lower methane yield per hectare. The methane yield per hectare was at the end of May 482 m3 CH4 ha-1, at the beginning of July 867 m3 CH4 ha-1, at the end of July 759 m3 CH4 ha-1 and at the beginning of September 730 m3 CH4 ha-1. The biomass harvested in May demonstrated a significantly higher content of the elements: N, P, and K, but a lower Ca content compared to later harvested biomass, which may affect the biogas production process. The use of hay as a source of renewable energy can become an important element of conservation adapted for this type of habitat.

Keywords: nature conservation, biomass, bioenergy, grassland

Procedia PDF Downloads 99
6467 Concrete Recycling in Egypt for Construction Applications: A Technical and Financial Feasibility Model

Authors: Omar Farahat Hassanein, A. Samer Ezeldin

Abstract:

The construction industry is a very dynamic field. Every day new technologies and methods are developing to fasten the process and increase its efficiency. Hence, if a project uses fewer resources, it will be more efficient. This paper examines the recycling of concrete construction and demolition (C&D) waste to reuse it as aggregates in on-site applications for construction projects in Egypt and possibly in the Middle East. The study focuses on a stationary plant setting. The machinery set-up used in the plant is analyzed technically and financially. The findings are gathered and grouped to obtain a comprehensive cost-benefit financial model to demonstrate the feasibility of establishing and operating a concrete recycling plant. Furthermore, a detailed business plan including the time and hierarchy is proposed.

Keywords: construction wastes, recycling, sustainability, financial model, concrete recycling, concrete life cycle

Procedia PDF Downloads 399
6466 A Review: Artificial Intelligence (AI) Driven User Access Management and Identity Governance

Authors: Rupan Preet Kaur

Abstract:

This article reviewed the potential of artificial intelligence in the field of identity and access management (IAM) and identity governance and administration (IGA), the most critical pillars of any organization. The power of leveraging AI in the most complex and huge user base environment was outlined by simplifying and streamlining the user access approvals and re-certifications without any impact on the user productivity and at the same time strengthening the overall compliance of IAM landscape. Certain challenges encountered in the current state were detailed where majority of organizations are still lacking maturity in the data integrity aspect. Finally, this paper concluded that within the realm of possibility, users and application owners can reap the benefits of unified approach provided by AI to improve the user experience, improve overall efficiency, and strengthen the risk posture.

Keywords: artificial intelligence, machine learning, user access review, access approval

Procedia PDF Downloads 79
6465 Urban Rail Transit CBTC Computer Interlocking Subsystem Relying on Multi-Template Pen Point Tracking Algorithm

Authors: Xinli Chen, Xue Su

Abstract:

In the urban rail transit CBTC system, interlocking is considered one of the most basic sys-tems, which has the characteristics of logical complexity and high-security requirements. The development and verification of traditional interlocking subsystems are entirely manual pro-cesses and rely too much on the designer, which often hides many uncertain factors. In order to solve this problem, this article is based on the multi-template nib tracking algorithm for model construction and verification, achieving the main safety attributes and using SCADE for formal verification. Experimental results show that this method helps to improve the quality and efficiency of interlocking software.

Keywords: computer interlocking subsystem, penpoint tracking, communication-based train control system, multi-template tip tracking

Procedia PDF Downloads 143
6464 Remote Sensing of Aerated Flows at Large Dams: Proof of Concept

Authors: Ahmed El Naggar, Homyan Saleh

Abstract:

Dams are crucial for flood control, water supply, and the creation of hydroelectric power. Every dam has a water conveyance system, such as a spillway, providing the safe discharge of catastrophic floods when necessary. Spillway design has historically been investigated in laboratory research owing to the absence of suitable full-scale flow monitoring equipment and safety problems. Prototype measurements of aerated flows are urgently needed to quantify projected scale effects and provide missing validation data for design guidelines and numerical simulations. In this work, an image-based investigation of free-surface flows on a tiered spillway was undertaken at the laboratory (fixed camera installation) and prototype size (drone video) (drone footage) (drone footage). The drone videos were generated using data from citizen science. Analyses permitted the measurement of the free-surface aeration inception point, air-water surface velocities, fluctuations, and residual energy at the chute's downstream end from a remote site. The prototype observations offered full-scale proof of concept, while laboratory results were efficiently confirmed against invasive phase-detection probe data. This paper stresses the efficacy of image-based analyses at prototype spillways. It highlights how citizen science data may enable academics better understand real-world air-water flow dynamics and offers a framework for a small collection of long-missing prototype data.

Keywords: remote sensing, aerated flows, large dams, proof of concept, dam spillways, air-water flows, prototype operation, remote sensing, inception point, optical flow, turbulence, residual energy

Procedia PDF Downloads 72
6463 Analysis of Energy Flows as An Approach for The Formation of Monitoring System in the Sustainable Regional Development

Authors: Inese Trusina, Elita Jermolajeva

Abstract:

Global challenges require a transition from the existing linear economic model to a model that will consider nature as a life support system for the developmenton the way to social well-being in the frame of the ecological economics paradigm. The article presentsbasic definitions for the development of formalized description of sustainabledevelopment monitoring. It provides examples of calculating the parameters of monitoring for the Baltic Sea region countries and their primary interpretation.

Keywords: sustainability, development, power, ecological economics, regional economic, monitoring

Procedia PDF Downloads 105
6462 Dietary Intake and Nutritional Inadequacy Leading to Malnutrition among Children Residing in Shelter Home, Rural Tamil Nadu, India

Authors: Niraimathi Kesavan, Sangeeta Sharma, Deepa Jagan, Sridhar Sukumar, Mohan Ramachandran, Vidhubala Elangovan

Abstract:

Background: Childhood is a dynamic period for growth and development. Optimum nutrition during this period forms a strong foundation for growth, development, resistance to infections, long-term good health, cognition, educational achievements, and work productivity in a later phase of life. Underprivileged children living in a resource constraint settings like shelter homes are at high risk of malnutrition due to poor quality diet and nutritional inadequacy. In low-income countries, underprivileged children are vulnerable to being deprived of nutritious food, which stands as a major challenge in the health sector. The present aims to assess the dietary intake, nutritional status, and nutritional inadequacy and their association with malnutrition among children residing in shelter homes in rural Tamil Nadu. Methods: The study was a descriptive survey conducted among all the children aged between 8-18 years residing in two selected shelter homes (Anbu illam, a home for female children, and Amaidhi illam, a home for male children), rural Tirunelveli, Tamil Nadu, India. A total of 57 children were recruited, including 18 boys and 39 girls, for the study. Dietary intake was measured using seven days 24 hours recall. The average nutrient intake was considered for further analysis. Results: Of the 57 children, about 60% (n=35) were undernutrition. The mean daily energy intake was 1298 (SD 180) kcal for boys and 952 (SD155) kcal for girls. The total calorie intake was 55-60% below the estimated average requirement (EAR) for adolescent boys and girls in the age group 13-15 years and 16-18 years. Carbohydrates were the major source of energy (boys 53% and girls 51%), followed by fat (boys 31.5% and girls 34.5%) and protein (boys 14% and girls 12.9%). Dairy intake (<200ml/day) was less than the recommendation (500ml/day). Micro-nutrient-rich foods such as fruits, vegetables, and green leafy vegetables in the diet were <200g/day, which was far less than the recommended dietary guidelines of 400g- 600g/day for the age group of 7-18 years. Nearly 26% of girls reported experiencing menstrual problems. The majority (76.9%) of the children exhibited nutrient deficiency-related signs and symptoms. Conclusion: The total energy, minerals, and micro-nutrient intake were inadequate and below the Recommended Dietary Allowance for children and adolescents. The diet predominantly consists of refined cereals, rice, semolina, and vermicelli. Consumption of whole grains, milk, fruits, vegetables, and leafy vegetables was far below the recommended dietary guidelines. Dietary inadequacies among these children pose a serious concern for their overall health status and its consequences in the later phase of life.

Keywords: adolescents, children, dietary intake, malnutrition, nutritional inadequacy, shelter home

Procedia PDF Downloads 68
6461 Current of Drain for Various Values of Mobility in the Gaas Mesfet

Authors: S. Belhour, A. K. Ferouani, C. Azizi

Abstract:

In recent years, a considerable effort (experience, numerical simulation, and theoretical prediction models) has characterised by high efficiency and low cost. Then an improved physics analytical model for simulating is proposed. The performance of GaAs MESFETs has been developed for use in device design for high frequency. This model is based on mathematical analysis, and a new approach for the standard model is proposed, this approach allowed to conceive applicable model for MESFET’s operating in the turn-one or pinch-off region and valid for the short-channel and the long channel MESFET’s in which the two dimensional potential distribution contributed by the depletion layer under the gate is obtained by conventional approximation. More ever, comparisons between the analytical models with different values of mobility are proposed, and a good agreement is obtained.

Keywords: analytical, gallium arsenide, MESFET, mobility, models

Procedia PDF Downloads 58
6460 Level Set Based Extraction and Update of Lake Contours Using Multi-Temporal Satellite Images

Authors: Yindi Zhao, Yun Zhang, Silu Xia, Lixin Wu

Abstract:

The contours and areas of water surfaces, especially lakes, often change due to natural disasters and construction activities. It is an effective way to extract and update water contours from satellite images using image processing algorithms. However, to produce optimal water surface contours that are close to true boundaries is still a challenging task. This paper compares the performances of three different level set models, including the Chan-Vese (CV) model, the signed pressure force (SPF) model, and the region-scalable fitting (RSF) energy model for extracting lake contours. After experiment testing, it is indicated that the RSF model, in which a region-scalable fitting (RSF) energy functional is defined and incorporated into a variational level set formulation, is superior to CV and SPF, and it can get desirable contour lines when there are “holes” in the regions of waters, such as the islands in the lake. Therefore, the RSF model is applied to extracting lake contours from Landsat satellite images. Four temporal Landsat satellite images of the years of 2000, 2005, 2010, and 2014 are used in our study. All of them were acquired in May, with the same path/row (121/036) covering Xuzhou City, Jiangsu Province, China. Firstly, the near infrared (NIR) band is selected for water extraction. Image registration is conducted on NIR bands of different temporal images for information update, and linear stretching is also done in order to distinguish water from other land cover types. Then for the first temporal image acquired in 2000, lake contours are extracted via the RSF model with initialization of user-defined rectangles. Afterwards, using the lake contours extracted the previous temporal image as the initialized values, lake contours are updated for the current temporal image by means of the RSF model. Meanwhile, the changed and unchanged lakes are also detected. The results show that great changes have taken place in two lakes, i.e. Dalong Lake and Panan Lake, and RSF can actually extract and effectively update lake contours using multi-temporal satellite image.

Keywords: level set model, multi-temporal image, lake contour extraction, contour update

Procedia PDF Downloads 353
6459 Federated Knowledge Distillation with Collaborative Model Compression for Privacy-Preserving Distributed Learning

Authors: Shayan Mohajer Hamidi

Abstract:

Federated learning has emerged as a promising approach for distributed model training while preserving data privacy. However, the challenges of communication overhead, limited network resources, and slow convergence hinder its widespread adoption. On the other hand, knowledge distillation has shown great potential in compressing large models into smaller ones without significant loss in performance. In this paper, we propose an innovative framework that combines federated learning and knowledge distillation to address these challenges and enhance the efficiency of distributed learning. Our approach, called Federated Knowledge Distillation (FKD), enables multiple clients in a federated learning setting to collaboratively distill knowledge from a teacher model. By leveraging the collaborative nature of federated learning, FKD aims to improve model compression while maintaining privacy. The proposed framework utilizes a coded teacher model that acts as a reference for distilling knowledge to the client models. To demonstrate the effectiveness of FKD, we conduct extensive experiments on various datasets and models. We compare FKD with baseline federated learning methods and standalone knowledge distillation techniques. The results show that FKD achieves superior model compression, faster convergence, and improved performance compared to traditional federated learning approaches. Furthermore, FKD effectively preserves privacy by ensuring that sensitive data remains on the client devices and only distilled knowledge is shared during the training process. In our experiments, we explore different knowledge transfer methods within the FKD framework, including Fine-Tuning (FT), FitNet, Correlation Congruence (CC), Similarity-Preserving (SP), and Relational Knowledge Distillation (RKD). We analyze the impact of these methods on model compression and convergence speed, shedding light on the trade-offs between size reduction and performance. Moreover, we address the challenges of communication efficiency and network resource utilization in federated learning by leveraging the knowledge distillation process. FKD reduces the amount of data transmitted across the network, minimizing communication overhead and improving resource utilization. This makes FKD particularly suitable for resource-constrained environments such as edge computing and IoT devices. The proposed FKD framework opens up new avenues for collaborative and privacy-preserving distributed learning. By combining the strengths of federated learning and knowledge distillation, it offers an efficient solution for model compression and convergence speed enhancement. Future research can explore further extensions and optimizations of FKD, as well as its applications in domains such as healthcare, finance, and smart cities, where privacy and distributed learning are of paramount importance.

Keywords: federated learning, knowledge distillation, knowledge transfer, deep learning

Procedia PDF Downloads 54
6458 Efficiently Dispersed MnOx on Mesoporous 3D Cubic Support for Cyclohexene Epoxidation

Authors: G. Imran, A. Pandurangan

Abstract:

Epoxides constitute important intermediates for the production of fine and bulk chemicals as well as valuable building blocks for the synthesis of a variety of bioactive molecules. Manganese oxides are used as selective catalyst for various redox type reactions and also effectively used in the field of catalytic disposal of pollutants. Non-toxic, cost efficient factor and more over existence of wide range of oxidation state (+2 to +7) makes catalyst more interesting for both academic research and industrial applications. However, the serious drawback lying is the lower surface area. Exceedingly dispersed manganese oxide grafted over mesoporous solid material KIT-6 through ALD (Atomic Layer Deposition) technique effectively catalyze cyclohexene with H2O2 (30% in water) to corresponding epoxides. Highly selective epoxide >99% with 55.7% conversion of cyclohexene was achieved using huge dispersed active sites of MnOx species containing catalysts. Various weight percent such as (1, 3, 5, 7 & 10 wt %) of manganese (II) acetylacetonate complex was employed as Mn source to post-graft via active silanol groups of KIT-6 and are designated as (Mn-G-KIT-6). XRD, N2 sorption, HR-TEM, DRS-UV-VIS, EPR and H2-TPR were employed for structural and textural properties. Immense Mn species of about 95% proportion on silica matrix obtained was evident from ICP-OES.The resulting materials exhibited Type IV adsorption isotherms indiacting mesopore in nanorange. Si-KIT-6 and Mn-G-KIT-6 materials exhibited surface area of 519-289 m2/g and with decrease in pore volume of 0.96-0.49 cm3/g with pore diameter ranging 7.9- 7.2 with increase in wt%. DRS-UV-VIS spectroscopy and EPR studies reveal that manganese coexists as Mn2+/3+ species as extra-framework sites and frame-work sites that result in dispersion on surface of silica matrix of KIT-6 and incorporated manganese sites with silanol groups along with small sized MnO cluster, evident from HR-TEM which increase with Mn content. Conventional production of epoxides by the intramolecular etherification of chlorohydrins formed by the reaction of alkenes with hypochlorous acid is the major drawbacks obtained recently. The most efficient synthesis of oxiranes (epoxides) is obtained by mesoporous catalysts (Mn-G-KIT-6) are presented here and discussed.

Keywords: ALD, epoxidation, mesoporous, MnOx

Procedia PDF Downloads 171
6457 Study on Optimization of Air Infiltration at Entrance of a Commercial Complex in Zhejiang Province

Authors: Yujie Zhao, Jiantao Weng

Abstract:

In the past decade, with the rapid development of China's economy, the purchasing power and physical demand of residents have been improved, which results in the vast emergence of public buildings like large shopping malls. However, the architects usually focus on the internal functions and streamlines of these buildings, ignoring the impact of the environment on the subjective feelings of building users. Only in Zhejiang province, the infiltration of cold air in winter frequently occurs at the entrance of sizeable commercial complex buildings that have been in operation, which will affect the environmental comfort of the building lobby and internal public spaces. At present, to reduce these adverse effects, it is usually adopted to add active equipment, such as setting air curtains to block air exchange or adding heating air conditioners. From the perspective of energy consumption, the infiltration of cold air into the entrance will increase the heat consumption of indoor heating equipment, which will indirectly cause considerable economic losses during the whole winter heating stage. Therefore, it is of considerable significance to explore the suitable entrance forms for improving the environmental comfort of commercial buildings and saving energy. In this paper, a commercial complex with apparent cold air infiltration problem in Hangzhou is selected as the research object to establish a model. The environmental parameters of the building entrance, including temperature, wind speed, and infiltration air volume, are obtained by Computational Fluid Dynamics (CFD) simulation, from which the heat consumption caused by the natural air infiltration in the winter and its potential economic loss is estimated as the objective metric. This study finally obtains the optimization direction of the building entrance form of the commercial complex by comparing the simulation results of other local commercial complex projects with different entrance forms. The conclusions will guide the entrance design of the same type of commercial complex in this area.

Keywords: air infiltration, commercial complex, heat consumption, CFD simulation

Procedia PDF Downloads 119
6456 A Study on the Solutions of the 2-Dimensional and Forth-Order Partial Differential Equations

Authors: O. Acan, Y. Keskin

Abstract:

In this study, we will carry out a comparative study between the reduced differential transform method, the adomian decomposition method, the variational iteration method and the homotopy analysis method. These methods are used in many fields of engineering. This is been achieved by handling a kind of 2-Dimensional and forth-order partial differential equations called the Kuramoto–Sivashinsky equations. Three numerical examples have also been carried out to validate and demonstrate efficiency of the four methods. Furthermost, it is shown that the reduced differential transform method has advantage over other methods. This method is very effective and simple and could be applied for nonlinear problems which used in engineering.

Keywords: reduced differential transform method, adomian decomposition method, variational iteration method, homotopy analysis method

Procedia PDF Downloads 417
6455 The Monitor for Neutron Dose in Hadrontherapy Project: Secondary Neutron Measurement in Particle Therapy

Authors: V. Giacometti, R. Mirabelli, V. Patera, D. Pinci, A. Sarti, A. Sciubba, G. Traini, M. Marafini

Abstract:

The particle therapy (PT) is a very modern technique of non invasive radiotherapy mainly devoted to the treatment of tumours untreatable with surgery or conventional radiotherapy, because localised closely to organ at risk (OaR). Nowadays, PT is available in about 55 centres in the word and only the 20\% of them are able to treat with carbon ion beam. However, the efficiency of the ion-beam treatments is so impressive that many new centres are in construction. The interest in this powerful technology lies to the main characteristic of PT: the high irradiation precision and conformity of the dose released to the tumour with the simultaneous preservation of the adjacent healthy tissue. However, the beam interactions with the patient produce a large component of secondary particles whose additional dose has to be taken into account during the definition of the treatment planning. Despite, the largest fraction of the dose is released to the tumour volume, a non-negligible amount is deposed in other body regions, mainly due to the scattering and nuclear interactions of the neutrons within the patient body. One of the main concerns in PT treatments is the possible occurrence of secondary malignant neoplasm (SMN). While SMNs can be developed up to decades after the treatments, their incidence impacts directly life quality of the cancer survivors, in particular in pediatric patients. Dedicated Treatment Planning Systems (TPS) are used to predict the normal tissue toxicity including the risk of late complications induced by the additional dose released by secondary neutrons. However, no precise measurement of secondary neutrons flux is available, as well as their energy and angular distributions: an accurate characterization is needed in order to improve TPS and reduce safety margins. The project MONDO (MOnitor for Neutron Dose in hadrOntherapy) is devoted to the construction of a secondary neutron tracker tailored to the characterization of that secondary neutron component. The detector, based on the tracking of the recoil protons produced in double-elastic scattering interactions, is a matrix of thin scintillating fibres, arranged in layer x-y oriented. The final size of the object is 10 x 10 x 20 cm3 (squared 250µm scint. fibres, double cladding). The readout of the fibres is carried out with a dedicated SPAD Array Sensor (SBAM) realised in CMOS technology by FBK (Fondazione Bruno Kessler). The detector is under development as well as the SBAM sensor and it is expected to be fully constructed for the end of the year. MONDO will make data tacking campaigns at the TIFPA Proton Therapy Center of Trento, at the CNAO (Pavia) and at HIT (Heidelberg) with carbon ion in order to characterize the neutron component and predict the additional dose delivered on the patients with much more precision and to drastically reduce the actual safety margins. Preliminary measurements with charged particles beams and MonteCarlo FLUKA simulation will be presented.

Keywords: secondary neutrons, particle therapy, tracking detector, elastic scattering

Procedia PDF Downloads 215
6454 Numerical and Experimental Investigation of Impeller Trimming on Fluid Flow inside a Centrifugal Pump

Authors: Rouhollah Torabi, Ashkan Chavoshi, Sheyda Almasi, Shima Almasi

Abstract:

In this paper the effect of impeller trim on centrifugal pump performance is studied and the most important effect which is decreasing the flow rate, differential head and efficiency is analyzed. For this case a low specific speed centrifugal pump is simulated with CFD. Total flow inside the pump including the secondary flow in sidewall gap which form internal leakage is modeled simultaneously in CFX software. The flow field in different area of pumps such as inside impeller, volute, balance holes and leakage through wear rings are studied. To validate the results experimental tests are done for various impeller diameters. Results also compared with analytic equations which predict pump performance with trimmed impeller.

Keywords: centrifugal pump, CFD, impeller, trim

Procedia PDF Downloads 402
6453 Nanohybride Porphyrin and Silver as an Efficient Catalyst for Oxidation of Alcohols by Tetrabutylammonium Peroxomonosulfate

Authors: Atena Naeimi, Asghar Amiri, Zahra Ghasemi

Abstract:

A stable suspension of nanocomposite simple manganese(III) meso-tetraphenylporphyrin nanoaggregates and Ag was prepared by a host–guest procedure, in which ethanol and water are used as ‘green’ solvents. The oxidation of alcohols by tetrabutylammonium Peroxomonosulfate(TP) were efficiently enhanced with excellent selectivity under the influence of simple Mn(TPP)OAc (TPP = meso-tetraphenylporphyrin) nanoparticles. Enhanced stabilities and activities were achieved with nanostructured Mn catalysts compared to those of the individual counterparts in solution according to turnover numbers and UV/Vis studies. The title nanocatalyst facilitates a greener reaction because the reaction solvent is water and TP is safe to use. The efficiency of the oxidation system depends critically upon the steric hindrances and electronic structures of both nitrogen donor ligand sand porphyrin nanoparticles.

Keywords: oxidation, nanoaggregates, porphyrinoids, silver

Procedia PDF Downloads 275
6452 Deasphalting of Crude Oil by Extraction Method

Authors: A. N. Kurbanova, G. K. Sugurbekova, N. K. Akhmetov

Abstract:

The asphaltenes are heavy fraction of crude oil. Asphaltenes on oilfield is known for its ability to plug wells, surface equipment and pores of the geologic formations. The present research is devoted to the deasphalting of crude oil as the initial stage refining oil. Solvent deasphalting was conducted by extraction with organic solvents (cyclohexane, carbon tetrachloride, chloroform). Analysis of availability of metals was conducted by ICP-MS and spectral feature at deasphalting was achieved by FTIR. High contents of asphaltenes in crude oil reduce the efficiency of refining processes. Moreover, high distribution heteroatoms (e.g., S, N) were also suggested in asphaltenes cause some problems: environmental pollution, corrosion and poisoning of the catalyst. The main objective of this work is to study the effect of deasphalting process crude oil to improve its properties and improving the efficiency of recycling processes. Experiments of solvent extraction are using organic solvents held in the crude oil JSC “Pavlodar Oil Chemistry Refinery. Experimental results show that deasphalting process also leads to decrease Ni, V in the composition of the oil. One solution to the problem of cleaning oils from metals, hydrogen sulfide and mercaptan is absorption with chemical reagents directly in oil residue and production due to the fact that asphalt and resinous substance degrade operational properties of oils and reduce the effectiveness of selective refining of oils. Deasphalting of crude oil is necessary to separate the light fraction from heavy metallic asphaltenes part of crude oil. For this oil is pretreated deasphalting, because asphaltenes tend to form coke or consume large quantities of hydrogen. Removing asphaltenes leads to partly demetallization, i.e. for removal of asphaltenes V/Ni and organic compounds with heteroatoms. Intramolecular complexes are relatively well researched on the example of porphyinous complex (VO2) and nickel (Ni). As a result of studies of V/Ni by ICP MS method were determined the effect of different solvents-deasphalting – on the process of extracting metals on deasphalting stage and select the best organic solvent. Thus, as the best DAO proved cyclohexane (C6H12), which as a result of ICP MS retrieves V-51.2%, Ni-66.4%? Also in this paper presents the results of a study of physical and chemical properties and spectral characteristics of oil on FTIR with a view to establishing its hydrocarbon composition. Obtained by using IR-spectroscopy method information about the specifics of the whole oil give provisional physical, chemical characteristics. They can be useful in the consideration of issues of origin and geochemical conditions of accumulation of oil, as well as some technological challenges. Systematic analysis carried out in this study; improve our understanding of the stability mechanism of asphaltenes. The role of deasphalted crude oil fractions on the stability asphaltene is described.

Keywords: asphaltenes, deasphalting, extraction, vanadium, nickel, metalloporphyrins, ICP-MS, IR spectroscopy

Procedia PDF Downloads 228
6451 An Agent-Service Oriented Framework for Online Contracts in Virtual Organizations

Authors: Zahra Raeisi, Reza Akbari

Abstract:

Contracting is known as one of the important tasks in virtual organization creation. Contracting is a costly process in terms of time and effort. One way to cut the time and effort is conducting contract electronically. The online contracting enable us to form virtual organization (VO) dynamically. This work presents an agent-service oriented framework for online contracting in virtual organizations. The proposed framework considers the main aspects and steps of traditional contracting process and uses the efficiency of service and agent based methodologies in order to provide a flexible and efficient way to establish contracts electronically in a VO.

Keywords: service oriented architecture, online contracts, agent-oriented architecture, virtual organization

Procedia PDF Downloads 488
6450 Thermodynamic Analysis of Ammonia-Water Based Regenerative Rankine Cycle with Partial Evaporation

Authors: Kyoung Hoon Kim

Abstract:

A thermodynamic analysis of a partial evaporating Rankine cycle with regeneration using zeotropic ammonia-water mixture as a working fluid is presented in this paper. The thermodynamic laws were applied to evaluate the system performance. Based on the thermodynamic model, the effects of the vapor quality and the ammonia mass fraction on the system performance were extensively investigated. The results showed that thermal efficiency has a peak value with respect to the vapor quality as well as the ammonia mass fraction. The partial evaporating ammonia based Rankine cycle has a potential to improve recovery of low-grade finite heat source.

Keywords: ammonia-water, Rankine cycle, partial evaporating, thermodynamic performance

Procedia PDF Downloads 288
6449 Productivity and Structural Design of Manufacturing Systems

Authors: Ryspek Usubamatov, Tan San Chin, Sarken Kapaeva

Abstract:

Productivity of the manufacturing systems depends on technological processes, a technical data of machines and a structure of systems. Technology is presented by the machining mode and data, a technical data presents reliability parameters and auxiliary time for discrete production processes. The term structure of manufacturing systems includes the number of serial and parallel production machines and links between them. Structures of manufacturing systems depend on the complexity of technological processes. Mathematical models of productivity rate for manufacturing systems are important attributes that enable to define best structure by criterion of a productivity rate. These models are important tool in evaluation of the economical efficiency for production systems.

Keywords: productivity, structure, manufacturing systems, structural design

Procedia PDF Downloads 568
6448 How Does Improving the Existing DSL Infrastructure Influences the Expansion of Fiber Technology?

Authors: Peter Winzer, Erik Massarczyk

Abstract:

Experts, enterprises and operators expect that the bandwidth request will increase up to rates of 100 to 1,000 Mbps within several years. Therefore the most important question is, which technology shall satisfy the future consumer broadband demands. Currently the consensus is, that the fiber technology has the best technical characteristics to achieve such the high bandwidth rates. But fiber technology is so far very cost-intensive and resource consuming. To avoid these investments, operators are concentrating to upgrade the existing copper and hybrid fiber coax infrastructures. This work presents a comparison of the copper and fiber technologies including an overview about the current German broadband market. Both technologies are reviewed in the terms of demand, willingness to pay and economic efficiency in connection with the technical characteristics.

Keywords: broadband customer demand, fiber development, g.fast, vectoring, willingness to pay for broadband services

Procedia PDF Downloads 461
6447 Economized Sensor Data Processing with Vehicle Platooning

Authors: Henry Hexmoor, Kailash Yelasani

Abstract:

We present vehicular platooning as a special case of crowd-sensing framework where sharing sensory information among a crowd is used for their collective benefit. After offering an abstract policy that governs processes involving a vehicular platoon, we review several common scenarios and components surrounding vehicular platooning. We then present a simulated prototype that illustrates efficiency of road usage and vehicle travel time derived from platooning. We have argued that one of the paramount benefits of platooning that is overlooked elsewhere, is the substantial computational savings (i.e., economizing benefits) in acquisition and processing of sensory data among vehicles sharing the road. The most capable vehicle can share data gathered from its sensors with nearby vehicles grouped into a platoon.

Keywords: cloud network, collaboration, internet of things, social network

Procedia PDF Downloads 179
6446 Decentralized Peak-Shaving Strategies for Integrated Domestic Batteries

Authors: Corentin Jankowiak, Aggelos Zacharopoulos, Caterina Brandoni

Abstract:

In a context of increasing stress put on the electricity network by the decarbonization of many sectors, energy storage is likely to be the key mitigating element, by acting as a buffer between production and demand. In particular, the highest potential for storage is when connected closer to the loads. Yet, low voltage storage struggles to penetrate the market at a large scale due to the novelty and complexity of the solution, and the competitive advantage of fossil fuel-based technologies regarding regulations. Strong and reliable numerical simulations are required to show the benefits of storage located near loads and promote its development. The present study was restrained from excluding aggregated control of storage: it is assumed that the storage units operate independently to one another without exchanging information – as is currently mostly the case. A computationally light battery model is presented in detail and validated by direct comparison with a domestic battery operating in real conditions. This model is then used to develop Peak-Shaving (PS) control strategies as it is the decentralized service from which beneficial impacts are most likely to emerge. The aggregation of flatter, peak- shaved consumption profiles is likely to lead to flatter and arbitraged profile at higher voltage layers. Furthermore, voltage fluctuations can be expected to decrease if spikes of individual consumption are reduced. The crucial part to achieve PS lies in the charging pattern: peaks depend on the switching on and off of appliances in the dwelling by the occupants and are therefore impossible to predict accurately. A performant PS strategy must, therefore, include a smart charge recovery algorithm that can ensure enough energy is present in the battery in case it is needed without generating new peaks by charging the unit. Three categories of PS algorithms are introduced in detail. First, using a constant threshold or power rate for charge recovery, followed by algorithms using the State Of Charge (SOC) as a decision variable. Finally, using a load forecast – of which the impact of the accuracy is discussed – to generate PS. A performance metrics was defined in order to quantitatively evaluate their operating regarding peak reduction, total energy consumption, and self-consumption of domestic photovoltaic generation. The algorithms were tested on load profiles with a 1-minute granularity over a 1-year period, and their performance was assessed regarding these metrics. The results show that constant charging threshold or power are far from optimal: a certain value is not likely to fit the variability of a residential profile. As could be expected, forecast-based algorithms show the highest performance. However, these depend on the accuracy of the forecast. On the other hand, SOC based algorithms also present satisfying performance, making them a strong alternative when the reliable forecast is not available.

Keywords: decentralised control, domestic integrated batteries, electricity network performance, peak-shaving algorithm

Procedia PDF Downloads 104
6445 Improving the Growth Performance of Beetal Goat Kids Weaned at Various Stages with Various Levels of Dietary Protein in Starter Ration under High Input Feeding System

Authors: Ishaq Kashif, Muhammad Younas, Muhammad Riaz, Mubarak Ali

Abstract:

Poor feeding management during pre-weaning period is one of the factors resulting in compromised growth of Beetal kids fattened for meat purpose. The main reason for this anomaly may be less milk offered to kids and non-serious efforts for its management. This study was planned to find the most appropriate protein level suiting the age of the weaning while shifting animals to high input feeding system. Total of 42 Beetal male kids having 30 (±10), 60 (±10) and 90 (±10) days of age were selected with 16 in each age group. They were designated as G30, G60 and G90, respectively. The weights of animals were; 8±2 kg (G30), 12±2 kg (G60) and 16±2 kg (G90), respectively. All animals were weaned by introducing the total mix feed gradually and withdrawing the milk during the adjustment period of two weeks. The pelleted starter ration (total mix feed) with three various dietary protein levels designated as R1 (16% CP), R2 (20% CP) and R3 (26% CP) were introduced. The control group was reared on the fodder (Maize). The starter rations were iso-caloric and were offered for six-week duration. All animals were exposed to treatment using two-factor factorial (3×3) plus control treatment arrangement under completely randomized design. The data were collected on average daily feed intake (ADFI), average daily gain (ADG), gain to intake ratio, Klieber ratio (KR), body measurements and blood metabolites of kids. The data was analyzed using aov function of R-software. The statistical analysis showed that starter feed protein levels and age of weaning had significant interaction for ADG (P < 0.001), KR (P < 0.001), ADFI (P < 0.05) and blood urea nitrogen (P < 0.05) while serum creatinine and feed conversion had non-significant interaction. The trend analysis revealed that ADG had significant quadratic interaction (P < 0.05) within protein levels and age of weaning. It was found that animals weaned at 30 or 60 days, on R2 diet had better ADG (46.8 gm/day and 87.06 gm/day, respectively) weaned at 60 days of age. The animals weaned at 90 days had best ADG (127 gm/day) with R1. It is concluded that animal weaned at 30 or 40 days required 20% CP for better growth performance while animal at 90 days showed better performance with 16% CP.

Keywords: average daily gain, starter protein levels, weaning age, gain to intake ratio

Procedia PDF Downloads 229
6444 Mg Doped CuCrO₂ Thin Oxides Films for Thermoelectric Properties

Authors: I. Sinnarasa, Y. Thimont, L. Presmanes, A. Barnabé

Abstract:

The thermoelectricity is a promising technique to overcome the issues in recovering waste heat to electricity without using moving parts. In fact, the thermoelectric (TE) effect defines as the conversion of a temperature gradient directly into electricity and vice versa. To optimize TE materials, the power factor (PF = σS² where σ is electrical conductivity and S is Seebeck coefficient) must be increased by adjusting the carrier concentration, and/or the lattice thermal conductivity Kₜₕ must be reduced by introducing scattering centers with point defects, interfaces, and nanostructuration. The PF does not show the advantages of the thin film because it does not take into account the thermal conductivity. In general, the thermal conductivity of the thin film is lower than the bulk material due to their microstructure and increasing scattering effects with decreasing thickness. Delafossite type oxides CuᴵMᴵᴵᴵO₂ received main attention for their optoelectronic properties as a p-type semiconductor they exhibit also interesting thermoelectric (TE) properties due to their high electrical conductivity and their stability in room atmosphere. As there are few proper studies on the TE properties of Mg-doped CuCrO₂ thin films, we have investigated, the influence of the annealing temperature on the electrical conductivity and the Seebeck coefficient of Mg-doped CuCrO₂ thin films and calculated the PF in the temperature range from 40 °C to 220 °C. For it, we have deposited Mg-doped CuCrO₂ thin films on fused silica substrates by RF magnetron sputtering. This study was carried out on 300 nm thin films. The as-deposited Mg doped CuCrO₂ thin films have been annealed at different temperatures (from 450 to 650 °C) under primary vacuum. Electrical conductivity and Seebeck coefficient of the thin films have been measured from 40 to 220 °C. The highest electrical conductivity of 0.60 S.cm⁻¹ with a Seebeck coefficient of +329 µV.K⁻¹ at 40 °C have been obtained for the sample annealed at 550 °C. The calculated power factor of optimized CuCrO₂:Mg thin film was 6 µW.m⁻¹K⁻² at 40 °C. Due to the constant Seebeck coefficient and the increasing electrical conductivity with temperature it reached 38 µW.m⁻¹K⁻² at 220 °C that was a quite good result for an oxide thin film. Moreover, the degenerate behavior and the hopping mechanism of CuCrO₂:Mg thin film were elucidated. Their high and constant Seebeck coefficient in temperature and their stability in room atmosphere could be a great advantage for an application of this material in a high accuracy temperature measurement devices.

Keywords: thermoelectric, oxides, delafossite, thin film, power factor, degenerated semiconductor, hopping mode

Procedia PDF Downloads 185
6443 Comparative Analysis of the Performance Between Public and Private Companies: Explanatory Factors

Authors: Atziri Moreno Vite, David Silva Gutiérrez

Abstract:

Oil companies have become the key player in the world energy scenario thanks to their strong control of the level of hydrocarbon reserves and production. The present research aims to identify the main factors that explain the results of these companies through an in-depth review of the specialized literature and to analyze the results of these companies by means of econometric analysis with techniques such as Data Envelopment Analysis (DEA). The results show the relevance and impact of factors such as the level of employment or investment of the company.

Keywords: oil companies, performance, determinants, productive

Procedia PDF Downloads 106
6442 GBKMeans: A Genetic Based K-Means Applied to the Capacitated Planning of Reading Units

Authors: Anderson S. Fonseca, Italo F. S. Da Silva, Robert D. A. Santos, Mayara G. Da Silva, Pedro H. C. Vieira, Antonio M. S. Sobrinho, Victor H. B. Lemos, Petterson S. Diniz, Anselmo C. Paiva, Eliana M. G. Monteiro

Abstract:

In Brazil, the National Electric Energy Agency (ANEEL) establishes that electrical energy companies are responsible for measuring and billing their customers. Among these regulations, it’s defined that a company must bill your customers within 27-33 days. If a relocation or a change of period is required, the consumer must be notified in writing, in advance of a billing period. To make it easier to organize a workday’s measurements, these companies create a reading plan. These plans consist of grouping customers into reading groups, which are visited by an employee responsible for measuring consumption and billing. The creation process of a plan efficiently and optimally is a capacitated clustering problem with constraints related to homogeneity and compactness, that is, the employee’s working load and the geographical position of the consuming unit. This process is a work done manually by several experts who have experience in the geographic formation of the region, which takes a large number of days to complete the final planning, and because it’s human activity, there is no guarantee of finding the best optimization for planning. In this paper, the GBKMeans method presents a technique based on K-Means and genetic algorithms for creating a capacitated cluster that respects the constraints established in an efficient and balanced manner, that minimizes the cost of relocating consumer units and the time required for final planning creation. The results obtained by the presented method are compared with the current planning of a real city, showing an improvement of 54.71% in the standard deviation of working load and 11.97% in the compactness of the groups.

Keywords: capacitated clustering, k-means, genetic algorithm, districting problems

Procedia PDF Downloads 182
6441 A Compact Quasi-Zero Stiffness Vibration Isolator Using Flexure-Based Spring Mechanisms Capable of Tunable Stiffness

Authors: Thanh-Phong Dao, Shyh-Chour Huang

Abstract:

This study presents a quasi-zero stiffness (QZS) vibration isolator using flexure-based spring mechanisms which afford both negative and positive stiffness elements, which enable self-adjustment. The QZS property of the isolator is achieved at the equilibrium position. A nonlinear mathematical model is then developed, based on the pre-compression of the flexure-based spring mechanisms. The dynamics are further analyzed using the Harmonic Balance method. The vibration attention efficiency is illustrated using displacement transmissibility, which is then compared with the corresponding linear isolator. The effects of parameters on performance are also investigated by numerical solutions. The flexure-based spring mechanisms are subsequently designed using the concept of compliant mechanisms, with evaluation by ANSYS software, and simulations of the QZS isolator.

Keywords: vibration isolator, quasi-zero stiffness, flexure-based spring mechanisms, compliant mechanism

Procedia PDF Downloads 445
6440 Thermal Properties of the Ground in Cyprus and Their Correlations and Effect on the Efficiency of Ground Heat Exchangers

Authors: G. A. Florides, E. Theofanous, I. Iosif-Stylianou, P. Christodoulides, S. Kalogirou, V. Messarites, Z. Zomeni, E. Tsiolakis, P. D. Pouloupatis, G. P. Panayiotou

Abstract:

Ground Coupled Heat Pumps (GCHPs) exploit effectively the heat capacity of the ground, with the use of Ground Heat Exchangers (GHE). Depending on the mode of operation of the GCHPs, GHEs dissipate or absorb heat from the ground. For sizing the GHE the thermal properties of the ground need to be known. This paper gives information about the density, thermal conductivity, specific heat and thermal diffusivity of various lithologies encountered in Cyprus with various relations between these properties being examined through comparison and modeling. The results show that the most important correlation is the one encountered between thermal conductivity and thermal diffusivity with both properties showing similar response to the inlet and outlet flow temperature of vertical and horizontal heat exchangers.

Keywords: ground heat exchangers, ground thermal conductivity, ground thermal diffusivity, ground thermal properties

Procedia PDF Downloads 363