Search results for: energy generation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10802

Search results for: energy generation

10142 Analysis of Energy Planning and Optimization with Microgrid System in Dawei Region

Authors: Hninn Thiri Naing

Abstract:

In Myanmar, there are many regions that are far away from the national grid. For these areas, isolated regional micro-grids are one of the solutions. The study area in this paper is also operating in such way. The main difficulty in such regions is the high cost of electrical energy. This paper will be approached to cost-effective or cost-optimization by energy planning with renewable energy resources and natural gas. Micro-grid will be set up for performance in the Dawei region since it is economic zone in lower Myanmar and so far from national grids. The required metrological and geographical data collections are done. Currently, the status is electric unit rate is higher than the other. For microgrid planning and optimization, Homer Pro-software is employed in this research.

Keywords: energy planning, renewable energy, homer pro, cost of energy

Procedia PDF Downloads 129
10141 Sectoral Energy Consumption in South Africa and Its Implication for Economic Growth

Authors: Kehinde Damilola Ilesanmi, Dev Datt Tewari

Abstract:

South Africa is in its post-industrial era moving from the primary and secondary sector to the tertiary sector. The study investigated the impact of the disaggregated energy consumption (coal, oil, and electricity) on the primary, secondary and tertiary sectors of the economy between 1980 and 2012 in South Africa. Using vector error correction model, it was established that South Africa is an energy dependent economy, and that energy (especially electricity and oil) is a limiting factor of growth. This implies that implementation of energy conservation policies may hamper economic growth. Output growth is significantly outpacing energy supply, which has necessitated load shedding. To meet up the excess energy demand, there is a need to increase the generating capacity which will necessitate increased investment in the electricity sector as well as strategic steps to increase oil production. There is also need to explore more renewable energy sources, in order to meet the growing energy demand without compromising growth and environmental sustainability. Policy makers should also pursue energy efficiency policies especially at sectoral level of the economy.

Keywords: causality, economic growth, energy consumption, hypothesis, sectoral output

Procedia PDF Downloads 470
10140 Developing a Simulation-Based Optimization Framework to Perform Energy Simulation for Indian Buildings

Authors: Sujoy Anirudha Das, Albert Thomas

Abstract:

Building sector is a major consumer of energy globally, and it has corresponding effects to the environment with respect to the carbon emissions. Given the fact that India is expected to add 40-billion square meter of new buildings till 2050, we need frameworks that help in reducing the overall energy consumption in the building sector. Even though several simulation-based frameworks that help in analyzing the building energy consumption are developed globally, in the Indian context, to the best of our knowledge, there is a lack of a comprehensive, yet user-friendly framework to simulate and optimize the effects of various energy influencing factors, specifically for Indian buildings. Therefore, this study is aimed at developing a simulation-based optimization framework to model the energy interactions in different types of Indian buildings by considering the dynamic nature of various energy influencing factors. This comprehensive framework can be used by various building stakeholders to test the energy effects of different factors such as, but not limited to, the various building materials, the orientation, the weather fluctuations, occupancy changes and the type of the building (e.g., office, residential). The results from the case study involving several building types would help us in gaining insights to build new energy-efficient buildings as well as retrofit the existing structures in a more convenient way to consume less energy, exclusively for an Indian scenario.

Keywords: building energy consumption, building energy simulations, energy efficient buildings, optimization framework

Procedia PDF Downloads 177
10139 The Role of Natural Gas in Reducing Carbon Emissions

Authors: Abdulrahman Nami Almutairi

Abstract:

In the face of escalating climate change concerns, the concept of smart cities emerges as a promising approach to mitigate carbon emissions and move towards carbon neutrality. This paper provides a comprehensive review of the role of Natural Gas in achieving carbon neutrality. Natural gas has often been seen as a transitional fuel in the context of reducing carbon emissions. Its main role stems from being cleaner than coal and oil when burned for electricity generation and industrial processes. The urgent need to address this global issue has prompted a global shift towards cleaner energy sources and sustainable practices. In this endeavor, natural gas has emerged as a pivotal player, hailed for its potential to mitigate carbon emissions, and facilitate the transition to a low-carbon economy. With its lower carbon intensity compared to conventional fossil fuels, natural gas presents itself as a promising alternative for meeting energy demands while reducing environmental impact. As the world stands at a critical juncture in the fight against climate change, exploring the potential of natural gas as a transitional fuel offers insights into pathways towards a more sustainable and resilient future. By critically evaluating its opportunities and challenges, we can harness the potential of natural gas as a transitional fuel while advancing towards a cleaner, more resilient energy system. Through collaborative efforts and informed decision-making, we can pave the way for a future where energy is not only abundant but also environmentally sustainable and socially equitable.

Keywords: natural gas, clean fuel, carbon emissions, global warming, environmental protection

Procedia PDF Downloads 43
10138 The Introduction of the Revolution Einstein’s Relative Energy Equations in Even 2n and Odd 3n Light Dimension Energy States Systems

Authors: Jiradeach Kalayaruan, Tosawat Seetawan

Abstract:

This paper studied the energy of the nature systems by looking at the overall image throughout the universe. The energy of the nature systems was developed from the Einstein’s energy equation. The researcher used the new ideas called even 2n and odd 3n light dimension energy states systems, which were developed from Einstein’s relativity energy theory equation. In this study, the major methodology the researchers used was the basic principle ideas or beliefs of some religions such as Buddhism, Christianity, Hinduism, Islam, or Tao in order to get new discoveries. The basic beliefs of each religion - Nivara, God, Ether, Atman, and Tao respectively, were great influential ideas on the researchers to use them greatly in the study to form new ideas from philosophy. Since the philosophy of each religion was alive with deep insight of the physical nature relative energy, it connected the basic beliefs to light dimension energy states systems. Unfortunately, Einstein’s original relative energy equation showed only even 2n light dimension energy states systems (if n = 1,…,∞). But in advance ideas, the researchers multiplied light dimension energy by Einstein’s original relative energy equation and get new idea of theoritical physics in odd 3n light dimension energy states systems (if n = 1,…,∞). Because from basic principle ideas or beliefs of some religions philosophy of each religion, you had to add the media light dimension energy into Einstein’s original relative energy equation. Consequently, the simple meaning picture in deep insight showed that you could touch light dimension energy of Nivara, God, Ether, Atman, and Tao by light dimension energy. Since light dimension energy was transferred by Nivara, God, Ether, Atman and Tao, the researchers got the new equation of odd 3n light dimension energy states systems. Moreover, the researchers expected to be able to solve overview problems of all light dimension energy in all nature relative energy, which are developed from Eistein’s relative energy equation.The finding of the study was called 'super nature relative energy' ( in odd 3n light dimension energy states systems (if n = 1,…,∞)). From the new ideas above you could do the summation of even 2n and odd 3n light dimension energy states systems in all of nature light dimension energy states systems. In the future time, the researchers will expect the new idea to be used in insight theoretical physics, which is very useful to the development of quantum mechanics, all engineering, medical profession, transportation, communication, scientific inventions, and technology, etc.

Keywords: 2n light dimension energy states systems effect, Ether, even 2n light dimension energy states systems, nature relativity, Nivara, odd 3n light dimension energy states systems, perturbation points energy, relax point energy states systems, stress perturbation energy states systems effect, super relative energy

Procedia PDF Downloads 344
10137 Flexible Feedstock Concept in Gasification Process for Carbon-Negative Energy Technology: A Case Study in Malaysia

Authors: Zahrul Faizi M. S., Ali A., Norhuda A. M.

Abstract:

Emission of greenhouse gases (GHG) from solid waste treatment and dependency on fossil fuel to produce electricity are the major concern in Malaysia as well as global. Innovation in downdraft gasification with combined heat and power (CHP) systems has the potential to minimize solid waste and reduce the emission of anthropogenic GHG from conventional fossil fuel power plants. However, the efficiency and capability of downdraft gasification to generate electricity from various alternative fuels, for instance, agriculture residues (i.e., woodchip, coconut shell) and municipal solid waste (MSW), are still controversial, on top of the toxicity level from the produced bottom ash. Thus this study evaluates the adaptability and reliability of the 20 kW downdraft gasification system to generate electricity (while considering environmental sustainability from the bottom ash) using flexible local feedstock at 20, 40, and 60% mixed ratio of MSW: agriculture residues. Feedstock properties such as feed particle size, moisture, and ash contents are also analyzed to identify optimal characteristics for the combination of feedstock (feedstock flexibility) to obtain maximum energy generation. Results show that the gasification system is capable to flexibly accommodate different feedstock compositions subjected to specific particle size (less than 2 inches) at a moisture content between 15 to 20%. These values exhibit enhance gasifier performance and provide a significant effect to the syngas composition utilizes by the internal combustion engine, which reflects energy production. The result obtained in this study is able to provide a new perspective on the transition of the conventional gasification system to a future reliable carbon-negative energy technology. Subsequently, promoting commercial scale-up of the downdraft gasification system.

Keywords: carbon-negative energy, feedstock flexibility, gasification, renewable energy

Procedia PDF Downloads 135
10136 Biochemical Approach to Renewable Energy: Enhancing Students' Perception and Understanding of Science of Energy through Integrated Hands-On Laboratory

Authors: Samina Yasmin, Anzar Khaliq, Zareen Tabassum

Abstract:

Acute power shortage in Pakistan requires an urgent attention to take preliminary steps to spread energy awareness at all levels. One such initiative is taken at Habib University (HU), Pakistan, through renewable energy course, one of the core offerings, where students are trained to investigate various aspects of renewable energy concepts. The course is offered to all freshmen enrolled at HU regardless of their academic backgrounds and degree programs. A four-credit modular course includes both theory and laboratory elements. Hands-on laboratories play an important role in science classes, particularly to enhance the motivation and deep understanding of energy science. A set of selected hands-on activities included in course introduced students to explore the latest developments in the field of renewable energy such as dye-sensitized solar cells, gas chromatography, global warming, climate change, fuel cell energy and power of biomass etc. These projects not only helped HU freshmen to build on energy fundamentals but also provided them greater confidence in investigating, questioning and experimenting with renewable energy related conceptions. A feedback survey arranged during and end of term revealed the effectiveness of the hands-on laboratory to enhance the common understanding of real world problems related to energy such as awareness of energy saving, the level of concern about global climate change, environmental pollution and science of energy behind the energy usage.

Keywords: biochemical approaches, energy curriculum, hands-on laboratory, renewable energy

Procedia PDF Downloads 256
10135 Environmental Sustainability and Energy Consumption: The Role of Financial Development in OPEC-1 Countries

Authors: Isah Wada

Abstract:

The current research investigates the role of financial development in an environmental sustainability-energy consumption nexus for OPEC-1 member countries. The empirical findings suggest that financial development increases environmental sustainability but energy consumption and real output expansion diminishes environmental sustainability, generally. Thus, whilst real output and financial development accelerates energy consumption, environmental sustainability quality diminishes clean energy initiatives. Even more so, energy consumption and financial development stimulates real output growth. The result empirically demonstrates that policy advocates must address broader issues relating to financial development whilst seeking to achieve environmental sustainability due largely to energy consumption.

Keywords: energy consumption, environmental sustainability, financial development, OPEC, real output

Procedia PDF Downloads 193
10134 Insertion of Photovoltaic Energy at Residential Level at Tegucigalpa and Comayagüela, Honduras

Authors: Tannia Vindel, Angel Matute, Erik Elvir, Kelvin Santos

Abstract:

Currently in Honduras, is been incentivized the generation of energy using renewable fonts, such as: hydroelectricity, wind power, biomass and, more recently with the strongest growth, photovoltaic energy. In July 2015 were installed 455.2 MW of photovoltaic energy, increasing by 24% the installed capacity of the national interconnected system existing in 2014, according the National Energy Company (NEC), that made possible reduce the thermoelectric dependency of the system. Given the good results of those large-scale photovoltaic plants, arises the question: is it interesting for the distribution utility and for the consumers the integration of photovoltaic systems in micro-scale in the urban and rural areas? To answer that question has been researched the insertion of photovoltaic energy in the residential sector in Tegucigalpa and Comayagüela (Central District), Honduras to determine the technical and economic viability. Francisco Morazán department, according the National Statistics Institute (NSI), in 2001 had more than 180,000 houses with power service. Tegucigalpa, department and Honduras capital, and Comayagüela, both, have the highest population density in the region, with 1,300,000 habitants in 2014 (NSI). The residential sector in the south-central region of Honduras represents a high percentage being 49% of total consumption, according with NEC in 2014; where 90% of this sector consumes in a range of 0 to 300 kWh / month. All this, in addition to the high level of losses in the transmission and distribution systems, 31.3% in 2014, and the availability of an annual average solar radiation of 5.20 kWh/(m2∙day) according to the NASA, suggests the feasibility of the implementation of photovoltaic systems as a solution to give a level of independency to the households, and besides could be capable of injecting the non-used energy to the grid. The capability of exchange of energy with the grid could make the photovoltaic systems acquisition more affordable to the consumers, because of the compensation energy programs or other kinds of incentives that could be created. Technical viability of the photovoltaic systems insertion has been analyzed, considering the solar radiation monthly average to determine the monthly average of energy that would be generated with the technology accessible locally and the effects of the injection of the energy locally generated on the grid. In addition, the economic viability has been analyzed too, considering the photovoltaic systems high costs, costs of the utility, location and monthly energy consumption requirements of the families. It was found that the inclusion of photovoltaic systems in Tegucigalpa and Comayagüela could decrease in 6 MW the demand for the region if 100% of the households use photovoltaic systems, which acquisition may be more accessible with the help of government incentives and/or the application of energy exchange programs.

Keywords: grid connected, photovoltaic, residential, technical analysis

Procedia PDF Downloads 263
10133 System Analysis on Compact Heat Storage in the Built Environment

Authors: Wilko Planje, Remco Pollé, Frank van Buuren

Abstract:

An increased share of renewable energy sources in the built environment implies the usage of energy buffers to match supply and demand and to prevent overloads of existing grids. Compact heat storage systems based on thermochemical materials (TCM) are promising to be incorporated in future installations as an alternative for regular thermal buffers. This is due to the high energy density (1 – 2 GJ/m3). In order to determine the feasibility of TCM-based systems on building level several installation configurations are simulated and analyzed for different mixes of renewable energy sources (solar thermal, PV, wind, underground, air) for apartments/multistore-buildings for the Dutch situation. Thereby capacity, volume and financial costs are calculated. The simulation consists of options to include the current and future wind power (sea and land) and local roof-attached PV or solar-thermal systems. Thereby, the compact thermal buffer and optionally an electric battery (typically 10 kWhe) form the local storage elements for energy matching and shaving purposes. Besides, electric-driven heat pumps (air / ground) can be included for efficient heat generation in case of power-to-heat. The total local installation provides both space heating, domestic hot water as well as electricity for a specific case with low-energy apartments (annually 9 GJth + 8 GJe) in the year 2025. The energy balance is completed with grid-supplied non-renewable electricity. Taking into account the grid capacities (permanent 1 kWe/household), spatial requirements for the thermal buffer (< 2.5 m3/household) and a desired minimum of 90% share of renewable energy per household on the total consumption the wind-powered scenario results in acceptable sizes of compact thermal buffers with an energy-capacity of 4 - 5 GJth per household. This buffer is combined with a 10 kWhe battery and air source heat pump system. Compact thermal buffers of less than 1 GJ (typically volumes 0.5 - 1 m3) are possible when the installed wind-power is increased with a factor 5. In case of 15-fold of installed wind power compact heat storage devices compete with 1000 L water buffers. The conclusion is that compact heat storage systems can be of interest in the coming decades in combination with well-retrofitted low energy residences based on the current trends of installed renewable energy power.

Keywords: compact thermal storage, thermochemical material, built environment, renewable energy

Procedia PDF Downloads 244
10132 Design and Modeling of a Green Building Energy Efficient System

Authors: Berhane Gebreslassie

Abstract:

Conventional commericial buildings are among the highest unwisely consumes enormous amount of energy and as consequence produce significant amount Carbon Dioxide (CO2). Traditional/conventional buildings have been built for years without consideration being given to their impact on the global warming issues as well as their CO2 contributions. Since 1973, simulation of Green Building (GB) for Energy Efficiency started and many countries in particular the US showed a positive response to minimize the usage of energy in respect to reducing the CO2 emission. As a consequence many software companies developed their own unique building energy efficiency simulation software, interfacing interoperability with Building Information Modeling (BIM). The last decade has witnessed very rapid growing number of researches on GB energy efficiency system. However, the study also indicates that the results of current GB simulation are not yet satisfactory to meet the objectives of GB. In addition most of these previous studies are unlikely excluded the studies of ultimate building energy efficiencies simulation. The aim of this project is to meet the objectives of GB by design, modeling and simulation of building ultimate energy efficiencies system. This research project presents multi-level, L-shape office building in which every particular part of the building materials has been tested for energy efficiency. An overall of 78.62% energy is saved, approaching to NetZero energy saving. Furthermore, the building is implements with distributed energy resources like renewable energies and integrating with Smart Building Automation System (SBAS) for controlling and monitoring energy usage.

Keywords: ultimate energy saving, optimum energy saving, green building, sustainable materials and renewable energy

Procedia PDF Downloads 275
10131 De Broglie Wavelength Defined by the Rest Energy E0 and Its Velocity

Authors: K. Orozović, B. Balon

Abstract:

In this paper, we take a different approach to de Broglie wavelength, as we relate it to relativistic physics. The quantum energy of the photon radiated by a body with de Broglie wavelength, as it moves with velocity v, can be defined within relativistic physics by rest energy E₀. In this way, we can show the connection between the quantum of radiation energy of the body and the rest of energy E₀ and thus combine what has been incompatible so far, namely relativistic and quantum physics. So, here we discuss the unification of relativistic and quantum physics by introducing the factor k that is analog to the Lorentz factor in Einstein's theory of relativity.

Keywords: de Brogli wavelength, relativistic physics, rest energy, quantum physics

Procedia PDF Downloads 156
10130 Modeling and Benchmarking the Thermal Energy Performance of Palm Oil Production Plant

Authors: Mathias B. Michael, Esther T. Akinlabi, Tien-Chien Jen

Abstract:

Thermal energy consumption in palm oil production plant comprises mainly of steam, hot water and hot air. In most efficient plants, hot water and air are generated from the steam supply system. Research has shown that thermal energy utilize in palm oil production plants is about 70 percent of the total energy consumption of the plant. In order to manage the plants’ energy efficiently, the energy systems are modelled and optimized. This paper aimed to present the model of steam supply systems of a typical palm oil production plant in Ghana. The models include exergy and energy models of steam boiler, steam turbine and the palm oil mill. The paper further simulates the virtual plant model to obtain the thermal energy performance of the plant under study. The simulation results show that, under normal operating condition, the boiler energy performance is considerably below the expected level as a result of several factors including intermittent biomass fuel supply, significant moisture content of the biomass fuel and significant heat losses. The total thermal energy performance of the virtual plant is set as a baseline. The study finally recommends number of energy efficiency measures to improve the plant’s energy performance.

Keywords: palm biomass, steam supply, exergy and energy models, energy performance benchmark

Procedia PDF Downloads 349
10129 Forster Energy Transfer and Optoelectronic Properties of (PFO/TiO2)/Fluorol 7GA Hybrid Thin Films

Authors: Bandar Ali Al-Asbahi, Mohammad Hafizuddin Haji Jumali

Abstract:

Forster energy transfer between poly (9,9'-di-n-octylfluorenyl-2,7-diyl) (PFO)/TiO2 nanoparticles (NPs) as a donor and Fluorol 7GA as an acceptor has been studied. The energy transfer parameters were calculated by using mathematical models. The dominant mechanism responsible for the energy transfer between the donor and acceptor molecules was Forster-type, as evidenced by large values of quenching rate constant, energy transfer rate constant and critical distance of energy transfer. Moreover, these composites which were used as an emissive layer in organic light emitting diodes, were investigated in terms of current density–voltage and electroluminescence spectra.

Keywords: energy transfer parameters, forster-type, electroluminescence, organic light emitting diodes

Procedia PDF Downloads 426
10128 San Francisco Public Utilities Commission Headquarters "The Greenest Urban Building in the United States"

Authors: Charu Sharma

Abstract:

San Francisco Public Utilities Commission’s Headquarters was listed in the 2013-American Institute of Architects Committee of the Environment (AIA COTE) Top Ten Green Projects. This 13-story, 277,000-square-foot building, housing more than 900 of the agency’s employees was completed in June 2012. It was designed to achieve LEED Platinum Certification and boasts a plethora of green features to significantly reduce the use of energy and water consumption, and provide a healthy office work environment with high interior air quality and natural daylight. Key sustainability features include on-site clean energy generation through renewable photovoltaic and wind sources providing $118 million in energy cost savings over 75 years; 45 percent daylight harvesting; and the consumption of 55 percent less energy and a 32 percent less electricity demand from the main power grid. It uses 60 percent less water usage than an average 13-story office building as most of that water will be recycled for non-potable uses at the site, running through a system of underground tanks and artificial wetlands that cleans and clarifies whatever is flushed down toilets or washed down drains. This is one of the first buildings in the nation with treatment of gray and black water. The building utilizes an innovative structural system with post tensioned cores that will provide the highest asset preservation for the building. In addition, the building uses a “green” concrete mixture that releases less carbon gases. As a public utility commission this building has set a good example for resource conservation-the building is expected to be cheaper to operate and maintain as time goes on and will have saved rate-payers $500 million in energy and water savings. Within the anticipated 100-year lifespan of the building, our ratepayers will save approximately $3.7 billion through the combination of rental savings, energy efficiencies, and asset ownership.

Keywords: energy efficiency, sustainability, resource conservation, asset ownership, rental savings

Procedia PDF Downloads 435
10127 Bounds on the Laplacian Vertex PI Energy

Authors: Ezgi Kaya, A. Dilek Maden

Abstract:

A topological index is a number related to graph which is invariant under graph isomorphism. In theoretical chemistry, molecular structure descriptors (also called topological indices) are used for modeling physicochemical, pharmacologic, toxicologic, biological and other properties of chemical compounds. Let G be a graph with n vertices and m edges. For a given edge uv, the quantity nu(e) denotes the number of vertices closer to u than v, the quantity nv(e) is defined analogously. The vertex PI index defined as the sum of the nu(e) and nv(e). Here the sum is taken over all edges of G. The energy of a graph is defined as the sum of the eigenvalues of adjacency matrix of G and the Laplacian energy of a graph is defined as the sum of the absolute value of difference of laplacian eigenvalues and average degree of G. In theoretical chemistry, the π-electron energy of a conjugated carbon molecule, computed using the Hückel theory, coincides with the energy. Hence results on graph energy assume special significance. The Laplacian matrix of a graph G weighted by the vertex PI weighting is the Laplacian vertex PI matrix and the Laplacian vertex PI eigenvalues of a connected graph G are the eigenvalues of its Laplacian vertex PI matrix. In this study, Laplacian vertex PI energy of a graph is defined of G. We also give some bounds for the Laplacian vertex PI energy of graphs in terms of vertex PI index, the sum of the squares of entries in the Laplacian vertex PI matrix and the absolute value of the determinant of the Laplacian vertex PI matrix.

Keywords: energy, Laplacian energy, laplacian vertex PI eigenvalues, Laplacian vertex PI energy, vertex PI index

Procedia PDF Downloads 245
10126 An Investigation on the Energy Absorption of Sandwich Panels With Aluminium Foam Core under Perforation Test

Authors: Minoo Tavakoli, Mojtaba Zebarjad, Golestanipour

Abstract:

Metallic sandwich structures with aluminum foam core are good energy absorbers. In this paper, perforation test were carried out on different samples to study energy absorption. In the experiments, effect of several parameters, i.e. skin thickness and thickness of foam core, on the energy absorption, delamination zone of back faces and deformation strain(φ) are discussed. Results show that increasing plates thickness will results in more absorbed energy and delamination. Moreover, thickening foam core has the same effect.

Keywords: sandwich panel, aluminium foam, perforation, energy absorption

Procedia PDF Downloads 423
10125 Nearly Zero-Energy Regulation and Buildings Built with Prefabricated Technology: The Case of Hungary

Authors: András Horkai, Attila Talamon, Viktória Sugár

Abstract:

There is an urgent need nowadays to reduce energy demand and the current level of greenhouse gas emission and use renewable energy sources increase in energy efficiency. On the other hand, the European Union (EU) countries are largely dependent on energy imports and are vulnerable to disruption in energy supply, which may, in turn, threaten the functioning of their current economic structure. Residential buildings represent a significant part of the energy consumption of the building stock. Only a small part of the building stock is exchanged every year, thus it is essential to increase the energy efficiency of the existing buildings. Present paper focuses on the buildings built with industrialized technology only, and their opportunities in the boundaries of nearly zero-energy regulation. Current paper shows the emergence of panel construction method, and past and present of the ‘panel’ problem in Hungary with a short outlook to Europe. The study shows as well as the possibilities for meeting the nearly zero and cost optimized requirements for residential buildings by analyzing the renovation scenarios of an existing residential typology.

Keywords: Budapest, energy consumption, industrialized technology, nearly zero-energy buildings

Procedia PDF Downloads 348
10124 Technological Measures to Reduce the Environmental Impact of Swimming Pools

Authors: Fátima Farinha, Miguel J. Oliveira, Gina Matias, Armando Inverno, Jânio Monteiro, Cristiano Cabrita

Abstract:

In the last decades, the construction of swimming pools for recreational activities has grown exponentially in southern Europe. Swimming pools are used both for private use in villas and for collective use in hotels or condominiums. However, they have a high environmental impact, mainly in terms of water and energy consumption, being used for a short period of time, depending significantly on favorable atmospheric conditions. Contrary to what would be expected, not enough research has been conducted to reduce the negative impact of this equipment. In this context, this work proposes and analyses technological measures to reduce the environmental impacts of swimming pools, such as thermal insulation of the tank, water balance in order to detect leaks and optimize the backwash process, integration of renewable energy generation, and a smart control system that meets the requirements of the user. The work was developed within the scope of the Ecopool+++ project, which aims to create innovative heated pools with reduced thermal losses and integration of SMART energy plus water management systems. The project is in the final phase of its development, with very encouraging results.

Keywords: swimming pools, sustainability, thermal losses, water management system

Procedia PDF Downloads 104
10123 Photovoltaic System: An Alternative to Energy Efficiency in a Residence

Authors: Arsenio Jose Mindu

Abstract:

The concern to carry out a study related to Energy Efficiency arose based on the various debates in international television networks and not only, but also in several forums of national debates. The concept of Energy Efficiency is not yet widely disseminated and /or taken into account in terms of energy consumption, not only at the domestic level but also at the industrial level in Mozambique. In the context of the energy audit, the time during which each of the appliances is connected to the voltage source, the time during which they are in standby mode was recorded on a spreadsheet basis. Based on these data, daily and monthly consumption was calculated. In order to have more accurate information on the daily levels of daily consumption, the electricity consumption was read every hour of the day (from 5:00 am to 11:00 pm), since after 23:00 the energy consumption remains constant. For ten days. Based on the daily energy consumption and the maximum consumption power, the design of the photovoltaic system for the residence was made. With the implementation of the photovoltaic system in order to guarantee energy efficiency, there was a significant reduction in the use of electricity from the public grid, increasing from approximately 17 kwh per day to around 11 kwh, thus achieving an energy efficiency of 67.4 %. That is to say, there was a reduction not only in terms of the amount of energy consumed but also of the monthly expenses with electricity, having increased from around 2,500,00Mt (2,500 meticais) to around 800Mt per month.

Keywords: energy efficiency, photovoltaic system, residential sector, Mozambique

Procedia PDF Downloads 206
10122 Evaluation of Alternative Energy Sources for Energy Production in Turkey

Authors: Naci Büyükkaracığan, Murat Ahmet Ökmen

Abstract:

In parallel with the population growth rate, the need of human being for energy sources in the world is gradually increasing incessant. The addition of this situation that demand for energy will be busier in the future, industrialization, the rise in living standards and technological developments, especially in developing countries. Alternative energy sources have aroused interest due to reasons such as serious environmental issues that were caused by fossil energy sources, potentially decreasing reserves, different social, political and economic problems caused by dependency on source providing countries and price instability. Especially in developed countries as European countries and also U.S.A particularly, alternative energy sources such as wind, geothermal, solar and biomass energy, hydrolic and hydrogen have been utilized in different forms, especially in electricity production. It includes a review of technical and environmental factors for energy sources that are potential replacements for fossil fuels and examines their fitness to supply the energy for a high standard of living on a worldwide basis. Despite all developments, fossil energy sources have been overwhelmingly used all around the world in primary energy sources consumption and they will outnumber other energy sources in the short term. Today, parallel to population growth and economy in Turkey, energy sources consumption is increasingly continuing. On one side, Turkey, currently 80% dependent on energy providing countries, has been heavily conducting fossil energy sources raw material quest within its own borders in order to lower the percentage, and the other side, there have been many researches for exploring potential of alternative energy sources and utilization. This case will lead to both a decrease in foreign energy dependency and a variety of energy sources. This study showed the current energy potential of Turkey and presents historical development of these energy sources and their share in electricity production. The research also seeked for answers to arguments that if the potential can be sufficient in the future. As a result of this study, it was concluded that observed geothermal energy, particularly active tectonic regions of Turkey, to have an alternative energy potential could be considered to be valuable on bass wind and solar energy.

Keywords: alternative energy sources, energy productions, hydroenergy, solar energy, wind energy

Procedia PDF Downloads 630
10121 Smart-Textile Containers for Urban Mobility

Authors: René Vieroth, Christian Dils, M. V. Krshiwoblozki, Christine Kallmayer, Martin Schneider-Ramelow, Klaus-Dieter Lang

Abstract:

Green urban mobility in commercial and private contexts is one of the great challenges for the continuously growing cities all over the world. Bicycle based solutions are already and since a long time the key to success. Modern developments like e-bikes and high-end cargo-bikes complement the portfolio. Weight, aerodynamic drag, and security for the transported goods are the key factors for working solutions. Recent achievements in the field of smart-textiles allowed the creation of a totally new generation of intelligent textile cargo containers, which fulfill those demands. The fusion of technical textiles, design and electrical engineering made it possible to create an ecological solution which is very near to become a product. This paper shows all the details of this solution that includes an especially developed sensor textile for cut detection, a protective textile layer for intrusion prevention, an universal-charging-unit for energy harvesting from diverse sources and a low-energy alarm system with GSM/GPRS connection, GPS location and RFID interface.

Keywords: cargo-bike, cut-detection, e-bike, energy-harvesting, green urban mobility, logistics, smart-textiles, textile-integrity sensor

Procedia PDF Downloads 315
10120 Saving Energy at a Wastewater Treatment Plant through Electrical and Production Data Analysis

Authors: Adriano Araujo Carvalho, Arturo Alatrista Corrales

Abstract:

This paper intends to show how electrical energy consumption and production data analysis were used to find opportunities to save energy at Taboada wastewater treatment plant in Callao, Peru. In order to access the data, it was used independent data networks for both electrical and process instruments, which were taken to analyze under an ISO 50001 energy audit, which considered, thus, Energy Performance Indexes for each process and a step-by-step guide presented in this text. Due to the use of aforementioned methodology and data mining techniques applied on information gathered through electronic multimeters (conveniently placed on substation switchboards connected to a cloud network), it was possible to identify thoroughly the performance of each process and thus, evidence saving opportunities which were previously hidden before. The data analysis brought both costs and energy reduction, allowing the plant to save significant resources and to be certified under ISO 50001.

Keywords: energy and production data analysis, energy management, ISO 50001, wastewater treatment plant energy analysis

Procedia PDF Downloads 193
10119 Solar Energy Management: A Case Study of Bhubaneswar City

Authors: Rachita Lal

Abstract:

Solar energy is a clean energy source. Because it is readily available in India and has many potential decentralized uses, urban local authorities may use it in various ways to manage the energy needs in the territory under their control. Apart from these and other services for which people pay a substantial number of money, urban local councils play a crucial role in administering essential services like water supply, street lighting, and health care. ULBs may contribute considerably to the transition to solar energy, both for their benefit and simultaneously for several additional direct and indirect advantages at multiple levels. The research primarily focuses on using clean energy management to reduce urban areas' reliance on traditional (electricity) energy. A technique for estimating the rooftop solar power potential using GIS (Geographical Information System) is described. Given that the combustion of fossil fuels produces 75% of India's power, meeting the country's energy needs through renewable energy sources is a step toward sustainable development and combating climate change. The study will further help in categorization, phasing, and understanding the demand and supply and thus calculating the cumulative benefits. The main objectives are to study the consumption of conventional energy in the study area and to identify the potential areas where solar photovoltaic intervention can be installed.

Keywords: solar energy, GIS, clean energy management, sustainable development

Procedia PDF Downloads 88
10118 Exergy Analyses of Wind Turbine

Authors: Muhammad Abid

Abstract:

Utilization of renewable energy resources for energy conservation, pollution prevention, resource efficiency and systems integration is very important for sustainable development. In this study, we perform energy and exergy analyses of a wind turbine, located on the roof of Mechanical Engineering Department, King Saud University, and Riyadh, Saudi Arabia. The turbine is part of a hybrid photovoltaic (PV)-wind system with hydrogen storage. The power output from this turbine varies between 1.5 and 5.5 kW with a rated wind speed of 12 m/s and a cut-in wind speed of 2.4 m/s. We utilize a wide range of experimental data in the analysis and assessment. We determine energy and exergy efficiencies. The energy efficiency changes between 0% to 45% while the exergy efficiency varies between 0% and 31.3%. We also determined some of the exergoeconomic parameters that are the ratios of energy and exergy loss rates to the capital cost (R en and R ex), respectively. (R en) changes between 0.96% and 59.03% for different values of velocity while R ex has a maximum value of 53.62% for the highest wind speed.

Keywords: exergy, efficiency, performance evaluation, wind energy

Procedia PDF Downloads 366
10117 Design, Development, and Performance Evaluation of Hybrid Cross Axis Wind Turbine

Authors: Gwani M., Umar M. Kangiwa, Bello A. Umar, Gado A. Abubakar

Abstract:

The increasing demand for sustainable energy solutions has driven significant interest in the development of innovative designs of wind turbines. The horizontal axis wind turbine (HAWT) and the vertical axis wind turbine (VAWT) are the dominant type of wind turbine used for power generation. However, these turbines have their respective merits and demerits, which affect their performance. This study introduces a Hybrid Cross Axis Wind Turbine (HCAWT), which integrates the blades of both horizontal axis wind turbines (HAWTs) and vertical axis wind turbines (VAWTs) in a cross-axis configuration with a Savonius rotor to form a hybrid system. The HCAWT combines the self-starting capabilities of Savonius rotors with the high-efficiency characteristics of Darrieus rotors and HAWT, aiming to optimize performance across a range of wind conditions. The performance of the HCAWT was tested and evaluated against a cross-axis wind turbine (CAWT) and a conventional VAWT under similar experimental conditions. The study’s results indicate that the HCAWT outperformed both the CAWT and the conventional VAWT. The power coefficient (Cp) of the HCAWT increases by 83% and 132% compared to that of the CAWT and conventional VAWT, respectively. The findings show that the HCAWT offers better start-up performance and maintains higher efficiency at lower wind speeds compared to CAWT and conventional VAWT. The findings suggest that the HCAWT offers significant improvements in energy capture, particularly in turbulent wind conditions, and greater adaptability to changing wind conditions, making it a viable option for both urban and rural energy applications.

Keywords: renewable energy, hybrid, cross axis wind turbine, energy efficiency

Procedia PDF Downloads 10
10116 Seasonal Variability of M₂ Internal Tides Energetics in the Western Bay of Bengal

Authors: A. D. Rao, Sachiko Mohanty

Abstract:

The Internal Waves (IWs) are generated by the flow of barotropic tide over the rapidly varying and steep topographic features like continental shelf slope, subsurface ridges, and the seamounts, etc. The IWs of the tidal frequency are generally known as internal tides. These waves have a significant influence on the vertical density and hence causes mixing in the region. Such waves are also important in submarine acoustics, underwater navigation, offshore structures, ocean mixing and biogeochemical processes, etc. over the shelf-slope region. The seasonal variability of internal tides in the Bay of Bengal with special emphasis on its energetics is examined by using three-dimensional MITgcm model. The numerical simulations are performed for different periods covering August-September, 2013; November-December, 2013 and March-April, 2014 representing monsoon, post-monsoon and pre-monsoon seasons respectively during which high temporal resolution in-situ data sets are available. The model is initially validated through the spectral estimates of density and the baroclinic velocities. From the estimates, it is inferred that the internal tides associated with semi-diurnal frequency are more dominant in both observations and model simulations for November-December and March-April. However, in August, the estimate is found to be maximum near-inertial frequency at all the available depths. The observed vertical structure of the baroclinic velocities and its magnitude are found to be well captured by the model. EOF analysis is performed to decompose the zonal and meridional baroclinic tidal currents into different vertical modes. The analysis suggests that about 70-80% of the total variance comes from Mode-1 semi-diurnal internal tide in both observations as well as in the model simulations. The first three modes are sufficient to describe most of the variability for semidiurnal internal tides, as they represent 90-95% of the total variance for all the seasons. The phase speed, group speed, and wavelength are found to be maximum for post-monsoon season compared to other two seasons. The model simulation suggests that the internal tide is generated all along the shelf-slope regions and propagate away from the generation sites in all the months. The model simulated energy dissipation rate infers that its maximum occurs at the generation sites and hence the local mixing due to internal tide is maximum at these sites. The spatial distribution of available potential energy is found to be maximum in November (20kg/m²) in northern BoB and minimum in August (14kg/m²). The detailed energy budget calculation are made for all the seasons and results are analysed.

Keywords: available potential energy, baroclinic energy flux, internal tides, Bay of Bengal

Procedia PDF Downloads 170
10115 Design and Fabrication of Pulse Detonation Engine Based on Numerical Simulation

Authors: Vishal Shetty, Pranjal Khasnis, Saptarshi Mandal

Abstract:

This work explores the design and fabrication of a fundamental pulse detonation engine (PDE) prototype on the basis of pressure and temperature pulse obtained from numerical simulation of the same. PDE is an advanced propulsion system that utilizes detonation waves for thrust generation. PDEs use a fuel-air mixture ignited to create a supersonic detonation wave, resulting in rapid energy release, high pressures, and high temperatures. The operational cycle includes fuel injection, ignition, detonation, exhaust of combustion products, and purging of the chamber for the next cycle. This work presents details of the core operating principles of a PDE, highlighting its potential advantages over traditional jet engines that rely on continuous combustion. The design focuses on a straightforward, valve-controlled system for fuel and oxidizer injection into a detonation tube. The detonation was initiated using an electronically controlled spark plug or similar high-energy ignition source. Following the detonation, a purge valve was employed to expel the combusted gases and prepare the tube for the next cycle. Key considerations for the design include material selection for the detonation tube to withstand the high temperatures and pressures generated during detonation. Fabrication techniques prioritized readily available machining methods to create a functional prototype. This work detailed the testing procedures for verifying the functionality of the PDE prototype. Emphasis was given to the measurement of thrust generation and capturing of pressure data within the detonation tube. The numerical analysis presents performance evaluation and potential areas for future design optimization.

Keywords: pulse detonation engine, ignition, detonation, combustion

Procedia PDF Downloads 20
10114 Sustainability of Environment and Green Energy Strategies Comprehensive Analysis

Authors: Vahid Pirooznia

Abstract:

In this think about we propose a few green vitality procedures for feasible advancement. In this respect, seven green energy methodologies are taken into thought to decide the sectoral, innovative, and application affect proportions. Based on these proportions, we determine a modern parameter as the green energy affect proportion. In expansion, the green energy-based supportability proportion is gotten by depending upon the green energy affect proportion, and the green energy utilization proportion that's calculated utilizing real vitality information taken from literature. In arrange to confirm these parameters, three cases are considered. Subsequently, it can be considered that the sectoral affect proportion is more imperative and ought to be kept consistent as much as conceivable in a green vitality arrangement usage. In addition, the green energy-based supportability proportion increments with an increment of mechanical, sectoral, and application affect proportions. This implies that all negative impacts on the mechanical, innovative, sectoral and social improvements mostly and/or totally diminish all through the move and utilization to and of green energy and advances when conceivable feasible sustainable economic feasible maintainable energy techniques are favored and connected. Hence, the economical energy methodologies can make an imperative commitment to the economies of the nations where green energy (e.g., wind, sun based, tidal, biomass) is inexhaustibly created. Hence, the speculation in green energy supply and advance ought to be energized by governments and other specialists for a green energy substitution of fossil powers for more ecologically generous and feasible future.

Keywords: green energy, environment, sustainable, development

Procedia PDF Downloads 73
10113 ESGP-PA’s First-Generation College Student: Challenges to Succeed

Authors: Bernadette F. De La Cruz, Susan Marie R. Dela Cruz, Georgia D. Demavibas

Abstract:

The Expanded Student Grant-in-Aid Program for Poverty Alleviation (ESGP-PA) is a government program that aims to contribute to the National Government’s thrusts in effectively addressing poverty alleviation by increasing the number of graduates in higher education among indigent households and to get these graduates employed in in-demand occupations in order to lift their families out of poverty. Higher education continues to see an influx of these students from poor families that have never previously sent anyone to college. There are many challenges that face college students at all levels, but these are special challenges for first-generation students. Challenges that face these students can include lack of interest in attending school, low aptitude, being not single anymore, factors such as unfamiliarity with college expectations, lack of preparations while in secondary school, and limited support from family members. This research looks at some of the challenges first-generation college students face and examines the impact of these challenges on student’s aspirations for the attainment of a college degree and ultimately a high-paying career.

Keywords: ESGP-PA, first-generation college students, low aptitude, poverty alleviation

Procedia PDF Downloads 325