Search results for: feature analysis
28342 On the Analysis of Pseudorandom Partial Quotient Sequences Generated from Continued Fractions
Authors: T. Padma, Jayashree S. Pillai
Abstract:
Random entities are an essential component in any cryptographic application. The suitability of a number theory based novel pseudorandom sequence called Pseudorandom Partial Quotient Sequence (PPQS) generated from the continued fraction expansion of irrational numbers, in cryptographic applications, is analyzed in this paper. An approach to build the algorithm around a hard mathematical problem has been considered. The PQ sequence is tested for randomness and its suitability as a cryptographic key by performing randomness analysis, key sensitivity and key space analysis, precision analysis and evaluating the correlation properties is established.Keywords: pseudorandom sequences, key sensitivity, correlation, security analysis, randomness analysis, sensitivity analysis
Procedia PDF Downloads 59428341 Water Supply and Demand Analysis for Ranchi City under Climate Change Using Water Evaluation and Planning System Model
Authors: Pappu Kumar, Ajai Singh, Anshuman Singh
Abstract:
There are different water user sectors such as rural, urban, mining, subsistence and commercial irrigated agriculture, commercial forestry, industry, power generation which are present in the catchment in Subarnarekha River Basin and Ranchi city. There is an inequity issue in the access to water. The development of the rural area, construction of new power generation plants, along with the population growth, the requirement of unmet water demand and the consideration of environmental flows, the revitalization of small-scale irrigation schemes is going to increase the water demands in almost all the water-stressed catchment. The WEAP Model was developed by the Stockholm Environment Institute (SEI) to enable evaluation of planning and management issues associated with water resources development. The WEAP model can be used for both urban and rural areas and can address a wide range of issues including sectoral demand analyses, water conservation, water rights and allocation priorities, river flow simulation, reservoir operation, ecosystem requirements and project cost-benefit analyses. This model is a tool for integrated water resource management and planning like, forecasting water demand, supply, inflows, outflows, water use, reuse, water quality, priority areas and Hydropower generation, In the present study, efforts have been made to access the utility of the WEAP model for water supply and demand analysis for Ranchi city. A detailed works have been carried out and it was tried to ascertain that the WEAP model used for generating different scenario of water requirement, which could help for the future planning of water. The water supplied to Ranchi city was mostly contributed by our study river, Hatiya reservoir and ground water. Data was collected from various agencies like PHE Ranchi, census data of 2011, Doranda reservoir and meteorology department etc. This collected and generated data was given as input to the WEAP model. The model generated the trends for discharge of our study river up to next 2050 and same time also generated scenarios calculating our demand and supplies for feature. The results generated from the model outputs predicting the water require 12 million litter. The results will help in drafting policies for future regarding water supplies and demands under changing climatic scenarios.Keywords: WEAP model, water demand analysis, Ranchi, scenarios
Procedia PDF Downloads 41928340 Analysis and the Fair Distribution Modeling of Urban Facilities in Kabul City
Authors: Ansari Mohammad Reza, Hiroko Ono, Fakhrullah Sarwari
Abstract:
Our world is fast heading toward being a predominantly urban planet. This can be a double-edged sword reality where it is as much frightening as it seems interesting. Moreover, a look to the current predictions and taking into the consideration the fact that about 90 percent of the coming urbanization is going to be absorbed by the towns and the cities of the developing countries of Asia and Africa, directly provide us the clues to assume a much more tragic ending to this story than to the happy one. Likewise, in a situation wherein most of these countries are still severely struggling to find the proper answer to their very first initial questions of urbanization—e.g. how to provide the essential structure for their cities, define the regulation, or even design the proper pattern on how the cities should be expanded—thus it is not weird to claim that most of the coming urbanization of the world is going to happen informally. This reality could not only bring the feature, landscape or the picture of the cities of the future under the doubt but at the same time provide the ground for the rise of a bunch of other essential questions of how the facilities would be distributed in these cities, or how fair will this pattern of distribution be. Kabul the capital of Afghanistan, as a city located in the developing world that its process of urbanization has been starting since 2001 and currently hold the position to be the fifth fastest growing city in the world, contained to a considerable slum ratio of 0.7—that means about 70 percent of its population is living in the informal areas—subsequently could be a very good case study to put this questions into the research and find out how the informal development of a city can lead to the unfair and unbalanced distribution of its facilities. Likewise, in this study we tried our best to first propose the ideal model for the fair distribution of the facilities in the Kabul city—where all the citizens have the same equal chance of access to the facilities—and then evaluate the situation of the city based on how fair the facilities are currently distributed therein. We subsequently did it by the comparative analysis between the existing facility rate in the formal and informal areas of the city to the one that was proposed as the fair ideal model.Keywords: Afghanistan, facility distribution, formal settlements, informal settlements, Kabul
Procedia PDF Downloads 12128339 A New Scheme for Chain Code Normalization in Arabic and Farsi Scripts
Authors: Reza Shakoori
Abstract:
This paper presents a structural correction of Arabic and Persian strokes using manipulation of their chain codes in order to improve the rate and performance of Persian and Arabic handwritten word recognition systems. It collects pure and effective features to represent a character with one consolidated feature vector and reduces variations in order to decrease the number of training samples and increase the chance of successful classification. Our results also show that how the proposed approaches can simplify classification and consequently recognition by reducing variations and possible noises on the chain code by keeping orientation of characters and their backbone structures.Keywords: Arabic, chain code normalization, OCR systems, image processing
Procedia PDF Downloads 40528338 Enhancing Fault Detection in Rotating Machinery Using Wiener-CNN Method
Authors: Mohamad R. Moshtagh, Ahmad Bagheri
Abstract:
Accurate fault detection in rotating machinery is of utmost importance to ensure optimal performance and prevent costly downtime in industrial applications. This study presents a robust fault detection system based on vibration data collected from rotating gears under various operating conditions. The considered scenarios include: (1) both gears being healthy, (2) one healthy gear and one faulty gear, and (3) introducing an imbalanced condition to a healthy gear. Vibration data was acquired using a Hentek 1008 device and stored in a CSV file. Python code implemented in the Spider environment was used for data preprocessing and analysis. Winner features were extracted using the Wiener feature selection method. These features were then employed in multiple machine learning algorithms, including Convolutional Neural Networks (CNN), Multilayer Perceptron (MLP), K-Nearest Neighbors (KNN), and Random Forest, to evaluate their performance in detecting and classifying faults in both the training and validation datasets. The comparative analysis of the methods revealed the superior performance of the Wiener-CNN approach. The Wiener-CNN method achieved a remarkable accuracy of 100% for both the two-class (healthy gear and faulty gear) and three-class (healthy gear, faulty gear, and imbalanced) scenarios in the training and validation datasets. In contrast, the other methods exhibited varying levels of accuracy. The Wiener-MLP method attained 100% accuracy for the two-class training dataset and 100% for the validation dataset. For the three-class scenario, the Wiener-MLP method demonstrated 100% accuracy in the training dataset and 95.3% accuracy in the validation dataset. The Wiener-KNN method yielded 96.3% accuracy for the two-class training dataset and 94.5% for the validation dataset. In the three-class scenario, it achieved 85.3% accuracy in the training dataset and 77.2% in the validation dataset. The Wiener-Random Forest method achieved 100% accuracy for the two-class training dataset and 85% for the validation dataset, while in the three-class training dataset, it attained 100% accuracy and 90.8% accuracy for the validation dataset. The exceptional accuracy demonstrated by the Wiener-CNN method underscores its effectiveness in accurately identifying and classifying fault conditions in rotating machinery. The proposed fault detection system utilizes vibration data analysis and advanced machine learning techniques to improve operational reliability and productivity. By adopting the Wiener-CNN method, industrial systems can benefit from enhanced fault detection capabilities, facilitating proactive maintenance and reducing equipment downtime.Keywords: fault detection, gearbox, machine learning, wiener method
Procedia PDF Downloads 8128337 Impact on the Results of Sub-Group Analysis on Performance of Recommender Systems
Authors: Ho Yeon Park, Kyoung-Jae Kim
Abstract:
The purpose of this study is to investigate whether friendship in social media can be an important factor in recommender system through social scientific analysis of friendship in popular social media such as Facebook and Twitter. For this purpose, this study analyzes data on friendship in real social media using component analysis and clique analysis among sub-group analysis in social network analysis. In this study, we propose an algorithm to reflect the results of sub-group analysis on the recommender system. The key to this algorithm is to ensure that recommendations from users in friendships are more likely to be reflected in recommendations from users. As a result of this study, outcomes of various subgroup analyzes were derived, and it was confirmed that the results were different from the results of the existing recommender system. Therefore, it is considered that the results of the subgroup analysis affect the recommendation performance of the system. Future research will attempt to generalize the results of the research through further analysis of various social data.Keywords: sub-group analysis, social media, social network analysis, recommender systems
Procedia PDF Downloads 36728336 Investigating Salafism and Its Founder
Authors: Vahid Hosseinzadeh
Abstract:
Salafism is a movement of thought-religion that was born into Sunni Islam and Hanbali sect. However, many groups and different attitudes call themselves Salafis, but they all have common characteristics, the main of which is radical and retrograde interpretation of Islamic sources. Taqi Ad-Din Ahmad ibn Taymiyyah in the Muslim world was the first thinker who established these thoughts. The authors of this article initially tried to express the meaning of Salafism and its appellation in order to focus on the beliefs and thoughts of Ibn Taymiyyah. In this way, it was tried to extract the intellectual foundations of Ibn Taymiyya from the literature and scientific works of his own using a descriptive-analytical method. Extreme focus on the appearance of Quranic phrases and opposition to any new thing that did not exist in Qur'an, Sunnah and the first 3 centuries of Islam, are among the central feature of his thoughts.Keywords: Salafism, Ibn Taymiyyah, radical literalism, monotheism, polytheism, takfir
Procedia PDF Downloads 62128335 On Grammatical Metaphors: A Corpus-Based Reflection on the Academic Texts Written in the Field of Environmental Management
Authors: Masoomeh Estaji, Ahdie Tahamtani
Abstract:
Considering the necessity of conducting research and publishing academic papers during Master’s and Ph.D. programs, graduate students are in dire need of improving their writing skills through either writing courses or self-study planning. One key feature that could aid academic papers to look more sophisticated is the application of grammatical metaphors (GMs). These types of metaphors represent the ‘non-congruent’ and ‘implicit’ ways of decoding meaning through which one grammatical category is replaced by another, more implied counterpart, which can alter the readers’ understanding of the text as well. Although a number of studies have been conducted on the application of GMs across various disciplines, almost none has been devoted to the field of environmental management, and the scope of the previous studies has been relatively limited compared to the present work. In the current study, attempts were made to analyze different types of GMs used in academic papers published in top-tiered journals in the field of environmental management, and make a list of the most frequently used GMs based on their functions in this particular discipline to make the teaching of academic writing courses more explicit and the composition of academic texts more well-structured. To fulfill these purposes, a corpus-based analysis based on the two theoretical models of Martin et al. (1997) and Liardet (2014) was run. Through two stages of manual analysis and concordancers, ten recent academic articles entailing 132490 words published in two prestigious journals were precisely scrutinized. The results yielded that through the whole IMRaD sections of the articles, among all types of ideational GMs, material processes were the most frequent types. The second and the third ranks would apply to the relational and mental categories, respectively. Regarding the use of interpersonal GMs, objective expanding metaphors were the highest in number. In contrast, subjective interpersonal metaphors, either expanding or contracting, were the least significant. This would suggest that scholars in the field of Environmental Management tended to shift the focus on the main procedures and explain technical phenomenon in detail, rather than to compare and contrast other statements and subjective beliefs. Moreover, since no instances of verbal ideational metaphors were detected, it could be deduced that the act of ‘saying or articulating’ something might be against the standards of the academic genre. One other assumption would be that the application of ideational GMs is context-embedded and that the more technical they are, the least frequent they become. For further studies, it is suggested that the employment of GMs to be studied in a wider scope and other disciplines, and the third type of GMs known as ‘textual’ metaphors to be included as well.Keywords: English for specific purposes, grammatical metaphor, academic texts, corpus-based analysis
Procedia PDF Downloads 16928334 Sentiment Analysis: Comparative Analysis of Multilingual Sentiment and Opinion Classification Techniques
Authors: Sannikumar Patel, Brian Nolan, Markus Hofmann, Philip Owende, Kunjan Patel
Abstract:
Sentiment analysis and opinion mining have become emerging topics of research in recent years but most of the work is focused on data in the English language. A comprehensive research and analysis are essential which considers multiple languages, machine translation techniques, and different classifiers. This paper presents, a comparative analysis of different approaches for multilingual sentiment analysis. These approaches are divided into two parts: one using classification of text without language translation and second using the translation of testing data to a target language, such as English, before classification. The presented research and results are useful for understanding whether machine translation should be used for multilingual sentiment analysis or building language specific sentiment classification systems is a better approach. The effects of language translation techniques, features, and accuracy of various classifiers for multilingual sentiment analysis is also discussed in this study.Keywords: cross-language analysis, machine learning, machine translation, sentiment analysis
Procedia PDF Downloads 71528333 Sentiment Analysis in Social Networks Sites Based on a Bibliometrics Analysis: A Comprehensive Analysis and Trends for Future Research Planning
Authors: Jehan Fahim M. Alsulami
Abstract:
Academic research about sentiment analysis in sentiment analysis has obtained significant advancement over recent years and is flourishing from the collection of knowledge provided by various academic disciplines. In the current study, the status and development trend of the field of sentiment analysis in social networks is evaluated through a bibliometric analysis of academic publications. In particular, the distributions of publications and citations, the distribution of subject, predominant journals, authors, countries are analyzed. The collaboration degree is applied to measure scientific connections from different aspects. Moreover, the keyword co-occurrence analysis is used to find out the major research topics and their evolutions throughout the time span. The area of sentiment analysis in social networks has gained growing attention in academia, with computer science and engineering as the top main research subjects. China and the USA provide the most to the area development. Authors prefer to collaborate more with those within the same nation. Among the research topics, newly risen topics such as COVID-19, customer satisfaction are discovered.Keywords: bibliometric analysis, sentiment analysis, social networks, social media
Procedia PDF Downloads 21928332 Sensitivity to Misusing Verb Inflections in Both Finite and Non-Finite Clauses in Native and Non-Native Russian: A Self-Paced Reading Investigation
Authors: Yang Cao
Abstract:
Analyzing the oral production of Chinese-speaking learners of English as a second language (L2), we can find a large variety of verb inflections – Why does it seem so hard for them to use consistent correct past morphologies in obligatory past contexts? Failed Functional Features Hypothesis (FFFH) attributes the rather non-target-like performance to the absence of [±past] feature in their L1 Chinese, arguing that for post puberty learners, new features in L2 are no more accessible. By contrast, Missing Surface Inflection Hypothesis (MSIH) tends to believe that all features are actually acquirable for late L2 learners, while due to the mapping difficulties from features to forms, it is hard for them to realize the consistent past morphologies on the surface. However, most of the studies are limited to the verb morphologies in finite clauses and few studies have ever attempted to figure out these learners’ performance in non-finite clauses. Additionally, it has been discussed that Chinese learners may be able to tell the finite/infinite distinction (i.e. the [±finite] feature might be selected in Chinese, even though the existence of [±past] is denied). Therefore, adopting a self-paced reading task (SPR), the current study aims to analyze the processing patterns of Chinese-speaking learners of L2 Russian, in order to find out if they are sensitive to misuse of tense morphologies in both finite and non-finite clauses and whether they are sensitive to the finite/infinite distinction presented in Russian. The study targets L2 Russian due to its systematic morphologies in both present and past tenses. A native Russian group, as well as a group of English-speaking learners of Russian, whose L1 has definitely selected both [±finite] and [±past] features, will also be involved. By comparing and contrasting performance of the three language groups, the study is going to further examine and discuss the two theories, FFFH and MSIH. Preliminary hypotheses are: a) Russian native speakers are expected to spend longer time reading the verb forms which violate the grammar; b) it is expected that Chinese participants are, at least, sensitive to the misuse of inflected verbs in non-finite clauses, although no sensitivity to the misuse of infinitives in finite clauses might be found. Therefore, an interaction of finite and grammaticality is expected to be found, which indicate that these learners are able to tell the finite/infinite distinction; and c) having selected [±finite] and [±past], English-speaking learners of Russian are expected to behave target-likely, supporting L1 transfer.Keywords: features, finite clauses, morphosyntax, non-finite clauses, past morphologies, present morphologies, Second Language Acquisition, self-paced reading task, verb inflections
Procedia PDF Downloads 11028331 Human Identification Using Local Roughness Patterns in Heartbeat Signal
Authors: Md. Khayrul Bashar, Md. Saiful Islam, Kimiko Yamashita, Yano Midori
Abstract:
Despite having some progress in human authentication, conventional biometrics (e.g., facial features, fingerprints, retinal scans, gait, voice patterns) are not robust against falsification because they are neither confidential nor secret to an individual. As a non-invasive tool, electrocardiogram (ECG) has recently shown a great potential in human recognition due to its unique rhythms characterizing the variability of human heart structures (chest geometry, sizes, and positions). Moreover, ECG has a real-time vitality characteristic that signifies the live signs, which ensure legitimate individual to be identified. However, the detection accuracy of the current ECG-based methods is not sufficient due to a high variability of the individual’s heartbeats at a different instance of time. These variations may occur due to muscle flexure, the change of mental or emotional states, and the change of sensor positions or long-term baseline shift during the recording of ECG signal. In this study, a new method is proposed for human identification, which is based on the extraction of the local roughness of ECG heartbeat signals. First ECG signal is preprocessed using a second order band-pass Butterworth filter having cut-off frequencies of 0.00025 and 0.04. A number of local binary patterns are then extracted by applying a moving neighborhood window along the ECG signal. At each instant of the ECG signal, the pattern is formed by comparing the ECG intensities at neighboring time points with the central intensity in the moving window. Then, binary weights are multiplied with the pattern to come up with the local roughness description of the signal. Finally, histograms are constructed that describe the heartbeat signals of individual subjects in the database. One advantage of the proposed feature is that it does not depend on the accuracy of detecting QRS complex, unlike the conventional methods. Supervised recognition methods are then designed using minimum distance to mean and Bayesian classifiers to identify authentic human subjects. An experiment with sixty (60) ECG signals from sixty adult subjects from National Metrology Institute of Germany (NMIG) - PTB database, showed that the proposed new method is promising compared to a conventional interval and amplitude feature-based method.Keywords: human identification, ECG biometrics, local roughness patterns, supervised classification
Procedia PDF Downloads 40528330 A Comparative Analysis of Social Stratification in the Participation of Women in Agricultural Activity: A Case Study of District Khushab (Punjab) and D. I. Khan (KPK), Pakistan
Authors: Sohail Ahmad Umer
Abstract:
Since last few decades a question is raising on the subject of the importance of women in different societies of the world particularly in the developing societies of Asia and Africa. Female population constitutes almost 50% of the total population of the world and is playing a significant role in the economy with male population. In Pakistan, a developing country of Asia with majority of Muslim population, working women role is more focused. Women of rural background who are working as voluntary workers and their working hours are neither recorded nor recognized. Agricultural statistics shows that the female participation rate is below 40% while other sources claim them below 20%. Here in present study, another effort has been made to compare the women role in two different provinces of Pakistan to analyze the participation of women in agricultural activities like sowing, picking, irrigating the fields, harvesting and threshing of crops, caring and feeding of the animals, collecting the firewood and etc,as without these activities the farming would be incomplete. One hundred villages in the district Khushab (Punjab) and one hundred villages in district D.I.Khan (KPK) were selected and 33% of the families of each village have been interviewed to study their input in agriculture work. Another important feature is the social stratification therefore the contribution by different variables like the ownership, tenancy, education and caste has also been studied.Keywords: caste, social stratification, tenancy, voluntary workers
Procedia PDF Downloads 37228329 DenseNet and Autoencoder Architecture for COVID-19 Chest X-Ray Image Classification and Improved U-Net Lung X-Ray Segmentation
Authors: Jonathan Gong
Abstract:
Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.Keywords: artificial intelligence, convolutional neural networks, deep learning, image processing, machine learning
Procedia PDF Downloads 13128328 Analysis of Citation Rate and Data Reuse for Openly Accessible Biodiversity Datasets on Global Biodiversity Information Facility
Authors: Nushrat Khan, Mike Thelwall, Kayvan Kousha
Abstract:
Making research data openly accessible has been mandated by most funders over the last 5 years as it promotes reproducibility in science and reduces duplication of effort to collect the same data. There are evidence that articles that publicly share research data have higher citation rates in biological and social sciences. However, how and whether shared data is being reused is not always intuitive as such information is not easily accessible from the majority of research data repositories. This study aims to understand the practice of data citation and how data is being reused over the years focusing on biodiversity since research data is frequently reused in this field. Metadata of 38,878 datasets including citation counts were collected through the Global Biodiversity Information Facility (GBIF) API for this purpose. GBIF was used as a data source since it provides citation count for datasets, not a commonly available feature for most repositories. Analysis of dataset types, citation counts, creation and update time of datasets suggests that citation rate varies for different types of datasets, where occurrence datasets that have more granular information have higher citation rates than checklist and metadata-only datasets. Another finding is that biodiversity datasets on GBIF are frequently updated, which is unique to this field. Majority of the datasets from the earliest year of 2007 were updated after 11 years, with no dataset that was not updated since creation. For each year between 2007 and 2017, we compared the correlations between update time and citation rate of four different types of datasets. While recent datasets do not show any correlations, 3 to 4 years old datasets show weak correlation where datasets that were updated more recently received high citations. The results are suggestive that it takes several years to cumulate citations for research datasets. However, this investigation found that when searched on Google Scholar or Scopus databases for the same datasets, the number of citations is often not the same as GBIF. Hence future aim is to further explore the citation count system adopted by GBIF to evaluate its reliability and whether it can be applicable to other fields of studies as well.Keywords: data citation, data reuse, research data sharing, webometrics
Procedia PDF Downloads 17828327 Meitu and the Case of the AI Art Movement
Authors: Taliah Foudah, Sana Masri, Jana Al Ghamdi, Rimaz Alzaaqi
Abstract:
This research project explores the creative works of the app Metui, which allows consumers to edit their photos and use the new and popular AI feature, which turns any photo into a cartoon-like animated image with beautified enhancements. Studying this AI app demonstrates the significance of the ability in which AI can develop intricate designs which verily replicate the human mind. Our goal was to investigate the Metui app by asking our audience certain questions about its functionality and their personal feelings about its credibility as well as their beliefs as to how this app will add to the future of the AI generation, both positively and negatively. Their responses were further explored by analyzing the questions and responses thoroughly and calculating the results through pie charts. Overall, it was concluded that the Metui app is a powerful step forward for AI by replicating the intelligence of humans and its creativity to either benefit society or do the opposite.Keywords: AI Art, Meitu, application, photo editing
Procedia PDF Downloads 6928326 Mood Recognition Using Indian Music
Authors: Vishwa Joshi
Abstract:
The study of mood recognition in the field of music has gained a lot of momentum in the recent years with machine learning and data mining techniques and many audio features contributing considerably to analyze and identify the relation of mood plus music. In this paper we consider the same idea forward and come up with making an effort to build a system for automatic recognition of mood underlying the audio song’s clips by mining their audio features and have evaluated several data classification algorithms in order to learn, train and test the model describing the moods of these audio songs and developed an open source framework. Before classification, Preprocessing and Feature Extraction phase is necessary for removing noise and gathering features respectively.Keywords: music, mood, features, classification
Procedia PDF Downloads 50028325 An Architectural Approach for the Dynamic Adaptation of Services-Based Software
Authors: Mohhamed Yassine Baroudi, Abdelkrim Benammar, Fethi Tarik Bendimerad
Abstract:
This paper proposes software architecture for dynamical service adaptation. The services are constituted by reusable software components. The adaptation’s goal is to optimize the service function of their execution context. For a first step, the context will take into account just the user needs but other elements will be added. A particular feature in our proposition is the profiles that are used not only to describe the context’s elements but also the components itself. An adapter analyzes the compatibility between all these profiles and detects the points where the profiles are not compatibles. The same Adapter search and apply the possible adaptation solutions: component customization, insertion, extraction or replacement.Keywords: adaptative service, software component, service, dynamic adaptation
Procedia PDF Downloads 30028324 Identifying, Reporting and Preventing Medical Errors Among Nurses Working in Critical Care Units At Kenyatta National Hospital, Kenya: Closing the Gap Between Attitude and Practice
Authors: Jared Abuga, Wesley Too
Abstract:
Medical error is the third leading cause of death in US, with approximately 98,000 deaths occurring every year as a result of medical errors. The world financial burden of medication errors is roughly USD 42 billion. Medication errors may lead to at least one death daily and injure roughly 1.3 million people every year. Medical error reporting is essential in creating a culture of accountability in our healthcare system. Studies have shown that attitudes and practice of healthcare workers in reporting medical errors showed that the major factors in under-reporting of errors included work stress and fear of medico-legal consequences due to the disclosure of error. Further, the majority believed that increase in reporting medical errors would contribute to a better system. Most hospitals depend on nurses to discover medication errors because they are considered to be the sources of these errors, as contributors or mere observers, consequently, the nurse’s perception of medication errors and what needs to be done is a vital feature to reducing incidences of medication errors. We sought to explore knowledge among nurses on medical errors and factors affecting or hindering reporting of medical errors among nurses working at the emergency unit, KNH. Critical care nurses are faced with many barriers to completing incident reports on medication errors. One of these barriers which contribute to underreporting is a lack of education and/or knowledge regarding medication errors and the reporting process. This study, therefore, sought to determine the availability and the use of reporting systems for medical errors in critical care unity. It also sought to establish nurses’ perception regarding medical errors and reporting and document factors facilitating timely identification and reporting of medical errors in critical care settings. Methods: The study used cross-section study design to collect data from 76 critical care nurses from Kenyatta Teaching & Research National Referral Hospital, Kenya. Data analysis and results is ongoing. By October 2022, we will have analysis, results, discussions, and recommendations of the study for purposes of the conference in 2023Keywords: errors, medical, kenya, nurses, safety
Procedia PDF Downloads 24928323 Clinicopathological Characteristics in Male Breast Cancer: A Case Series and Literature Review
Authors: Mohamed Shafi Mahboob Ali
Abstract:
Male breast cancer (MBC) is a rare entity with overall cases reported less than 1%. However, the incidence of MBC is regularly rising every year. Due to the lack of data on MBC, diagnosis and treatment are tailored to female breast cancer. MBC risk increases with age and is usually diagnosed ten years late as the disease progression is slow compared to female breast cancer (FBC). The most common feature of MBC is an intra-ductal variant, and often, upon diagnosis, the stage of the disease is already advanced. The Prognosis of MBC is often flawed, but new treatment modalities are emerging with the current knowledge and advancement. We presented a series of male breast cancer in our center, highlighting the clinicopathological, radiological and treatment options.Keywords: male, breast, cancer, clinicopathology, ultrasound, CT scan
Procedia PDF Downloads 9928322 Professionals’ Learning from Casework in Child Protection: The View from Within
Authors: Jude Harrison
Abstract:
Child protection is a complex and sensitive practice. The core responsibility is the care and protection of children and young people who have been subject to or who are at risk from abuse and neglect. The work involves investigating allegations of harm, preparing for and making representations to the legal system, and case planning and management across a continuum of complicated care interventions. Professionals’ learning for child protection practice is evident in a range of literature investigating multiple learning processes such as university preparation, student placements, professional supervision, training, and other post-qualifying professional development experiences at work. There is, however, very limited research into how caseworkers learn in and through their daily practice. Little is known, therefore, about how learning at work unfolds for caseworkers, the dimensions in which it can be understood or the ways in which it can be best facilitated and supported. Compounding this, much of the current child protection learning literature reflects an orthodox conception of learning as mentalistic and individualised, in which knowledge is typically understood as abstract theory or as technical skill or competency. This presentation outlines key findings from a PhD research study that explored learning at work for statutory child protection caseworkers from an alternative interpretation of learning using a practice theory approach. Practice theory offers an interpretation of learning as performative and grounded in situated experience. The findings of the study show that casework practice is both a mode and site of learning. The study was ethnographic in design based and followed 17 child protection caseworkers via in-depth interviews, observations and participant reflective journaling. Inductive and abductive analysis was used to organise and interpret the data and expand analysis, leading to themes. Key findings show learning to be a sociomaterial property of doing; the social ontological character of learning; and teleoaffectivity as a feature of learning. The findings contribute to theoretical and practical understandings of learning and practice in child protection, child welfare and the professional learning literature more broadly. The findings have potential to contribute to policy directions at state, territory and national levels to enhance child protection practice and systems.Keywords: adiult learning, workplace learning, child welfare, sociomaterial, practice theory
Procedia PDF Downloads 7628321 Design and Implementation of an Image Based System to Enhance the Security of ATM
Authors: Seyed Nima Tayarani Bathaie
Abstract:
In this paper, an image-receiving system was designed and implemented through optimization of object detection algorithms using Haar features. This optimized algorithm served as face and eye detection separately. Then, cascading them led to a clear image of the user. Utilization of this feature brought about higher security by preventing fraud. This attribute results from the fact that services will be given to the user on condition that a clear image of his face has already been captured which would exclude the inappropriate person. In order to expedite processing and eliminating unnecessary ones, the input image was compressed, a motion detection function was included in the program, and detection window size was confined.Keywords: face detection algorithm, Haar features, security of ATM
Procedia PDF Downloads 42028320 An 8-Bit, 100-MSPS Fully Dynamic SAR ADC for Ultra-High Speed Image Sensor
Authors: F. Rarbi, D. Dzahini, W. Uhring
Abstract:
In this paper, a dynamic and power efficient 8-bit and 100-MSPS Successive Approximation Register (SAR) Analog-to-Digital Converter (ADC) is presented. The circuit uses a non-differential capacitive Digital-to-Analog (DAC) architecture segmented by 2. The prototype is produced in a commercial 65-nm 1P7M CMOS technology with 1.2-V supply voltage. The size of the core ADC is 208.6 x 103.6 µm2. The post-layout noise simulation results feature a SNR of 46.9 dB at Nyquist frequency, which means an effective number of bit (ENOB) of 7.5-b. The total power consumption of this SAR ADC is only 1.55 mW at 100-MSPS. It achieves then a figure of merit of 85.6 fJ/step.Keywords: CMOS analog to digital converter, dynamic comparator, image sensor application, successive approximation register
Procedia PDF Downloads 41828319 View Synthesis of Kinetic Depth Imagery for 3D Security X-Ray Imaging
Authors: O. Abusaeeda, J. P. O. Evans, D. Downes
Abstract:
We demonstrate the synthesis of intermediary views within a sequence of X-ray images that exhibit depth from motion or kinetic depth effect in a visual display. Each synthetic image replaces the requirement for a linear X-ray detector array during the image acquisition process. Scale invariant feature transform, SIFT, in combination with epipolar morphing is employed to produce synthetic imagery. Comparison between synthetic and ground truth images is reported to quantify the performance of the approach. Our work is a key aspect in the development of a 3D imaging modality for the screening of luggage at airport checkpoints. This programme of research is in collaboration with the UK Home Office and the US Dept. of Homeland Security.Keywords: X-ray, kinetic depth, KDE, view synthesis
Procedia PDF Downloads 26528318 MIMIC: A Multi Input Micro-Influencers Classifier
Authors: Simone Leonardi, Luca Ardito
Abstract:
Micro-influencers are effective elements in the marketing strategies of companies and institutions because of their capability to create an hyper-engaged audience around a specific topic of interest. In recent years, many scientific approaches and commercial tools have handled the task of detecting this type of social media users. These strategies adopt solutions ranging from rule based machine learning models to deep neural networks and graph analysis on text, images, and account information. This work compares the existing solutions and proposes an ensemble method to generalize them with different input data and social media platforms. The deployed solution combines deep learning models on unstructured data with statistical machine learning models on structured data. We retrieve both social media accounts information and multimedia posts on Twitter and Instagram. These data are mapped into feature vectors for an eXtreme Gradient Boosting (XGBoost) classifier. Sixty different topics have been analyzed to build a rule based gold standard dataset and to compare the performances of our approach against baseline classifiers. We prove the effectiveness of our work by comparing the accuracy, precision, recall, and f1 score of our model with different configurations and architectures. We obtained an accuracy of 0.91 with our best performing model.Keywords: deep learning, gradient boosting, image processing, micro-influencers, NLP, social media
Procedia PDF Downloads 18428317 Reconstructing the Segmental System of Proto-Graeco-Phrygian: a Bottom-Up Approach
Authors: Aljoša Šorgo
Abstract:
Recent scholarship on Phrygian has begun to more closely examine the long-held belief that Greek and Phrygian are two very closely related languages. It is now clear that Graeco-Phrygian can be firmly postulated as a subclade of the Indo-European languages. The present paper will focus on the reconstruction of the phonological and phonetic segments of Proto-Graeco-Phrygian (= PGPh.) by providing relevant correspondence sets and reconstructing the classes of segments. The PGPh. basic vowel system consisted of ten phonemic oral vowels: */a e o ā ē ī ō ū/. The correspondences of the vowels are clear and leave little open to ambiguity. There were four resonants and two semi-vowels in PGPh.: */r l m n i̯ u̯/, which could appear in both a consonantal and a syllabic function, with the distribution between the two still being phonotactically predictable. Of note is the fact that the segments *m and *n seem to have merged when their phonotactic position would see them used in a syllabic function. Whether the segment resulting from this merger was a nasalized vowel (most likely *[ã]) or a syllabic nasal *[N̥] (underspecified for place of articulation) cannot be determined at this stage. There were three fricatives in PGPh.: */s h ç/. *s and *h are easily identifiable. The existence of *ç, which may seem unexpected, is postulated on the basis of the correspondence Gr. ὄς ~ Phr. yos/ιος. It is of note that Bozzone has previously proposed the existence of *ç ( < PIE *h₁i̯-) in an early stage of Greek even without taking into account Phrygian data. Finally, the system of stops in PGPh. distinguished four places of articulation (labial, dental, velar, and labiovelar) and three phonation types. The question of which three phonation types were actually present in PGPh. is one of great importance for the ongoing debate on the realization of the three series in PIE. Since the matter is still very much in dispute, we ought to, at this stage, endeavour to reconstruct the PGPh. system without recourse to the other IE languages. The three series of correspondences are: 1. Gr. T (= tenuis) ~ Phr. T; 2. Gr. D (= media) ~ Phr. T; 3. Gr. TA (= tenuis aspirata) ~ Phr. M. The first series must clearly be reconstructed as composed of voiceless stops. The second and third series are more problematic. With a bottom-up approach, neither the second nor the third series of correspondences are compatible with simple modal voicing, and the reflexes differ greatly in voice onset time. Rather, the defining feature distinguishing the two series was [±spread glottis], with ancillary vibration of the vocal cords. In PGPh. the second series was undergoing further spreading of the glottis. As the two languages split, this process would continue, but be affected by dissimilar changes in VOT, which was ultimately phonemicized in both languages as the defining feature distinguishing between their series of stops.Keywords: bottom-up reconstruction, Proto-Graeco-Phrygian, spread glottis, syllabic resonant
Procedia PDF Downloads 5028316 Enhanced Thai Character Recognition with Histogram Projection Feature Extraction
Authors: Benjawan Rangsikamol, Chutimet Srinilta
Abstract:
This research paper deals with extraction of Thai character features using the proposed histogram projection so as to improve the recognition performance. The process starts with transformation of image files into binary files before thinning. After character thinning, the skeletons are entered into the proposed extraction using histogram projection (horizontal and vertical) to extract unique features which are inputs of the subsequent recognition step. The recognition rate with the proposed extraction technique is as high as 97 percent since the technique works very well with the idiosyncrasies of Thai characters.Keywords: character recognition, histogram projection, multilayer perceptron, Thai character features extraction
Procedia PDF Downloads 46628315 A Comprehensive Framework for Fraud Prevention and Customer Feedback Classification in E-Commerce
Authors: Samhita Mummadi, Sree Divya Nagalli, Harshini Vemuri, Saketh Charan Nakka, Sumesh K. J.
Abstract:
One of the most significant challenges faced by people in today’s digital era is an alarming increase in fraudulent activities on online platforms. The fascination with online shopping to avoid long queues in shopping malls, the availability of a variety of products, and home delivery of goods have paved the way for a rapid increase in vast online shopping platforms. This has had a major impact on increasing fraudulent activities as well. This loop of online shopping and transactions has paved the way for fraudulent users to commit fraud. For instance, consider a store that orders thousands of products all at once, but what’s fishy about this is the massive number of items purchased and their transactions turning out to be fraud, leading to a huge loss for the seller. Considering scenarios like these underscores the urgent need to introduce machine learning approaches to combat fraud in online shopping. By leveraging robust algorithms, namely KNN, Decision Trees, and Random Forest, which are highly effective in generating accurate results, this research endeavors to discern patterns indicative of fraudulent behavior within transactional data. Introducing a comprehensive solution to this problem in order to empower e-commerce administrators in timely fraud detection and prevention is the primary motive and the main focus. In addition to that, sentiment analysis is harnessed in the model so that the e-commerce admin can tailor to the customer’s and consumer’s concerns, feedback, and comments, allowing the admin to improve the user’s experience. The ultimate objective of this study is to ramp up online shopping platforms against fraud and ensure a safer shopping experience. This paper underscores a model accuracy of 84%. All the findings and observations that were noted during our work lay the groundwork for future advancements in the development of more resilient and adaptive fraud detection systems, which will become crucial as technologies continue to evolve.Keywords: behavior analysis, feature selection, Fraudulent pattern recognition, imbalanced classification, transactional anomalies
Procedia PDF Downloads 3228314 Multiple-Lump-Type Solutions of the 2D Toda Equation
Authors: Jian-Ping Yu, Wen-Xiu Ma, Yong-Li Sun, Chaudry Masood Khalique
Abstract:
In this paper, a 2d Toda equation is studied, which is a classical integrable system and plays a vital role in mathematics, physics and other areas. New lump-type solution is constructed by using the Hirota bilinear method. One interesting feature of this research is that this lump-type solutions possesses two types of multiple-lump-type waves, which are one- and two-lump-type waves. Moreover, the corresponding 3d plots, density plots and contour plots are given to show the dynamical features of the obtained multiple-lump-type solutions.Keywords: 2d Toda equation, Hirota bilinear method, Lump-type solution, multiple-lump-type solution
Procedia PDF Downloads 22228313 Spatial Object-Oriented Template Matching Algorithm Using Normalized Cross-Correlation Criterion for Tracking Aerial Image Scene
Authors: Jigg Pelayo, Ricardo Villar
Abstract:
Leaning on the development of aerial laser scanning in the Philippine geospatial industry, researches about remote sensing and machine vision technology became a trend. Object detection via template matching is one of its application which characterized to be fast and in real time. The paper purposely attempts to provide application for robust pattern matching algorithm based on the normalized cross correlation (NCC) criterion function subjected in Object-based image analysis (OBIA) utilizing high-resolution aerial imagery and low density LiDAR data. The height information from laser scanning provides effective partitioning order, thus improving the hierarchal class feature pattern which allows to skip unnecessary calculation. Since detection is executed in the object-oriented platform, mathematical morphology and multi-level filter algorithms were established to effectively avoid the influence of noise, small distortion and fluctuating image saturation that affect the rate of recognition of features. Furthermore, the scheme is evaluated to recognized the performance in different situations and inspect the computational complexities of the algorithms. Its effectiveness is demonstrated in areas of Misamis Oriental province, achieving an overall accuracy of 91% above. Also, the garnered results portray the potential and efficiency of the implemented algorithm under different lighting conditions.Keywords: algorithm, LiDAR, object recognition, OBIA
Procedia PDF Downloads 246