Search results for: interactive models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7604

Search results for: interactive models

6944 Evaluating Generative Neural Attention Weights-Based Chatbot on Customer Support Twitter Dataset

Authors: Sinarwati Mohamad Suhaili, Naomie Salim, Mohamad Nazim Jambli

Abstract:

Sequence-to-sequence (seq2seq) models augmented with attention mechanisms are playing an increasingly important role in automated customer service. These models, which are able to recognize complex relationships between input and output sequences, are crucial for optimizing chatbot responses. Central to these mechanisms are neural attention weights that determine the focus of the model during sequence generation. Despite their widespread use, there remains a gap in the comparative analysis of different attention weighting functions within seq2seq models, particularly in the domain of chatbots using the Customer Support Twitter (CST) dataset. This study addresses this gap by evaluating four distinct attention-scoring functions—dot, multiplicative/general, additive, and an extended multiplicative function with a tanh activation parameter — in neural generative seq2seq models. Utilizing the CST dataset, these models were trained and evaluated over 10 epochs with the AdamW optimizer. Evaluation criteria included validation loss and BLEU scores implemented under both greedy and beam search strategies with a beam size of k=3. Results indicate that the model with the tanh-augmented multiplicative function significantly outperforms its counterparts, achieving the lowest validation loss (1.136484) and the highest BLEU scores (0.438926 under greedy search, 0.443000 under beam search, k=3). These results emphasize the crucial influence of selecting an appropriate attention-scoring function in improving the performance of seq2seq models for chatbots. Particularly, the model that integrates tanh activation proves to be a promising approach to improve the quality of chatbots in the customer support context.

Keywords: attention weight, chatbot, encoder-decoder, neural generative attention, score function, sequence-to-sequence

Procedia PDF Downloads 78
6943 Mitigating CO2 Emissions in Developing Countries: The Role of Foreign Aid

Authors: Mohamed Boly

Abstract:

This paper investigates the link between foreign aid and environmental protection, specifically CO2 emissions, in aid recipient countries. Conflicting results exist in the literature regarding the environmental impact of foreign aid. We come to reconcile them, using Project-Level Aid Data with environment codes, over the 1980- 2010 period. The disaggregation of aid according to the environmental codes, show why the results of previous literature remain very mixed. Moreover, we find that the effect of environmental aid is conditioned by some specific characteristics of the recipient country, independently of the donor.

Keywords: foreign aid, green aid, interactive effects, pollution

Procedia PDF Downloads 306
6942 Analysis of the Contribution of Drude and Brendel Model Terms to the Dielectric Function

Authors: Christopher Mkirema Maghanga, Maurice Mghendi Mwamburi

Abstract:

Parametric modeling provides a means to deeper understand the properties of materials. Drude, Brendel, Lorentz and OJL incorporated in SCOUT® software are some of the models used to study dielectric films. In our work, we utilized Brendel and Drude models to extract the optical constants from spectroscopic data of fabricated undoped and niobium doped titanium oxide thin films. The individual contributions by the two models were studied to establish how they influence the dielectric function. The effect of dopants on their influences was also analyzed. For the undoped films, results indicate minimal contribution from the Drude term due to the dielectric nature of the films. However as doping levels increase, the rise in the concentration of free electrons favors the use of Drude model. Brendel model was confirmed to work well with dielectric films - the undoped titanium Oxide films in our case.

Keywords: modeling, Brendel model, optical constants, titanium oxide, Drude Model

Procedia PDF Downloads 184
6941 Improving Our Understanding of the in vivo Modelling of Psychotic Disorders

Authors: Zsanett Bahor, Cristina Nunes-Fonseca, Gillian L. Currie, Emily S. Sena, Lindsay D.G. Thomson, Malcolm R. Macleod

Abstract:

Psychosis is ranked as the third most disabling medical condition in the world by the World Health Organization. Despite a substantial amount of research in recent years, available treatments are not universally effective and have a wide range of adverse side effects. Since many clinical drug candidates are identified through in vivo modelling, a deeper understanding of these models, and their strengths and limitations, might help us understand reasons for difficulties in psychosis drug development. To provide an unbiased summary of the preclinical psychosis literature we performed a systematic electronic search of PubMed for publications modelling a psychotic disorder in vivo, identifying 14,721 relevant studies. Double screening of 11,000 publications from this dataset so far established 2403 animal studies of psychosis, with the most common model being schizophrenia (95%). 61% of these models are induced using pharmacological agents. For all the models only 56% of publications test a therapeutic treatment. We propose a systematic review of these studies to assess the prevalence of reporting of measures to reduce risk of bias, and a meta-analysis to assess the internal and external validity of these animal models. Our findings are likely to be relevant to future preclinical studies of psychosis as this generation of strong empirical evidence has the potential to identify weaknesses, areas for improvement and make suggestions on refinement of experimental design. Such a detailed understanding of the data which inform what we think we know will help improve the current attrition rate between bench and bedside in psychosis research.

Keywords: animal models, psychosis, systematic review, schizophrenia

Procedia PDF Downloads 291
6940 Transport Emission Inventories and Medical Exposure Modeling: A Missing Link for Urban Health

Authors: Frederik Schulte, Stefan Voß

Abstract:

The adverse effects of air pollution on public health are an increasingly vital problem in planning for urban regions in many parts of the world. The issue is addressed from various angles and by distinct disciplines in research. Epidemiological studies model the relative increase of numerous diseases in response to an increment of different forms of air pollution. A significant share of air pollution in urban regions is related to transport emissions that are often measured and stored in emission inventories. Though, most approaches in transport planning, engineering, and operational design of transport activities are restricted to general emission limits for specific air pollutants and do not consider more nuanced exposure models. We conduct an extensive literature review on exposure models and emission inventories used to study the health impact of transport emissions. Furthermore, we review methods applied in both domains and use emission inventory data of transportation hubs such as ports, airports, and urban traffic for an in-depth analysis of public health impacts deploying medical exposure models. The results reveal specific urban health risks related to transport emissions that may improve urban planning for environmental health by providing insights in actual health effects instead of only referring to general emission limits.

Keywords: emission inventories, exposure models, transport emissions, urban health

Procedia PDF Downloads 390
6939 Embracing Diverse Learners: A Way Towards Effective Learning

Authors: Mona Kamel Hassan

Abstract:

Teaching a class of diverse learners poses a great challenge not only for foreign and second language teachers, but also for teachers in different disciplines as well as for curriculum designers. Thus, to contribute to previous research tackling language diversity, the current paper shares the experience of teaching a reading, writing and vocabulary building course to diverse Arabic as a Foreign Language learners in their advanced language proficiency level. Diversity is represented in students’ motivation, their prior knowledge, their various needs and interests, their level of anxiety, and their different learning styles and skills. While teaching this course the researcher adopted the universal design for learning (UDL) framework, which is a means to meet the various needs of diverse learners. UDL stresses the importance of enabling the entire diverse students to gain skills, knowledge, and enthusiasm to learn through the employment of teaching methods that respond to students' individual differences. Accordingly, the educational curriculum developed for this course and the teaching methods employed is modified. First, the researcher made the language curriculum vivid and attractive to inspire students' learning and to keep them engaged in their learning process. The researcher encouraged the entire students, from the first day, to suggest topics of their interest; political, social, cultural, etc. The authentic Arabic texts chosen are those that best meet students’ needs, interests, lives, and sociolinguistic issues, together with the linguistic and cultural components. In class and under the researcher’s guidance, students dig into these topics to find solutions for the tackled issues while working with their peers. Second, to gain equal opportunities to demonstrate learning, role-playing was encouraged to give students the opportunity to perform different linguistic tasks, to reflect and share their diverse interests and cultural backgrounds with their peers. Third, to bring the UDL into the classroom, students were encouraged to work on interactive, collaborative activities through technology to improve their reading and writing skills and reinforce their mastery of the accumulated vocabulary, idiomatic expressions, and collocations. These interactive, collaborative activities help to facilitate student-student communication and student-teacher communication and to increase comfort in this class of diverse learners. Detailed samples of the educational curriculum and interactive, collaborative activities developed, accompanied by methods of teaching employed to teach these diverse learners, are presented for illustration. Results revealed that students are responsive to the educational materials which are developed for this course. Therefore, they engaged in the learning process and classroom activities and discussions effectively. They also appreciated their instructor’s willingness to differentiate the teaching methods to suit students of diverse background knowledge, learning styles, level of anxiety, etc. Finally, the researcher believes that sharing this experience in teaching diverse learners will help both language teachers and teachers in other disciplines to develop a better understanding to meet their students' diverse needs. Results will also pave the way for curriculum designers to develop educational material that meets the needs of diverse learners.

Keywords: teaching, language, diverse, learners

Procedia PDF Downloads 101
6938 Removal of Basic Yellow 28 Dye from Aqueous Solutions Using Plastic Wastes

Authors: Nadjib Dahdouh, Samira Amokrane, Elhadj Mekatel, Djamel Nibou

Abstract:

The removal of Basic Yellow 28 (BY28) from aqueous solutions by plastic wastes PMMA was investigated. The characteristics of plastic wastes PMMA were determined by SEM, FTIR and chemical composition analysis. The effects of solution pH, initial Basic Yellow 28 (BY28) concentration C, solid/liquid ratio R, and temperature T were studied in batch experiments. The Freundlich and the Langmuir models have been applied to the adsorption process, and it was found that the equilibrium followed well Langmuir adsorption isotherm. A comparison of kinetic models applied to the adsorption of BY28 on the PMMA was evaluated for the pseudo-first-order and the pseudo-second-order kinetic models. It was found that used models were correlated with the experimental data. Intraparticle diffusion model was also used in these experiments. The thermodynamic parameters namely the enthalpy ∆H°, entropy ∆S° and free energy ∆G° of adsorption of BY28 on PMMA were determined. From the obtained results, the negative values of Gibbs free energy ∆G° indicated the spontaneity of the adsorption of BY28 by PMMA. The negative values of ∆H° revealed the exothermic nature of the process and the negative values of ∆S° suggest the stability of BY28 on the surface of SW PMMA.

Keywords: removal, Waste PMMA, BY28 dye, equilibrium, kinetic study, thermodynamic study

Procedia PDF Downloads 155
6937 Analysis on Prediction Models of TBM Performance and Selection of Optimal Input Parameters

Authors: Hang Lo Lee, Ki Il Song, Hee Hwan Ryu

Abstract:

An accurate prediction of TBM(Tunnel Boring Machine) performance is very difficult for reliable estimation of the construction period and cost in preconstruction stage. For this purpose, the aim of this study is to analyze the evaluation process of various prediction models published since 2000 for TBM performance, and to select the optimal input parameters for the prediction model. A classification system of TBM performance prediction model and applied methodology are proposed in this research. Input and output parameters applied for prediction models are also represented. Based on these results, a statistical analysis is performed using the collected data from shield TBM tunnel in South Korea. By performing a simple regression and residual analysis utilizinFg statistical program, R, the optimal input parameters are selected. These results are expected to be used for development of prediction model of TBM performance.

Keywords: TBM performance prediction model, classification system, simple regression analysis, residual analysis, optimal input parameters

Procedia PDF Downloads 309
6936 A Study on How to Influence Players Interactive Behavior of Victory or Defeat in Party Games

Authors: Shih-Chieh Liao, Cheng-Yan Shuai

Abstract:

"Party game" is a game mode that enables players to maintain a good social and interactive experience. The common game modes include Teamwork, Team competitive, Independent competitive, Battle Royale. Party games are defined as a game with easy rules, easy to play, quickly spice up a party, and support four to six players. It also needs to let the player feel satisfied no matter victory or defeat. However, players may feel negative or angry when the game is imbalanced, especially when they play with teammates. Some players care about winning or losing, and they will blame it on the game mechanics. What is more serious is that the player will cause the argument, which is unnecessary. These behaviors that trigger quarrels and negative emotions often originate from the player's determination of the victory and the ratio of victory during the competition. In view of this, our research invited a group of subjects to the experiment, which is going to inspect player’s emotions by Electromyography (EMG) and Electrodermal Activity (EDA) when they are playing party games with others. When a player wins or loses, the negative and positive feeling will be recorded from the game beginning to the end. At the same time, physiologic and emotional reactions are also being recorded in each part of the game. The game will be designed as telling the interaction when players are in the quest of a party game. The experiment content includes the emotional changes affected by the physiological values of game victory and defeat between “player against friend” and “player against stranger.” Through this experiment, the balance between winners and losers lies in the basis of good game interaction and game interaction in the game and explore the emotional positive and negative effects caused by the result of the party game. The result shows that “player against friend” has a significant negative emotion and significant positive emotion at “player against stranger.” According to the result, the player's experience will be affected with winning rate or form when they play the party game. We suggest the developer balance the game with our experiment method to let players get a better experience.

Keywords: party games, biofeedback, emotional responses, user experience, game design

Procedia PDF Downloads 164
6935 Method for Auto-Calibrate Projector and Color-Depth Systems for Spatial Augmented Reality Applications

Authors: R. Estrada, A. Henriquez, R. Becerra, C. Laguna

Abstract:

Spatial Augmented Reality is a variation of Augmented Reality where the Head-Mounted Display is not required. This variation of Augmented Reality is useful in cases where the need for a Head-Mounted Display itself is a limitation. To achieve this, Spatial Augmented Reality techniques substitute the technological elements of Augmented Reality; the virtual world is projected onto a physical surface. To create an interactive spatial augmented experience, the application must be aware of the spatial relations that exist between its core elements. In this case, the core elements are referred to as a projection system and an input system, and the process to achieve this spatial awareness is called system calibration. The Spatial Augmented Reality system is considered calibrated if the projected virtual world scale is similar to the real-world scale, meaning that a virtual object will maintain its perceived dimensions when projected to the real world. Also, the input system is calibrated if the application knows the relative position of a point in the projection plane and the RGB-depth sensor origin point. Any kind of projection technology can be used, light-based projectors, close-range projectors, and screens, as long as it complies with the defined constraints; the method was tested on different configurations. The proposed procedure does not rely on a physical marker, minimizing the human intervention on the process. The tests are made using a Kinect V2 as an input sensor and several projection devices. In order to test the method, the constraints defined were applied to a variety of physical configurations; once the method was executed, some variables were obtained to measure the method performance. It was demonstrated that the method obtained can solve different arrangements, giving the user a wide range of setup possibilities.

Keywords: color depth sensor, human computer interface, interactive surface, spatial augmented reality

Procedia PDF Downloads 124
6934 Statistical Assessment of Models for Determination of Soil–Water Characteristic Curves of Sand Soils

Authors: S. J. Matlan, M. Mukhlisin, M. R. Taha

Abstract:

Characterization of the engineering behavior of unsaturated soil is dependent on the soil-water characteristic curve (SWCC), a graphical representation of the relationship between water content or degree of saturation and soil suction. A reasonable description of the SWCC is thus important for the accurate prediction of unsaturated soil parameters. The measurement procedures for determining the SWCC, however, are difficult, expensive, and time-consuming. During the past few decades, researchers have laid a major focus on developing empirical equations for predicting the SWCC, with a large number of empirical models suggested. One of the most crucial questions is how precisely existing equations can represent the SWCC. As different models have different ranges of capability, it is essential to evaluate the precision of the SWCC models used for each particular soil type for better SWCC estimation. It is expected that better estimation of SWCC would be achieved via a thorough statistical analysis of its distribution within a particular soil class. With this in view, a statistical analysis was conducted in order to evaluate the reliability of the SWCC prediction models against laboratory measurement. Optimization techniques were used to obtain the best-fit of the model parameters in four forms of SWCC equation, using laboratory data for relatively coarse-textured (i.e., sandy) soil. The four most prominent SWCCs were evaluated and computed for each sample. The result shows that the Brooks and Corey model is the most consistent in describing the SWCC for sand soil type. The Brooks and Corey model prediction also exhibit compatibility with samples ranging from low to high soil water content in which subjected to the samples that evaluated in this study.

Keywords: soil-water characteristic curve (SWCC), statistical analysis, unsaturated soil, geotechnical engineering

Procedia PDF Downloads 338
6933 Vision and Challenges of Developing VR-Based Digital Anatomy Learning Platforms and a Solution Set for 3D Model Marking

Authors: Gizem Kayar, Ramazan Bakir, M. Ilkay Koşar, Ceren U. Gencer, Alperen Ayyildiz

Abstract:

Anatomy classes are crucial for general education of medical students, whereas learning anatomy is quite challenging and requires memorization of thousands of structures. In traditional teaching methods, learning materials are still based on books, anatomy mannequins, or videos. This results in forgetting many important structures after several years. However, more interactive teaching methods like virtual reality, augmented reality, gamification, and motion sensors are becoming more popular since such methods ease the way we learn and keep the data in mind for longer terms. During our study, we designed a virtual reality based digital head anatomy platform to investigate whether a fully interactive anatomy platform is effective to learn anatomy and to understand the level of teaching and learning optimization. The Head is one of the most complicated human anatomy structures, with thousands of tiny, unique structures. This makes the head anatomy one of the most difficult parts to understand during class sessions. Therefore, we developed a fully interactive digital tool with 3D model marking, quiz structures, 2D/3D puzzle structures, and VR support so as to integrate the power of VR and gamification. The project has been developed in Unity game engine with HTC Vive Cosmos VR headset. The head anatomy 3D model has been selected with full skeletal, muscular, integumentary, head, teeth, lymph, and vein system. The biggest issue during the development was the complexity of our model and the marking of it in the 3D world system. 3D model marking requires to access to each unique structure in the counted subsystems which means hundreds of marking needs to be done. Some parts of our 3D head model were monolithic. This is why we worked on dividing such parts to subparts which is very time-consuming. In order to subdivide monolithic parts, one must use an external modeling tool. However, such tools generally come with high learning curves, and seamless division is not ensured. Second option was to integrate tiny colliders to all unique items for mouse interaction. However, outside colliders which cover inner trigger colliders cause overlapping, and these colliders repel each other. Third option is using raycasting. However, due to its own view-based nature, raycasting has some inherent problems. As the model rotate, view direction changes very frequently, and directional computations become even harder. This is why, finally, we studied on the local coordinate system. By taking the pivot point of the model into consideration (back of the nose), each sub-structure is marked with its own local coordinate with respect to the pivot. After converting the mouse position to the world position and checking its relation with the corresponding structure’s local coordinate, we were able to mark all points correctly. The advantage of this method is its applicability and accuracy for all types of monolithic anatomical structures.

Keywords: anatomy, e-learning, virtual reality, 3D model marking

Procedia PDF Downloads 100
6932 Data Poisoning Attacks on Federated Learning and Preventive Measures

Authors: Beulah Rani Inbanathan

Abstract:

In the present era, it is vivid from the numerous outcomes that data privacy is being compromised in various ways. Machine learning is one technology that uses the centralized server, and then data is given as input which is being analyzed by the algorithms present on this mentioned server, and hence outputs are predicted. However, each time the data must be sent by the user as the algorithm will analyze the input data in order to predict the output, which is prone to threats. The solution to overcome this issue is federated learning, where the models alone get updated while the data resides on the local machine and does not get exchanged with the other local models. Nevertheless, even on these local models, there are chances of data poisoning, and it is crystal clear from various experiments done by many people. This paper delves into many ways where data poisoning occurs and the many methods through which it is prevalent that data poisoning still exists. It includes the poisoning attacks on IoT devices, Edge devices, Autoregressive model, and also, on Industrial IoT systems and also, few points on how these could be evadible in order to protect our data which is personal, or sensitive, or harmful when exposed.

Keywords: data poisoning, federated learning, Internet of Things, edge computing

Procedia PDF Downloads 87
6931 ReactorDesign App: An Interactive Software for Self-Directed Explorative Learning

Authors: Chia Wei Lim, Ning Yan

Abstract:

The subject of reactor design, dealing with the transformation of chemical feedstocks into more valuable products, constitutes the central idea of chemical engineering. Despite its importance, the way it is taught to chemical engineering undergraduates has stayed virtually the same over the past several decades, even as the chemical industry increasingly leans towards the use of software for the design and daily monitoring of chemical plants. As such, there has been a widening learning gap as chemical engineering graduates transition from university to the industry since they are not exposed to effective platforms that relate the fundamental concepts taught during lectures to industrial applications. While the success of technology enhanced learning (TEL) has been demonstrated in various chemical engineering subjects, TELs in the teaching of reactor design appears to focus on the simulation of reactor processes, as opposed to arguably more important ideas such as the selection and optimization of reactor configuration for different types of reactions. This presents an opportunity for us to utilize the readily available easy-to-use MATLAB App platform to create an educational tool to aid the learning of fundamental concepts of reactor design and to link these concepts to the industrial context. Here, interactive software for the learning of reactor design has been developed to narrow the learning gap experienced by chemical engineering undergraduates. Dubbed the ReactorDesign App, it enables students to design reactors involving complex design equations for industrial applications without being overly focused on the tedious mathematical steps. With the aid of extensive visualization features, the concepts covered during lectures are explicitly utilized, allowing students to understand how these fundamental concepts are applied in the industrial context and equipping them for their careers. In addition, the software leverages the easily accessible MATLAB App platform to encourage self-directed learning. It is useful for reinforcing concepts taught, complementing homework assignments, and aiding exam revision. Accordingly, students are able to identify any lapses in understanding and clarify them accordingly. In terms of the topics covered, the app incorporates the design of different types of isothermal and non-isothermal reactors, in line with the lecture content and industrial relevance. The main features include the design of single reactors, such as batch reactors (BR), continuously stirred tank reactors (CSTR), plug flow reactors (PFR), and recycle reactors (RR), as well as multiple reactors consisting of any combination of ideal reactors. A version of the app, together with some guiding questions to aid explorative learning, was released to the undergraduates taking the reactor design module. A survey was conducted to assess its effectiveness, and an overwhelmingly positive response was received, with 89% of the respondents agreeing or strongly agreeing that the app has “helped [them] with understanding the unit” and 87% of the respondents agreeing or strongly agreeing that the app “offers learning flexibility”, compared to the conventional lecture-tutorial learning framework. In conclusion, the interactive ReactorDesign App has been developed to encourage self-directed explorative learning of the subject and demonstrate the industrial applications of the taught design concepts.

Keywords: explorative learning, reactor design, self-directed learning, technology enhanced learning

Procedia PDF Downloads 94
6930 Lean Impact Analysis Assessment Models: Development of a Lean Measurement Structural Model

Authors: Catherine Maware, Olufemi Adetunji

Abstract:

The paper is aimed at developing a model to measure the impact of Lean manufacturing deployment on organizational performance. The model will help industry practitioners to assess the impact of implementing Lean constructs on organizational performance. It will also harmonize the measurement models of Lean performance with the house of Lean that seems to have become the industry standard. The sheer number of measurement models for impact assessment of Lean implementation makes it difficult for new adopters to select an appropriate assessment model or deployment methodology. A literature review is conducted to classify the Lean performance model. Pareto analysis is used to select the Lean constructs for the development of the model. The model is further formalized through the use of Structural Equation Modeling (SEM) in defining the underlying latent structure of a Lean system. An impact assessment measurement model developed can be used to measure Lean performance and can be adopted by different industries.

Keywords: impact measurement model, lean bundles, lean manufacturing, organizational performance

Procedia PDF Downloads 486
6929 Spatial Time Series Models for Rice and Cassava Yields Based on Bayesian Linear Mixed Models

Authors: Panudet Saengseedam, Nanthachai Kantanantha

Abstract:

This paper proposes a linear mixed model (LMM) with spatial effects to forecast rice and cassava yields in Thailand at the same time. A multivariate conditional autoregressive (MCAR) model is assumed to present the spatial effects. A Bayesian method is used for parameter estimation via Gibbs sampling Markov Chain Monte Carlo (MCMC). The model is applied to the rice and cassava yields monthly data which have been extracted from the Office of Agricultural Economics, Ministry of Agriculture and Cooperatives of Thailand. The results show that the proposed model has better performance in most provinces in both fitting part and validation part compared to the simple exponential smoothing and conditional auto regressive models (CAR) from our previous study.

Keywords: Bayesian method, linear mixed model, multivariate conditional autoregressive model, spatial time series

Procedia PDF Downloads 397
6928 Multi-Layer Perceptron and Radial Basis Function Neural Network Models for Classification of Diabetic Retinopathy Disease Using Video-Oculography Signals

Authors: Ceren Kaya, Okan Erkaymaz, Orhan Ayar, Mahmut Özer

Abstract:

Diabetes Mellitus (Diabetes) is a disease based on insulin hormone disorders and causes high blood glucose. Clinical findings determine that diabetes can be diagnosed by electrophysiological signals obtained from the vital organs. 'Diabetic Retinopathy' is one of the most common eye diseases resulting on diabetes and it is the leading cause of vision loss due to structural alteration of the retinal layer vessels. In this study, features of horizontal and vertical Video-Oculography (VOG) signals have been used to classify non-proliferative and proliferative diabetic retinopathy disease. Twenty-five features are acquired by using discrete wavelet transform with VOG signals which are taken from 21 subjects. Two models, based on multi-layer perceptron and radial basis function, are recommended in the diagnosis of Diabetic Retinopathy. The proposed models also can detect level of the disease. We show comparative classification performance of the proposed models. Our results show that proposed the RBF model (100%) results in better classification performance than the MLP model (94%).

Keywords: diabetic retinopathy, discrete wavelet transform, multi-layer perceptron, radial basis function, video-oculography (VOG)

Procedia PDF Downloads 260
6927 Oryzanol Recovery from Rice Bran Oil: Adsorption Equilibrium Models Through Kinetics Data Approachments

Authors: A.D. Susanti, W. B. Sediawan, S.K. Wirawan, Budhijanto, Ritmaleni

Abstract:

Oryzanol content in rice bran oil (RBO) naturally has high antioxidant activity. Its reviewed has several health properties and high interested in pharmacy, cosmetics, and nutrition’s. Because of the low concentration of oryzanol in crude RBO (0.9-2.9%) then its need to be further processed for practical usage, such as via adsorption process. In this study, investigation and adjustment of adsorption equilibrium models were conducted through the kinetic data approachments. Mathematical modeling on kinetics of batch adsorption of oryzanol separation from RBO has been set-up and then applied for equilibrium results. The size of adsorbent particles used in this case are usually relatively small then the concentration in the adsorbent is assumed to be not different. Hence, the adsorption rate is controlled by the rate of oryzanol mass transfer from the bulk fluid of RBO to the surface of silica gel. In this approachments, the rate of mass transfer is assumed to be proportional to the concentration deviation from the equilibrium state. The equilibrium models applied were Langmuir, coefficient distribution, and Freundlich with the values of the parameters obtained from equilibrium results. It turned out that the models set-up can quantitatively describe the experimental kinetics data and the adjustment of the values of equilibrium isotherm parameters significantly improves the accuracy of the model. And then the value of mass transfer coefficient per unit adsorbent mass (kca) is obtained by curve fitting.

Keywords: adsorption equilibrium, adsorption kinetics, oryzanol, rice bran oil

Procedia PDF Downloads 323
6926 Vibration of a Beam on an Elastic Foundation Using the Variational Iteration Method

Authors: Desmond Adair, Kairat Ismailov, Martin Jaeger

Abstract:

Modelling of Timoshenko beams on elastic foundations has been widely used in the analysis of buildings, geotechnical problems, and, railway and aerospace structures. For the elastic foundation, the most widely used models are one-parameter mechanical models or two-parameter models to include continuity and cohesion of typical foundations, with the two-parameter usually considered the better of the two. Knowledge of free vibration characteristics of beams on an elastic foundation is considered necessary for optimal design solutions in many engineering applications, and in this work, the efficient and accurate variational iteration method is developed and used to calculate natural frequencies of a Timoshenko beam on a two-parameter foundation. The variational iteration method is a technique capable of dealing with some linear and non-linear problems in an easy and efficient way. The calculations are compared with those using a finite-element method and other analytical solutions, and it is shown that the results are accurate and are obtained efficiently. It is found that the effect of the presence of the two-parameter foundation is to increase the beam’s natural frequencies and this is thought to be because of the shear-layer stiffness, which has an effect on the elastic stiffness. By setting the two-parameter model’s stiffness parameter to zero, it is possible to obtain a one-parameter foundation model, and so, comparison between the two foundation models is also made.

Keywords: Timoshenko beam, variational iteration method, two-parameter elastic foundation model

Procedia PDF Downloads 196
6925 The Impact of Artificial Intelligence on Pharmacology

Authors: Ramy Reda Morgan Kamel

Abstract:

generation-greater education gear are being unexpectedly included into health packages globally. these gadget provide an interactive platform for students and may be used to deliver topics in various modes which include video games and simulations. Simulations are of particular hobby to healthcare education, wherein they are hired to enhance clinical know-how and help to bridge the distance among precept and exercise. Simulations will regularly test talents for practical responsibilities, but restrained research examines the effects of simulation on student perceptions of their getting to know. The aim of this observe become to determine the effects of an interactive virtual patient simulation for pharmacology schooling and clinical workout on scholar know-how, skills and confidence. Ethics popularity of the examine end up received from Griffith college studies Ethics Committee (PHM/eleven/14/HREC). The simulation became intended to duplicate the pharmacy surroundings and affected man or woman interaction. The content material material come to be designed to beautify know-how of proton-pump inhibitor pharmacology, role in therapeutics and secure deliver to sufferers. The tool changed into deployed into a 3rd-year scientific pharmacology and therapeutics course. a number of core exercise regions were examined along with the competency domains of wondering, counselling, referral and product provision. Baseline measures of pupil self-stated knowledge, capabilities and self warranty were taken preceding to the simulation using a especially designed questionnaire. A greater substantial questionnaire became deployed following the virtual affected character simulation, which moreover blanketed measures of scholar engagement with the hobby. A quiz assessing scholar proper and conceptual understanding of proton-pump inhibitor pharmacology and associated counselling statistics changed into also included in both questionnaires.

Keywords: electromagnetic solar system, nano-material, nano pharmacology, pharmacovigilance, quantum theoryclinical simulation, education, pharmacology, simulation, clinical pharmacology, pharmacometrics, career development pathways

Procedia PDF Downloads 13
6924 Positive Bias and Length Bias in Deep Neural Networks for Premises Selection

Authors: Jiaqi Huang, Yuheng Wang

Abstract:

Premises selection, the task of selecting a set of axioms for proving a given conjecture, is a major bottleneck in automated theorem proving. An array of deep-learning-based methods has been established for premises selection, but a perfect performance remains challenging. Our study examines the inaccuracy of deep neural networks in premises selection. Through training network models using encoded conjecture and axiom pairs from the Mizar Mathematical Library, two potential biases are found: the network models classify more premises as necessary than unnecessary, referred to as the ‘positive bias’, and the network models perform better in proving conjectures that paired with more axioms, referred to as ‘length bias’. The ‘positive bias’ and ‘length bias’ discovered could inform the limitation of existing deep neural networks.

Keywords: automated theorem proving, premises selection, deep learning, interpreting deep learning

Procedia PDF Downloads 184
6923 Modified Clusterwise Regression for Pavement Management

Authors: Mukesh Khadka, Alexander Paz, Hanns de la Fuente-Mella

Abstract:

Typically, pavement performance models are developed in two steps: (i) pavement segments with similar characteristics are grouped together to form a cluster, and (ii) the corresponding performance models are developed using statistical techniques. A challenge is to select the characteristics that define clusters and the segments associated with them. If inappropriate characteristics are used, clusters may include homogeneous segments with different performance behavior or heterogeneous segments with similar performance behavior. Prediction accuracy of performance models can be improved by grouping the pavement segments into more uniform clusters by including both characteristics and a performance measure. This grouping is not always possible due to limited information. It is impractical to include all the potential significant factors because some of them are potentially unobserved or difficult to measure. Historical performance of pavement segments could be used as a proxy to incorporate the effect of the missing potential significant factors in clustering process. The current state-of-the-art proposes Clusterwise Linear Regression (CLR) to determine the pavement clusters and the associated performance models simultaneously. CLR incorporates the effect of significant factors as well as a performance measure. In this study, a mathematical program was formulated for CLR models including multiple explanatory variables. Pavement data collected recently over the entire state of Nevada were used. International Roughness Index (IRI) was used as a pavement performance measure because it serves as a unified standard that is widely accepted for evaluating pavement performance, especially in terms of riding quality. Results illustrate the advantage of the using CLR. Previous studies have used CLR along with experimental data. This study uses actual field data collected across a variety of environmental, traffic, design, and construction and maintenance conditions.

Keywords: clusterwise regression, pavement management system, performance model, optimization

Procedia PDF Downloads 252
6922 Using the Bootstrap for Problems Statistics

Authors: Brahim Boukabcha, Amar Rebbouh

Abstract:

The bootstrap method based on the idea of exploiting all the information provided by the initial sample, allows us to study the properties of estimators. In this article we will present a theoretical study on the different methods of bootstrapping and using the technique of re-sampling in statistics inference to calculate the standard error of means of an estimator and determining a confidence interval for an estimated parameter. We apply these methods tested in the regression models and Pareto model, giving the best approximations.

Keywords: bootstrap, error standard, bias, jackknife, mean, median, variance, confidence interval, regression models

Procedia PDF Downloads 381
6921 An Interactive Online Academic Writing Resource for Research Students in Engineering

Authors: Eleanor K. P. Kwan

Abstract:

English academic writing, it has been argued, is an acquired language even for English speakers. For research students whose English is not their first language, however, the acquisition process is often more challenging. Instead of hoping that students would acquire the conventions themselves through extensive reading, there is a need for the explicit teaching of linguistic conventions in academic writing, as explicit teaching could help students to be more aware of the different generic conventions in different disciplines in science. This paper presents an interuniversity effort to develop an online academic writing resource for research students in five subdisciplines in engineering, upon the completion of the needs analysis which indicates that students and faculty members are more concerned about students’ ability to organize an extended text than about grammatical accuracy per se. In particular, this paper focuses on the materials developed for thesis writing (also called dissertation writing in some tertiary institutions), as theses form an essential graduation requirement for all research students and this genre is also expected to demonstrate the writer’s competence in research and contributions to the research community. Drawing on Swalesian move analysis of research articles, this online resource includes authentic materials written by students and faculty members from the participating institutes. Highlight will be given to several aspects and challenges of developing this online resource. First, as the online resource aims at moving beyond providing instructions on academic writing, a range of interactive activities need to be designed to engage the users, which is one feature which differentiates this online resource from other equally informative websites on academic writing. Second, it will also include discussion on divergent textual practices in different subdisciplines, which help to illustrate different practices among these subdisciplines. Third, since theses, probably one of the most extended texts a research student will complete, require effective use of signposting devices to facility readers’ understanding, this online resource will also provide both explanation and activities on different components that contribute to text coherence. Finally results from piloting will also be included to shed light on the effectiveness of the materials, which could be useful for future development.

Keywords: academic writing, English for academic purposes, online language learning materials, scientific writing

Procedia PDF Downloads 270
6920 Framework for Developing Change Team to Maximize Change Initiative Success

Authors: Mohammad Z. Ansari, Lisa Brodie, Marilyn Goh

Abstract:

Change facilitators are individuals who utilize change philosophy to make a positive change to organizations. The application of change facilitators can be seen in various change models; Lewin, Lippitt, etc. The facilitators within numerous change models are considered as internal/external consultants. Whilst most of the scholarly paper considers change facilitation as a consensus attempt to improve organization, there is a lack of a framework that develops both the organization and the change facilitator creating a self-sustaining change environment. This research paper introduces the development of the framework for change Leaders, Planners, and Executers (LPE), aiming at various organizational levels (Process, Departmental, and Organisational). The LPE framework is derived by exploring interrelated characteristics between facilitator(s) and the organization through qualitative research for understanding change management techniques and facilitator(s) behavioral aspect from existing Change Management models and Organisation behavior works of literature. The introduced framework assists in highlighting and identify the most appropriate change team to successfully deliver the change initiative within any organization (s).

Keywords: change initiative, LPE framework, change facilitator(s), sustainable change

Procedia PDF Downloads 196
6919 3D Building Model Utilizing Airborne LiDAR Dataset and Terrestrial Photographic Images

Authors: J. Jasmee, I. Roslina, A. Mohammed Yaziz & A.H Juazer Rizal

Abstract:

The need of an effective building information collection method is vital to support a diversity of land development activities. At present, advances in remote sensing such as airborne LiDAR (Light Detection and Ranging) is an established technology for building information collection, location, and elevation of the reflecting laser points towards the construction of 3D building models. In this study, LiDAR datasets and terrestrial photographic images of buildings towards the construction of 3D building models is explored. It is found that, the quantitative accuracy of the constructed 3D building model, namely in the horizontal and vertical components were ± 0.31m (RMSEx,y) and ± 0.145m (RMSEz) respectively. The accuracies were computed based on sixty nine (69) horizontal and twenty (20) vertical surveyed points. As for the qualitative assessment, it is shown that the appearance of the 3D building model is adequate to support the requirements of LOD3 presentation based on the OGC (Open Geospatial Consortium) standard CityGML.

Keywords: LiDAR datasets, DSM, DTM, 3D building models

Procedia PDF Downloads 323
6918 Improving University Operations with Data Mining: Predicting Student Performance

Authors: Mladen Dragičević, Mirjana Pejić Bach, Vanja Šimičević

Abstract:

The purpose of this paper is to develop models that would enable predicting student success. These models could improve allocation of students among colleges and optimize the newly introduced model of government subsidies for higher education. For the purpose of collecting data, an anonymous survey was carried out in the last year of undergraduate degree student population using random sampling method. Decision trees were created of which two have been chosen that were most successful in predicting student success based on two criteria: Grade Point Average (GPA) and time that a student needs to finish the undergraduate program (time-to-degree). Decision trees have been shown as a good method of classification student success and they could be even more improved by increasing survey sample and developing specialized decision trees for each type of college. These types of methods have a big potential for use in decision support systems.

Keywords: data mining, knowledge discovery in databases, prediction models, student success

Procedia PDF Downloads 408
6917 Giving Children with Osteogenesis Imperfecta a Voice: Overview of a Participatory Approach for the Development of an Interactive Communication Tool

Authors: M. Siedlikowski, F. Rauch, A. Tsimicalis

Abstract:

Osteogenesis Imperfecta (OI) is a genetic disorder of childhood onset that causes frequent fractures after minimal physical stress. To date, OI research has focused on medically- and surgically-oriented outcomes with little attention on the perspective of the affected child. It is a challenge to elicit the child’s voice in health care, in other words, their own perspective on their symptoms, but software development offers a way forward. Sisom (Norwegian acronym derived from ‘Si det som det er’ meaning ‘Tell it as it is’) is an award-winning, rigorously tested, interactive, computerized tool that helps children with chronic illnesses express their symptoms to their clinicians. The successful Sisom software tool, that addresses the child directly, has not yet been adapted to attend to symptoms unique to children with OI. The purpose of this study was to develop a Sisom paper prototype for children with OI by seeking the perspectives of end users, particularly, children with OI and clinicians. Our descriptive qualitative study was conducted at Shriners Hospitals for Children® – Canada, which follows the largest cohort of children with OI in North America. Purposive sampling was used to recruit 12 children with OI over three cycles. Nine clinicians oversaw the development process, which involved determining the relevance of current Sisom symptoms, vignettes, and avatars, as well as generating new Sisom OI components. Data, including field notes, transcribed audio-recordings, and drawings, were deductively analyzed using content analysis techniques. Guided by the following framework, data pertaining to symptoms, vignettes, and avatars were coded into five categories: a) Relevant; b) Irrelevant; c) To modify; d) To add; e) Unsure. Overall, 70.8% of Sisom symptoms were deemed relevant for inclusion, with 49.4% directly incorporated, and 21.3% incorporated with changes to syntax, and/or vignette, and/or location. Three additions were made to the ‘Avatar’ island. This allowed children to celebrate their uniqueness: ‘Makes you feel like you’re not like everybody else.’ One new island, ‘About Me’, was added to capture children’s worldviews. One new sub-island, ‘Getting Around’, was added to reflect accessibility issues. These issues were related to the children’s independence, their social lives, as well as the perceptions of others. In being consulted as experts throughout the co-creation of the Sisom OI paper prototype, children coded the Sisom symptoms and provided sound rationales for their chosen codes. In rationalizing their codes, all children shared personal stories about themselves and their relationships, insights about their OI, and an understanding of the strengths and challenges they experience on a day-to-day basis. The child’s perspective on their health is a basic right, and allowing it to be heard is the next frontier in the care of children with genetic diseases. Sisom OI, a methodological breakthrough within OI research, will offer clinicians an innovative and child-centered approach to capture this neglected perspective. It will provide a tool for the delivery of health care in the center that established the worldwide standard of care for children with OI.

Keywords: child health, interactive computerized communication tool, participatory approach, symptom management

Procedia PDF Downloads 157
6916 Investigating the Effectiveness of Multilingual NLP Models for Sentiment Analysis

Authors: Othmane Touri, Sanaa El Filali, El Habib Benlahmar

Abstract:

Natural Language Processing (NLP) has gained significant attention lately. It has proved its ability to analyze and extract insights from unstructured text data in various languages. It is found that one of the most popular NLP applications is sentiment analysis which aims to identify the sentiment expressed in a piece of text, such as positive, negative, or neutral, in multiple languages. While there are several multilingual NLP models available for sentiment analysis, there is a need to investigate their effectiveness in different contexts and applications. In this study, we aim to investigate the effectiveness of different multilingual NLP models for sentiment analysis on a dataset of online product reviews in multiple languages. The performance of several NLP models, including Google Cloud Natural Language API, Microsoft Azure Cognitive Services, Amazon Comprehend, Stanford CoreNLP, spaCy, and Hugging Face Transformers are being compared. The models based on several metrics, including accuracy, precision, recall, and F1 score, are being evaluated and compared to their performance across different categories of product reviews. In order to run the study, preprocessing of the dataset has been performed by cleaning and tokenizing the text data in multiple languages. Then training and testing each model has been applied using a cross-validation approach where randomly dividing the dataset into training and testing sets and repeating the process multiple times has been used. A grid search approach to optimize the hyperparameters of each model and select the best-performing model for each category of product reviews and language has been applied. The findings of this study provide insights into the effectiveness of different multilingual NLP models for Multilingual Sentiment Analysis and their suitability for different languages and applications. The strengths and limitations of each model were identified, and recommendations for selecting the most performant model based on the specific requirements of a project were provided. This study contributes to the advancement of research methods in multilingual NLP and provides a practical guide for researchers and practitioners in the field.

Keywords: NLP, multilingual, sentiment analysis, texts

Procedia PDF Downloads 107
6915 Drying Kinects of Soybean Seeds

Authors: Amanda Rithieli Pereira Dos Santos, Rute Quelvia De Faria, Álvaro De Oliveira Cardoso, Anderson Rodrigo Da Silva, Érica Leão Fernandes Araújo

Abstract:

The study of the kinetics of drying has great importance for the mathematical modeling, allowing to know about the processes of transference of heat and mass between the products and to adjust dryers managing new technologies for these processes. The present work had the objective of studying the kinetics of drying of soybean seeds and adjusting different statistical models to the experimental data varying cultivar and temperature. Soybean seeds were pre-dried in a natural environment in order to reduce and homogenize the water content to the level of 14% (b.s.). Then, drying was carried out in a forced air circulation oven at controlled temperatures of 38, 43, 48, 53 and 58 ± 1 ° C, using two soybean cultivars, BRS 8780 and Sambaíba, until reaching a hygroscopic equilibrium. The experimental design was completely randomized in factorial 5 x 2 (temperature x cultivar) with 3 replicates. To the experimental data were adjusted eleven statistical models used to explain the drying process of agricultural products. Regression analysis was performed using the least squares Gauss-Newton algorithm to estimate the parameters. The degree of adjustment was evaluated from the analysis of the coefficient of determination (R²), the adjusted coefficient of determination (R² Aj.) And the standard error (S.E). The models that best represent the drying kinetics of soybean seeds are those of Midilli and Logarítmico.

Keywords: curve of drying seeds, Glycine max L., moisture ratio, statistical models

Procedia PDF Downloads 630