Search results for: optimum runoff hydrograph
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2030

Search results for: optimum runoff hydrograph

1370 Achieving Net Zero Energy Building in a Hot Climate Using Integrated Photovoltaic and Parabolic Trough Collectors

Authors: Adel A. Ghoneim

Abstract:

In most existing buildings in hot climate, cooling loads lead to high primary energy consumption and consequently high CO2 emissions. These can be substantially decreased with integrated renewable energy systems. Kuwait is characterized by its dry hot long summer and short warm winter. Kuwait receives annual total radiation more than 5280 MJ/m2 with approximately 3347 h of sunshine. Solar energy systems consist of PV modules and parabolic trough collectors are considered to satisfy electricity consumption, domestic water heating, and cooling loads of an existing building. This paper presents the results of an extensive program of energy conservation and energy generation using integrated photovoltaic (PV) modules and parabolic trough collectors (PTC). The program conducted on an existing institutional building intending to convert it into a Net-Zero Energy Building (NZEB) or near net Zero Energy Building (nNZEB). The program consists of two phases; the first phase is concerned with energy auditing and energy conservation measures at minimum cost and the second phase considers the installation of photovoltaic modules and parabolic trough collectors. The 2-storey building under consideration is the Applied Sciences Department at the College of Technological Studies, Kuwait. Single effect lithium bromide water absorption chillers are implemented to provide air conditioning load to the building. A numerical model is developed to evaluate the performance of parabolic trough collectors in Kuwait climate. Transient simulation program (TRNSYS) is adapted to simulate the performance of different solar system components. In addition, a numerical model is developed to assess the environmental impacts of building integrated renewable energy systems. Results indicate that efficient energy conservation can play an important role in converting the existing buildings into NZEBs as it saves a significant portion of annual energy consumption of the building. The first phase results in an energy conservation of about 28% of the building consumption. In the second phase, the integrated PV completely covers the lighting and equipment loads of the building. On the other hand, parabolic trough collectors of optimum area of 765 m2 can satisfy a significant portion of the cooling load, i.e about73% of the total building cooling load. The annual avoided CO2 emission is evaluated at the optimum conditions to assess the environmental impacts of renewable energy systems. The total annual avoided CO2 emission is about 680 metric ton/year which confirms the environmental impacts of these systems in Kuwait.

Keywords: building integrated renewable systems, Net-Zero energy building, solar fraction, avoided CO2 emission

Procedia PDF Downloads 587
1369 Optimization of Three-Layer Corrugated Metal Gasket by Using Finite Element Method

Authors: I Made Gatot Karohika, Shigeyuki Haruyama, Ken Kaminishi

Abstract:

In this study, we proposed a three-layer metal gasket with Al, Cu, and SUS304 as the material, respectively. A finite element method was employed to develop simulation solution and design of experiment (DOE). Taguchi method was used to analysis the effect of each parameter design and predicts optimal design of new 25A-size three layer corrugated metal gasket. The L18 orthogonal array of Taguchi method was applied to design experiment matrix for eight factors with three levels. Based on elastic mode and plastic mode, optimum design gasket is gasket with core metal SUS304, surface layer aluminum, p1 = 4.5 mm, p2 = 4.5 mm, p3 = 4 mm, Tg = 1.2 mm, R = 3.5 mm, h = 0.4 mm and Ts = 0.3 mm.

Keywords: contact width, contact stress, layer, metal gasket, corrugated, simulation

Procedia PDF Downloads 300
1368 The Interaction and Relations Between Civil and Military Logistics

Authors: Cumhur Cansever, Selcuk Er

Abstract:

There is an increasing cooperation and interaction between the military logistic systems and civil organizations operating in today's market. While the scope and functions of civilian logistics have different characteristics, military logistics tries to import some applications that are conducted by private sectors successfully. Also, at this point, the determination of the optimal point of integration and interaction between civilian and military logistics has emerged as a key issue. In this study, the mutual effects between military and civilian logistics and their most common integration areas, (Supply Chain Management (SCM), Integrated Logistics Support (ILS) and Outsourcing) will be examined with risk analysis and determination of basic skills evaluation methods for determining the optimum point in the integration.

Keywords: core competency, integrated logistics support, outsourcing, supply chain management

Procedia PDF Downloads 513
1367 Polymerization: An Alternative Technology for Heavy Metal Removal

Authors: M. S. Mahmoud

Abstract:

In this paper, the adsorption performance of a novel environmental friendly material, calcium alginate gel beads as a non-conventional technique for the successful removal of copper ions from aqueous solution are reported on. Batch equilibrium studies were carried out to evaluate the adsorption capacity and process parameters such as pH, adsorbent dosages, initial metal ion concentrations, stirring rates and contact times. It was observed that the optimum pH for maximum copper ions adsorption was at pH 5.0. For all contact times, an increase in copper ions concentration resulted in decrease in the percent of copper ions removal. Langmuir and Freundlich's isothermal models were used to describe the experimental adsorption. Adsorbent was characterization using Fourier transform-infrared (FT-IR) spectroscopy and Transmission electron microscopy (TEM).

Keywords: adsorption, alginate polymer, isothermal models, equilibrium

Procedia PDF Downloads 433
1366 Genetic Programming: Principles, Applications and Opportunities for Hydrological Modelling

Authors: Oluwaseun K. Oyebode, Josiah A. Adeyemo

Abstract:

Hydrological modelling plays a crucial role in the planning and management of water resources, most especially in water stressed regions where the need to effectively manage the available water resources is of critical importance. However, due to the complex, nonlinear and dynamic behaviour of hydro-climatic interactions, achieving reliable modelling of water resource systems and accurate projection of hydrological parameters are extremely challenging. Although a significant number of modelling techniques (process-based and data-driven) have been developed and adopted in that regard, the field of hydrological modelling is still considered as one that has sluggishly progressed over the past decades. This is majorly as a result of the identification of some degree of uncertainty in the methodologies and results of techniques adopted. In recent times, evolutionary computation (EC) techniques have been developed and introduced in response to the search for efficient and reliable means of providing accurate solutions to hydrological related problems. This paper presents a comprehensive review of the underlying principles, methodological needs and applications of a promising evolutionary computation modelling technique – genetic programming (GP). It examines the specific characteristics of the technique which makes it suitable to solving hydrological modelling problems. It discusses the opportunities inherent in the application of GP in water related-studies such as rainfall estimation, rainfall-runoff modelling, streamflow forecasting, sediment transport modelling, water quality modelling and groundwater modelling among others. Furthermore, the means by which such opportunities could be harnessed in the near future are discussed. In all, a case for total embracement of GP and its variants in hydrological modelling studies is made so as to put in place strategies that would translate into achieving meaningful progress as it relates to modelling of water resource systems, and also positively influence decision-making by relevant stakeholders.

Keywords: computational modelling, evolutionary algorithms, genetic programming, hydrological modelling

Procedia PDF Downloads 274
1365 Removal of Organics Pollutants from Wastewater by Activated Carbon Prepared from Dates Stones of Southern Algeria

Authors: Abasse Kamarchou, Ahmed Abdelhafid Bebba, Ali Douadi

Abstract:

The objective of this work is the preparation of an activated carbon from waste date palm from El Oued region, namely the date stones and its use in the treatment of wastewater in this region. The study of the characteristics of this coal has the following results: specific surface 125.86 m2 / g, pore volume 0.039 cm3 / g, pore diameter of 16.25 microns, surface micropores 92.28 m2 / g, the outer surface 33,57 m2 /g, methylene blue number of 13.6 mg / g, iodine number 735.2 mg /g, the functional groups are the number of 4.10-2 mol / g. The optimum conditions for pH, stirring speed, initial concentration, contact time were determined. For organic pollutants, the best conditions are: pH > 8 and pH < 5, a contact time of 5 minutes and an agitation rate of 200 - 300 rpm.

Keywords: date palm, activated carbon, wastewater, El-Oued

Procedia PDF Downloads 293
1364 An Improved Many Worlds Quantum Genetic Algorithm

Authors: Li Dan, Zhao Junsuo, Zhang Wenjun

Abstract:

Aiming at the shortcomings of the Quantum Genetic Algorithm such as the multimodal function optimization problems easily falling into the local optimum, and vulnerable to premature convergence due to no closely relationship between individuals, the paper presents an Improved Many Worlds Quantum Genetic Algorithm (IMWQGA). The paper using the concept of Many Worlds; using the derivative way of parallel worlds’ parallel evolution; putting forward the thought which updating the population according to the main body; adopting the transition methods such as parallel transition, backtracking, travel forth. In addition, the algorithm in the paper also proposes the quantum training operator and the combinatorial optimization operator as new operators of quantum genetic algorithm.

Keywords: quantum genetic algorithm, many worlds, quantum training operator, combinatorial optimization operator

Procedia PDF Downloads 719
1363 Mechanism Design and Dynamic Analysis of Active Independent Front Steering System

Authors: Cheng-Chi Yu, Yu-Shiue Wang, Kei-Lin Kuo

Abstract:

Active Independent Front Steering system is a steering system which can according to vehicle driving situation adjusts the relation of steering angle between inner wheel and outer wheel. In low-speed cornering, AIFS sets the steering angles of inner and outer wheel into Ackerman steering geometry to make vehicle has less cornering radius. Besides, AIFS changes the steering geometry to parallel or even anti-Ackerman steering geometry to keep vehicle stability in high-speed cornering. Therefore, based on the analysis of the vehicle steering behavior from different steering geometries, this study develops a new screw type of active independent front steering system to make vehicles best cornering performance at any speeds. The screw type of active independent front steering system keeps the pinion and separates the rack into main rack and second rack. Two racks connect by a screw. Extra screw rotated motion powered by assistant motor through coupler makes second rack move relative to main rack, which can adjust both steering ratio and steering geometry. First of all, this study distinguishes the steering geometry by using Ackerman percentage and utilizes the software of ADAMS/Car to construct diverse steering geometry models. The different steering geometries are compared at low-speed and high-speed cornering, and then control strategies of the active independent front steering systems could be formulated. Secondly, this study applies closed loop equation to analyze tire steering angles and carries out optimization calculations to make the steering geometry from traditional rack and pinion steering system near to Ackerman steering geometry. Steering characteristics of the optimum steering mechanism and motion characteristics of vehicle installed the steering mechanism are verified by ADAMS/Car models of front suspension and full vehicle respectively. By adding dual auxiliary rack and dual motor to the optimum steering mechanism, the active independent front steering system could be developed to achieve the functions of variable steering ratio and variable steering geometry. At last, this study uses ADAMS/Car and Matlab/Simulink to co-simulate the cornering motion of vehicles confirms the vehicle installed the Active Independent Front Steering (AIFS) system has better handling performance than that with Active Independent Steering (AFS) system or with Electric Power Steering (EPS) system. At low-speed cornering, the vehicles with AIFS system and with AFS system have better maneuverability, less cornering radius, than the traditional vehicle with EPS system because that AIFS and AFS systems both provide function of variable steering ratio. However, there is a slight penalty in the motor(s) power consumption. In addition, because of the capability of variable steering geometry, the vehicle with AIFS system has better high-speed cornering stability, trajectory keeping, and even less motor(s) power consumption than that with EPS system and also with AFS system.

Keywords: active front steering system, active independent front steering system, steering geometry, steering ratio

Procedia PDF Downloads 170
1362 Mulberry Leave: An Efficient and Economical Adsorbent for Remediation of Arsenic (V) and Arsenic (III) Contaminated Water

Authors: Saima Q. Memon, Mazhar I. Khaskheli

Abstract:

The aim of present study was to investigate the efficiency of mulberry leaves for the removal of both arsenic (III) and arsenic (V) from aqueous medium. Batch equilibrium studies were carried out to optimize various parameters such as pH of metal ion solution, volume of sorbate, sorbent doze, and agitation speed and agitation time. Maximum sorption efficiency of mulberry leaves for As (III) and As (V) at optimum conditions were 2818 μg.g-1 and 4930 μg.g-1, respectively. The experimental data was a good fit to Freundlich and D-R adsorption isotherm. Energy of adsorption was found to be in the range of 3-6 KJ/mole suggesting the physical nature of process. Kinetic data followed the first order rate, Morris-Weber equations. Developed method was applied to remove arsenic from real water samples.

Keywords: arsenic removal, mulberry, adsorption isotherms, kinetics of adsorption

Procedia PDF Downloads 243
1361 Pedestrian Safe Bumper Design from Commingled Glass Fiber/Polypropylene Reinforced Sandwich Composites

Authors: L. Onal

Abstract:

The aim of this study is to optimize manufacturing process for thermoplastic sandwich composite structures for the pedestrian safety of automobiles subjected to collision condition. In particular, cost-effective manufacturing techniques for sandwich structures with commingled GF/PP skins and low-density foam cores are being investigated. The performance of these structures under bending load is being studied. Samples are manufactured using compression moulding technique. The relationship of this performance to processing parameters such as mould temperature, moulding time, moulding pressure and sequence of the layers during moulding is being investigated. The results of bending tests are discussed in the light of the moulding conditions and conclusions are given regarding optimum set of processing conditions using the compression moulding route

Keywords: twintex, flexural properties, automobile composites, sandwich structures

Procedia PDF Downloads 413
1360 Hydro Geochemistry and Water Quality in a River Affected by Lead Mining in Southern Spain

Authors: Rosendo Mendoza, María Carmen Hidalgo, María José Campos-Suñol, Julián Martínez, Javier Rey

Abstract:

The impact of mining environmental liabilities and mine drainage on surface water quality has been investigated in the hydrographic basin of the La Carolina mining district (southern Spain). This abandoned mining district is characterized by the existence of important mineralizations of sulfoantimonides of Pb - Ag, and sulfides of Cu - Fe. All surface waters reach the main river of this mining area, the Grande River, which ends its course in the Rumblar reservoir. This waterbody is intended to supply 89,000 inhabitants, as well as irrigation and livestock. Therefore, the analysis and control of the metal(loid) concentration that exists in these surface waters is an important issue because of the potential pollution derived from metallic mining. A hydrogeochemical campaign consisting of 20 water sampling points was carried out in the hydrographic network of the Grande River, as well as two sampling points in the Rumbler reservoir and at the main tailings impoundment draining to the river. Although acid mine drainage (pH below 4) is discharged into the Grande river from some mine adits, the pH values in the river water are always neutral or slightly alkaline. This is mainly the result of a dilution process of the small volumes of mine waters by net alkaline waters of the river. However, during the dry season, the surface waters present high mineralization due to a constant discharge from the abandoned flooded mines and a decrease in the contribution of surface runoff. The concentrations of dissolved Cd and Pb in the water reach values of 2 and 81 µg/l, respectively, exceeding the limit established by the Environmental Quality Standard for surface water. In addition, the concentrations of dissolved As, Cu, and Pb in the waters of the Rumblar reservoir reached values of 10, 20, and 11 µg/l, respectively. These values are higher than the maximum allowable concentration for human consumption, a circumstance that is especially alarming.

Keywords: environmental quality, hydrogeochemistry, metal mining, surface water

Procedia PDF Downloads 123
1359 Simulation of Carbon Nanotubes/GaAs Hybrid PV Using AMPS-1D

Authors: Nima E. Gorji

Abstract:

The performance and characteristics of a hybrid heterojunction single-walled carbon nanotube and GaAs solar cell is modelled and numerically simulated using AMPS-1D device simulation tool. The device physics and performance parameters with different junction parameters are analysed. The results suggest that the open-circuit voltage changes very slightly by changing the work function, acceptor and donor density while the other electrical parameters reach to an optimum value. Increasing the concentration of a discrete defect density in the absorber layer decreases the electrical parameters. The current-voltage characteristics, quantum efficiency, band gap and thickness variation of the photovoltaic response will be quantitatively considered.

Keywords: carbon nanotube, GaAs, hybrid solar cell, AMPS-1D modelling

Procedia PDF Downloads 313
1358 Detecting of Crime Hot Spots for Crime Mapping

Authors: Somayeh Nezami

Abstract:

The management of financial and human resources of police in metropolitans requires many information and exact plans to reduce a rate of crime and increase the safety of the society. Geographical Information Systems have an important role in providing crime maps and their analysis. By using them and identification of crime hot spots along with spatial presentation of the results, it is possible to allocate optimum resources while presenting effective methods for decision making and preventive solutions. In this paper, we try to explain and compare between some of the methods of hot spots analysis such as Mode, Fuzzy Mode and Nearest Neighbour Hierarchical spatial clustering (NNH). Then the spots with the highest crime rates of drug smuggling for one province in Iran with borderline with Afghanistan are obtained. We will show that among these three methods NNH leads to the best result.

Keywords: GIS, Hot spots, nearest neighbor hierarchical spatial clustering, NNH, spatial analysis of crime

Procedia PDF Downloads 304
1357 Domestic Rooftop Rainwater Harvesting for Prevention of Urban Flood in the Gomti Nagar Region of Lucknow, Uttar Pradesh, India

Authors: Rajkumar Ghosh

Abstract:

Urban flooding is a common occurrence throughout Asia. Almost every city is vulnerable to urban floods in some fashion, and city people are particularly vulnerable. Pluvial and fluvial flooding are the most prominent causes of urban flooding in the Gomti Nagar region of Lucknow, Uttar Pradesh, India. The pluvial flooding is regarded to be less damaging because it is caused by heavy rainfall, Seasonal rainfall fluctuations, water flows off concrete infrastructures, blockages of the drainage system, and insufficient drainage capacity or low infiltration capacity. However, this study considers pluvial flooding in Lucknow to be a significant source of cumulative damage over time, and the risks of such events are increasing as a result of changes in ageing infrastructure, hazard exposure, rapid urbanization, massive water logging and global warming. As a result, urban flooding has emerged as a critical field of study. The popularity of analytical approaches to project the spatial extent of flood dangers has skyrocketed. To address future urban flood resilience, more effort is needed to enhance both hydrodynamic models and analytical tools to simulate risks under present and forecast conditions. Proper urban planning with drainage system and ample space for high infiltration capacity are required to reduce urban flooding. A better India with no urban flooding is a pipe dream that can be realized by putting household rooftop rainwater collection systems in every structure. According to the current study, domestic RTRWHs are strongly recommended as an alternative source of water, as well as to prevent surface runoff and urban floods in this region of Lucknow, urban areas of India.

Keywords: rooftop rainwater harvesting, urban flood, pluvial flooding, fluvial flooding

Procedia PDF Downloads 69
1356 Photocatalytic Degradation of Produced Water Hydrocarbon of an Oil Field by Using Ag-Doped TiO₂ Nanoparticles

Authors: Hamed Bazrafshan, Saeideh Dabirnia, Zahra Alipour Tesieh, Samaneh Alavi, Bahram Dabir

Abstract:

In this study, the removal of pollutants of a real produced water sample from an oil reservoir (a light oil reservoir), using a photocatalytic degradation process in a cylindrical glass reactor, was investigated. Using TiO₂ and Ag-TiO₂ in slurry form, the photocatalytic degradation was studied by measuring the COD parameter, qualitative analysis, and GC-MS. At first, optimization of the parameters on photocatalytic degradation of hydrocarbon pollutants in real produced water, using TiO₂ nanoparticles as photocatalysts under UV light, was carried out applying response surface methodology. The results of the design of the experiment showed that the optimum conditions were at a catalyst concentration of 1.14 g/lit and pH of 2.67, and the percentage of COD removal was 72.65%.

Keywords: photocatalyst, Ag-doped, TiO₂, produced water, nanoparticles

Procedia PDF Downloads 108
1355 Aerodynamic Analysis of Multiple Winglets for Aircrafts

Authors: S. Pooja Pragati, B. Sudarsan, S. Raj Kumar

Abstract:

This paper provides a practical design of a new concept of massive Induced Drag reductions of stream vise staggered multiple winglets. It is designed to provide an optimum performance of a winglet from conventional designs. In preparing for a mechanical design, aspects such as shape, dimensions are analyzed to yield a huge amount of reduction in fuel consumption and increased performance. Owing to its simplicity of application and effectiveness we believe that it will enable us to consider its enhanced version for the grid effect of the staggered multiple winglets on the deflected mass flow of the wing system. The objective of the analysis were to compare the aerodynamic characteristics of two winglet configuration and to investigate the performance of two winglets shape simulated at selected cant angle of 0,45,60 degree.

Keywords: multiple winglets, induced drag, aerodynamics analysis, low speed aircrafts

Procedia PDF Downloads 462
1354 Revolutionizing Traditional Farming Using Big Data/Cloud Computing: A Review on Vertical Farming

Authors: Milind Chaudhari, Suhail Balasinor

Abstract:

Due to massive deforestation and an ever-increasing population, the organic content of the soil is depleting at a much faster rate. Due to this, there is a big chance that the entire food production in the world will drop by 40% in the next two decades. Vertical farming can help in aiding food production by leveraging big data and cloud computing to ensure plants are grown naturally by providing the optimum nutrients sunlight by analyzing millions of data points. This paper outlines the most important parameters in vertical farming and how a combination of big data and AI helps in calculating and analyzing these millions of data points. Finally, the paper outlines how different organizations are controlling the indoor environment by leveraging big data in enhancing food quantity and quality.

Keywords: big data, IoT, vertical farming, indoor farming

Procedia PDF Downloads 155
1353 Customized Cow’s Urine Battery Using MnO2 Depolarizer

Authors: Raj Kumar Rajak, Bharat Mishra

Abstract:

Bio-battery represents an entirely new long term, reasonable, reachable and ecofriendly approach to production of sustainable energy. Types of batteries have been developed using MnO2 in various ways. MnO2 is suitable with physical, chemical, electrochemical, and catalytic properties, serving as an effective cathodic depolarizer and may be considered as being the life blood of the battery systems. In the present experimental work, we have studied the effect of generation of power by bio-battery using different concentrations of MnO2. The tests show that it is possible to generate electricity using cow’s urine as an electrolyte. After ascertaining the optimum concentration of MnO2, various battery parameters and performance indicates that cow urine solely produces power of 695 mW, while a combination with MnO2 (40%) enhances power of bio-battery, i.e. 1377 mW. On adding more and more MnO2 to the electrolyte, the power suppressed because inflation of internal resistance. The analysis of the data produced from experiment shows that MnO2 is quite suitable to energize the bio-battery.

Keywords: bio-batteries, cow’s urine, manganese dioxide, non-conventional

Procedia PDF Downloads 244
1352 Composition Dependence of Exchange Anisotropy in PtₓMn₁₋ₓ/Co₇₀Fe₃₀ Films

Authors: Sina Ranjbar, Masakiyo Tsunoda, Mikihiko Oogane, Yasuo Ando

Abstract:

We systematically investigated the exchange anisotropy for ferromagnetic Co70Fe30 and antiferromagnetic PtMn bilayer films. We focused on the relevance between the exchange bias and the composition of the Ptₓ Mn₁₋ₓ (14 < x < 22 and 45 < x < 56 at %) films, and we successfully optimized the composition. The crystal structure of the Ptₓ Mn₁₋ₓ films was FCC for 14 < x < 22 at % and FCT for 45 < x < 56 at % after annealing at 370 ◦C for 6 hours. The unidirectional anisotropy constant (Jₖ) for fcc-Pt₁₅Mn₈₅ (20 nm) and fct-Pt₄₈Mn₅₂ (20 nm) prepared under optimum conditions in composition were 0.16 and 0.20 erg/cm², respectively. Both Pt₁₅Mn₈₅ and Pt₄₈Mn₅₂ films showed a larger unidirectional anisotropy constant (Jₖ) than in other reports. They also showed a flatter surface than that of other antiferromagnetic materials. The obtained PtMn films with a large exchange anisotropy and slight roughness are useful as an antiferromagnetic layer in spintronic applications.

Keywords: antiferromagnetic material, PtMn thin film, exchange anisotropy, composition dependence

Procedia PDF Downloads 244
1351 Influence Analysis of Pelamis Wave Energy Converter Structure Parameters

Authors: Liu Shengnan, Sun Liping, Zhu Jianxun

Abstract:

Based on three dimensional potential flow theory and hinged rigid body motion equations, structure RAOs of Pelamis wave energy converter is analyzed. Analysis of numerical simulation is carried out on Pelamis in the irregular wave conditions, and the motion response of structures and total generated power is obtained. The paper analyzes influencing factors on the average power including diameter of floating body, section form of floating body, draft, hinged stiffness and damping. The optimum parameters are achieved in Zhejiang Province. Compared with the results of the pelamis experiment made by Glasgow University, the method applied in this paper is feasible.

Keywords: Pelamis, hinge, floating multibody, wave energy

Procedia PDF Downloads 450
1350 Effects of Strain-Induced Melt Activation Process on the Structure and Morphology Mg₂Si in Al-15%Mg₂Si Composite

Authors: Reza Eslami-Farsani, Mohammad Alipour

Abstract:

The effect of deformation on the semisolid microstructure and degree of globularity of Al–15%Mg₂Si composite produced by the strain induced melt activation (SIMA) process was studied. Deformation of 25% was used. After deformation, the samples were heated to a temperature above the solidus and below the liquidus point and maintained in the isothermal conditions at three different temperatures (560, 580 and 595 °C) for varying time (5, 10, 20 and 40 min). The microstructural study was carried out on the alloy by the use of optical microscopy. It was observed that strain induced deformation and subsequently melt activation has caused the globular morphology of Mg₂Si particles. The results showed that for the desired microstructures of the alloy during SIMA process, the optimum temperature and time are 595 °C and 40 min respectively.

Keywords: deformation, semisolid, SIMA, Mg₂Si phase, modification

Procedia PDF Downloads 254
1349 An Improved Cuckoo Search Algorithm for Voltage Stability Enhancement in Power Transmission Networks

Authors: Reza Sirjani, Nobosse Tafem Bolan

Abstract:

Many optimization techniques available in the literature have been developed in order to solve the problem of voltage stability enhancement in power systems. However, there are a number of drawbacks in the use of previous techniques aimed at determining the optimal location and size of reactive compensators in a network. In this paper, an Improved Cuckoo Search algorithm is applied as an appropriate optimization algorithm to determine the optimum location and size of a Static Var Compensator (SVC) in a transmission network. The main objectives are voltage stability improvement and total cost minimization. The results of the presented technique are then compared with other available optimization techniques.

Keywords: cuckoo search algorithm, optimization, power system, var compensators, voltage stability

Procedia PDF Downloads 530
1348 Assessment of the Effects of Water Harvesting Technology on Downstream Water Availability Using SWAT Model

Authors: Ayalkibet Mekonnen, Adane Abebe

Abstract:

In hydrological cycle there are many water-related human interventions that modify the natural systems. Rainwater harvesting is one such intervention that involves harnessing of water in the upstream. Water harvesting used in upstream prevents water runoff on downstream mainly disturbance on biodiversity and ecosystems. The main objectives of the study are to assess the effects of water harvesting technologies on downstream water availability in the Woreda. To address the above problem, SWAT model, cost-benefit ratio and optimal control approach was used to analyse the hydrological and socioeconomic impact and tradeoffs on water availability of the community, respectively. The downstream impacts of increasing water consumption in the upstream rain-fed areas of the Bilate and Shala Catchment are simulated using the semi-distributed SWAT model. The two land use scenarios tested at sub basin levels (1) conventional land use represents the current land use practice (Agri-CON) and (2) in-field rainwater harvesting (IRWH), improving soil water availability through rainwater harvesting land use scenario. The simulated water balance results showed that the highest peak mean monthly direct flow obtained from Agri-CON land use (127.1 m3/ha), followed by Agri-IRWH land use (11.5 mm) and LULC 2005 (90.1 m3/ha). The Agri-IRWH scenario reduced direct flow by 10% compared to Agri-CON and more groundwater flow contributed by Agri-IRWH (190 m3/ha) than Agri-CON (125 m3/ha). The overall result suggests that the water yield of the Woreda may not be negatively affected by the Agri-IRWH land use scenario. The technology in the Woreda benefited positively having an average benefit cost ratio of 4.2. Water harvesting for domestic use was not optimal that the value of the water per demand harvested was less than the amount of water needed. Storage tanks, series of check dams, gravel filled dams are an alternative solutions for water harvesting.

Keywords: water harvesting, SWAT model, land use scenario, Agri-CON, Agri-IRWH, trade off, benefit cost ratio

Procedia PDF Downloads 317
1347 Remote Sensing and Geographic Information Systems for Identifying Water Catchments Areas in the Northwest Coast of Egypt for Sustainable Agricultural Development

Authors: Mohamed Aboelghar, Ayman Abou Hadid, Usama Albehairy, Asmaa Khater

Abstract:

Sustainable agricultural development of the desert areas of Egypt under the pressure of irrigation water scarcity is a significant national challenge. Existing water harvesting techniques on the northwest coast of Egypt do not ensure the optimal use of rainfall for agricultural purposes. Basin-scale hydrology potentialities were studied to investigate how available annual rainfall could be used to increase agricultural production. All data related to agricultural production included in the form of geospatial layers. Thematic classification of Sentinal-2 imagery was carried out to produce the land cover and crop maps following the (FAO) system of land cover classification. Contour lines and spot height points were used to create a digital elevation model (DEM). Then, DEM was used to delineate basins, sub-basins, and water outlet points using the Soil and Water Assessment Tool (Arc SWAT). Main soil units of the study area identified from Land Master Plan maps. Climatic data collected from existing official sources. The amount of precipitation, surface water runoff, potential, and actual evapotranspiration for the years (2004 to 2017) shown as results of (Arc SWAT). The land cover map showed that the two tree crops (olive and fig) cover 195.8 km2 when herbaceous crops (barley and wheat) cover 154 km2. The maximum elevation was 250 meters above sea level when the lowest one was 3 meters below sea level. The study area receives a massive variable amount of precipitation; however, water harvesting methods are inappropriate to store water for purposes.

Keywords: water catchements, remote sensing, GIS, sustainable agricultural development

Procedia PDF Downloads 95
1346 Wheeled Robot Stable Braking Process under Asymmetric Traction Coefficients

Authors: Boguslaw Schreyer

Abstract:

During the wheeled robot’s braking process, the extra dynamic vertical forces act on all wheels: left, right, front or rear. Those forces are directed downward on the front wheels while directed upward on the rear wheels. In order to maximize the deceleration, therefore, minimize the braking time and braking distance, we need to calculate a correct torque distribution: the front braking torque should be increased, and rear torque should be decreased. At the same time, we need to provide better transversal stability. In a simple case of all adhesion coefficients being the same under all wheels, the torque distribution may secure the optimal (maximal) control of the robot braking process, securing the minimum braking distance and a minimum braking time. At the same time, the transversal stability is relatively good. At any time, we control the transversal acceleration. In the case of the transversal movement, we stop the braking process and re-apply braking torque after a defined period of time. If we correctly calculate the value of the torques, we may secure the traction coefficient under the front and rear wheels close to its maximum. Also, in order to provide an optimum braking control, we need to calculate the timing of the braking torque application and the timing of its release. The braking torques should be released shortly after the wheels passed a maximum traction coefficient (while a wheels’ slip increases) and applied again after the wheels pass a maximum of traction coefficient (while the slip decreases). The correct braking torque distribution secures the front and rear wheels, passing this maximum at the same time. It guarantees an optimum deceleration control, therefore, minimum braking time. In order to calculate a correct torque distribution, a control unit should receive the input signals of a rear torque value (which changes independently), the robot’s deceleration, and values of the vertical front and rear forces. In order to calculate the timing of torque application and torque release, more signals are needed: speed of the robot: angular speed, and angular deceleration of the wheels. In case of different adhesion coefficients under the left and right wheels, but the same under each pair of wheels- the same under right wheels and the same under left wheels, the Select-Low (SL) and select high (SH) methods are applied. The SL method is suggested if transversal stability is more important than braking efficiency. Often in the case of the robot, more important is braking efficiency; therefore, the SH method is applied with some control of the transversal stability. In the case that all adhesion coefficients are different under all wheels, the front-rear torque distribution is maintained as in all previous cases. However, the timing of the braking torque application and release is controlled by the rear wheels’ lowest adhesion coefficient. The Lagrange equations have been used to describe robot dynamics. Matlab has been used in order to simulate the process of wheeled robot braking, and in conclusion, the braking methods have been selected.

Keywords: wheeled robots, braking, traction coefficient, asymmetric

Procedia PDF Downloads 150
1345 Analysis of Advanced Modulation Format Using Gain and Loss Spectrum for Long Range Radio over Fiber System

Authors: Shaina Nagpal, Amit Gupta

Abstract:

In this work, all optical Stimulated Brillouin Scattering (SBS) generated single sideband with suppressed carrier is presented to provide better efficiency. The generation of single sideband and enhanced carrier power signal using the SBS technique is further used to strengthen the low shifted sideband and to suppress the upshifted sideband. These generated single sideband signals are able to work at high frequency ranges. Also, generated single sideband is validated over 90 km transmission using single mode fiber with acceptable bit error rate. The results for an equivalent are then compared so that the acceptable technique is chosen and also the required quality for the optimum performance of the system is reported.

Keywords: stimulated Brillouin scattering, radio over fiber, upper side band, quality factor

Procedia PDF Downloads 212
1344 The Impact of Mining Activities on the Surface Water Quality: A Case Study of the Kaap River in Barberton, Mpumalanga

Authors: M. F. Mamabolo

Abstract:

Mining activities are identified as the most significant source of heavy metal contamination in river basins, due to inadequate disposal of mining waste thus resulting in acid mine drainage. Waste materials generated from gold mining and processing have severe and widespread impacts on water resources. Therefore, a total of 30 water samples were collected from Fig Tree Creek, Kaapriver, Sheba mine stream & Sauid kaap river to investigate the impact of gold mines on the Kaap River system. Physicochemical parameters (pH, EC and TDS) were taken using a BANTE 900P portable water quality meter. The concentration of Fe, Cu, Co, and SO₄²⁻ in water samples were analysed using Inductively Coupled Plasma-Mass spectrophotometry (ICP-MS) at 0.01 mg/L. The results were compared to the regulatory guideline of the World Health Organization (WHO) and the South Africa National Standards (SANS). It was found that Fe, Cu and Co were below the guideline values while SO₄²⁻ detected in Sheba mine stream exceeded the 250 mg/L limit for both seasons, attributed by mine wastewater. SO₄²⁻ was higher in wet season due to high evaporation rates and greater interaction between rocks and water. The pH of all the streams was within the limit (≥5 to ≤9.7), however EC of the Sheba mine stream, Suid Kaap River & where the tributary connects with the Fig Tree Creek exceeded 1700 uS/m, due to dissolved material. The TDS of Sheba mine stream exceeded 1000 mg/L, attributed by high SO₄²⁻ concentration. While the tributary connecting to the Fig Tree Creek exceed the value due to pollution from household waste, runoff from agriculture etc. In conclusion, the water from all sampled streams were safe for consumption due to low concentrations of physicochemical parameters. However, elevated concentration of SO₄²⁻ should be monitored and managed to avoid water quality deterioration in the Kaap River system.

Keywords: Kaap river system, mines, heavy metals, sulphate

Procedia PDF Downloads 58
1343 The Morphology and Flash Flood Characteristics of the Transboundary Khowai River: A Catchment Scale Analysis

Authors: Jonahid Chakder, Mahfuzul Haque

Abstract:

Flash flood is among the foremost disastrous characteristic hazards which cause hampering within the environment and social orders due to climate change across the world. In Northeastern region of Bangladesh faces severe flash floods regularly, Such, the Khowai river is a flash flood-prone river. But until now, there are no previous studies about the flash flood of this river. Farmlands Building resilience, protection of crops & fish enclosures of wetland in Habiganj Haor areas, regional roads, and business establishments were submerged due to flash floods. The flash floods of the Khowai River are frequent events, which happened in 1988, 1998, 2000, 2007, 2017, and 2019. Therefore, this study tries to analyze Khowai river morphology, Precipitation, Water level, Satellite image, and Catchment characteristics: a catchment scale analysis that helps to comprehend Khowai river flash flood characteristics and factors of influence. From precipitation analysis, the finding outcome disclosed the data about flash flood accurate zones at the Khowai district watershed. The morphological analysis workout from satellite image and find out the consequence of sinuosity and gradient of this river. The sinuosity indicates that the Khowai river is an antecedent and a meandering river and a meandering river can’t influence the flash flood of any region, but other factors respond here. It is understood that the Khowai river catchment elevation analysis from DEM is directly influenced. The left Baramura and Right Atharamura anticline of the Khowai basin watershed reflects a major impact on the stratigraphy as an impermeable clay layer and this consequence the water passes downward with the drainage pattern and Tributary. This drainage system, the gradient of tributary and their runoff, and the confluence of water in the pre-monsoon season rise the Khowai river water level which influences flash floods (within six hours of Precipitation).

Keywords: geology, gradient, tributary, drainage, watershed, flash flood

Procedia PDF Downloads 108
1342 Gate Voltage Controlled Humidity Sensing Using MOSFET of VO2 Particles

Authors: A. A. Akande, B. P. Dhonge, B. W. Mwakikunga, A. G. J. Machatine

Abstract:

This article presents gate-voltage controlled humidity sensing performance of vanadium dioxide nanoparticles prepared from NH4VO3 precursor using microwave irradiation technique. The X-ray diffraction, transmission electron diffraction, and Raman analyses reveal the formation of VO2 (B) with V2O5 and an amorphous phase. The BET surface area is found to be 67.67 m2/g. The humidity sensing measurements using the patented lateral-gate MOSFET configuration was carried out. The results show the optimum response at 5 V up to 8 V of gate voltages for 10 to 80% of relative humidity. The dose-response equation reveals the enhanced resilience of the gated VO2 sensor which may saturate above 272% humidity. The response and recovery times are remarkably much faster (about 60 s) than in non-gated VO2 sensors which normally show response and recovery times of the order of 5 minutes (300 s).

Keywords: VO2, VO2(B), MOSFET, gate voltage, humidity sensor

Procedia PDF Downloads 302
1341 Studies on Design of Cyclone Separator with Tri-Chambered Filter Unit for Dust Removal in Rice Mills

Authors: T. K. Chandrashekar, R. Harish Kumar, T. B. Prasad, C. R. Rajashekhar

Abstract:

Cyclone separators are normally used for dust collection in rice mills for a long time. However, their dust collection efficiency is lower and is influenced by factors like geometry, exit pipe dimensions and length, humidity, and temperature at dust generation place. The design of cyclone has been slightly altered, and the new design has proven to be successful in collecting the dust particles of size up to 10 microns, the major modification was to change the height of exit pipe of the cyclone chamber to have optimum dust collection. The cyclone is coupled with a tri-chambered filter unit with three geo text materials filters of different mesh size to capture the dust less than 10 micron.

Keywords: cyclone-separator, rice mill, tri chambered filter, dust removal

Procedia PDF Downloads 496