Search results for: emotional intelligence
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3076

Search results for: emotional intelligence

2416 Impact of the Fourth Industrial Revolution on Food Security in South Africa

Authors: Fiyinfoluwa Giwa, Nicholas Ngepah

Abstract:

This paper investigates the relationship between the Fourth Industrial Revolution and food security in South Africa. The Ordinary Least Square was adopted from 2012 Q1 to 2021 Q4. The study used artificial intelligence investment and the food production index as the measure for the fourth industrial revolution and food security, respectively. Findings reveal a significant and positive coefficient of 0.2887, signifying a robust statistical relationship between AI adoption and the food production index. As a policy recommendation, this paper recommends the introduction of incentives for farmers and agricultural enterprises to adopt AI technologies -and the expansion of digital connectivity and access to technology in rural areas.

Keywords: Fourth Industrial Revolution, food security, artificial intelligence investment, food production index, ordinary least square

Procedia PDF Downloads 75
2415 Infodemic Detection on Social Media with a Multi-Dimensional Deep Learning Framework

Authors: Raymond Xu, Cindy Jingru Wang

Abstract:

Social media has become a globally connected and influencing platform. Social media data, such as tweets, can help predict the spread of pandemics and provide individuals and healthcare providers early warnings. Public psychological reactions and opinions can be efficiently monitored by AI models on the progression of dominant topics on Twitter. However, statistics show that as the coronavirus spreads, so does an infodemic of misinformation due to pandemic-related factors such as unemployment and lockdowns. Social media algorithms are often biased toward outrage by promoting content that people have an emotional reaction to and are likely to engage with. This can influence users’ attitudes and cause confusion. Therefore, social media is a double-edged sword. Combating fake news and biased content has become one of the essential tasks. This research analyzes the variety of methods used for fake news detection covering random forest, logistic regression, support vector machines, decision tree, naive Bayes, BoW, TF-IDF, LDA, CNN, RNN, LSTM, DeepFake, and hierarchical attention network. The performance of each method is analyzed. Based on these models’ achievements and limitations, a multi-dimensional AI framework is proposed to achieve higher accuracy in infodemic detection, especially pandemic-related news. The model is trained on contextual content, images, and news metadata.

Keywords: artificial intelligence, fake news detection, infodemic detection, image recognition, sentiment analysis

Procedia PDF Downloads 258
2414 Applications of Artificial Neural Networks in Civil Engineering

Authors: Naci Büyükkaracığan

Abstract:

Artificial neural networks (ANN) is an electrical model based on the human brain nervous system and working principle. Artificial neural networks have been the subject of an active field of research that has matured greatly over the past 55 years. ANN now is used in many fields. But, it has been viewed that artificial neural networks give better results in particular optimization and control systems. There are requirements of optimization and control system in many of the area forming the subject of civil engineering applications. In this study, the first artificial intelligence systems are widely used in the solution of civil engineering systems were examined with the basic principles and technical aspects. Finally, the literature reviews for applications in the field of civil engineering were conducted and also artificial intelligence techniques were informed about the study and its results.

Keywords: artificial neural networks, civil engineering, Fuzzy logic, statistics

Procedia PDF Downloads 414
2413 Measuring Emotion Dynamics on Facebook: Associations between Variability in Expressed Emotion and Psychological Functioning

Authors: Elizabeth M. Seabrook, Nikki S. Rickard

Abstract:

Examining time-dependent measures of emotion such as variability, instability, and inertia, provide critical and complementary insights into mental health status. Observing changes in the pattern of emotional expression over time could act as a tool to identify meaningful shifts between psychological well- and ill-being. From a practical standpoint, however, examining emotion dynamics day-to-day is likely to be burdensome and invasive. Utilizing social media data as a facet of lived experience can provide real-world, temporally specific access to emotional expression. Emotional language on social media may provide accurate and sensitive insights into individual and community mental health and well-being, particularly with focus placed on the within-person dynamics of online emotion expression. The objective of the current study was to examine the dynamics of emotional expression on the social network platform Facebook for active users and their relationship with psychological well- and ill-being. It was expected that greater positive and negative emotion variability, instability, and inertia would be associated with poorer psychological well-being and greater depression symptoms. Data were collected using a smartphone app, MoodPrism, which delivered demographic questionnaires, psychological inventories assessing depression symptoms and psychological well-being, and collected the Status Updates of consenting participants. MoodPrism also delivered an experience sampling methodology where participants completed items assessing positive affect, negative affect, and arousal, daily for a 30-day period. The number of positive and negative words in posts was extracted and automatically collated by MoodPrism. The relative proportion of positive and negative words from the total words written in posts was then calculated. Preliminary analyses have been conducted with the data of 9 participants. While these analyses are underpowered due to sample size, they have revealed trends that greater variability in the emotion valence expressed in posts is positively associated with greater depression symptoms (r(9) = .56, p = .12), as is greater instability in emotion valence (r(9) = .58, p = .099). Full data analysis utilizing time-series techniques to explore the Facebook data set will be presented at the conference. Identifying the features of emotion dynamics (variability, instability, inertia) that are relevant to mental health in social media emotional expression is a fundamental step in creating automated screening tools for mental health that are temporally sensitive, unobtrusive, and accurate. The current findings show how monitoring basic social network characteristics over time can provide greater depth in predicting risk and changes in depression and positive well-being.

Keywords: emotion, experience sampling methods, mental health, social media

Procedia PDF Downloads 251
2412 Method Being a New Intervention Program for Emotional Management for Distress Through Self-Compassion and Compassion

Authors: M. Bassas, J. Grané-Morcillo, J. Segura, J. M. Soldevila

Abstract:

Mental health prevention is key in a society where, according to the World Health Organization, the fourth leading cause of death worldwide is suicide. Compassion is closely linked to personal growth. It shows once again that therapies based on prevention remain an urgency and a social need. In this sense, a growing body of research demonstrates how cultivating a compassionate mind can help alleviate and prevent a variety of psychological problems. In the early 21st century there has been a boom in third-generation compassion-based therapies, although there is a lack of empirical evidence of their efficacy. This study proposes a new psychotherapy method (“Being Method”), whose central axis revolves around emotional management through the cultivation of self-compassion and compassion. Therefore, the objective of this research was to analyze the effectiveness of this method; with regards to the emotional changes experienced when we focus on what we are concerned about through the filter of self-compassion and compassion. The Being Method was born from the influence of Buddhist philosophy and contemporary psychology based mainly on Western rationalist currents. A quantitative cross-sectional study has been carried out in a sample of women between 18 and 53 years old (n=47; Mage=36.02; SDage= 11.86) interested in personal growth in which the following 6 measuring instruments were administered: Peace of mind Scale (PoM), Rosenberg Self-Esteem Scale (RSES; Rosenberg, 1965), Subjective Happiness Scale (SHS), 2 Sacles of the Self-Compassionate and Compassionate Action and Engagement Scales (CAES), Coping Response Inventory for Adults (CRI-A) and Cognitive-Behavioral Strategies Evaluation Scale (MOLDES). Following an experimental method approach, participants were divided into an experimental and control group. Longitudinal analysis was also carried out, through a pre-post program comparison. Pre-post comparison outcomes indicated significant differences (p<.05) between before and after the therapy in the variables Peace of Mind, Self-esteem, Happiness, Self-compassion (A-B), Compassion (A-B), in several mental molds, as well as in several coping strategies. Also, between-groups tests proved significantly higher means obtained in the experimental group. Thus, these outcomes highlighted the effectiveness of the therapy improving all the analyzed dimensions. The social, clinical and research implications are discussed.

Keywords: being method, compassion, effectiveness, emotional management, intervention program, personal growth therapy

Procedia PDF Downloads 45
2411 Aerobic Bioprocess Control Using Artificial Intelligence Techniques

Authors: M. Caramihai, Irina Severin

Abstract:

This paper deals with the design of an intelligent control structure for a bioprocess of Hansenula polymorpha yeast cultivation. The objective of the process control is to produce biomass in a desired physiological state. The work demonstrates that the designed Hybrid Control Techniques (HCT) are able to recognize specific evolution bioprocess trajectories using neural networks trained specifically for this purpose, in order to estimate the model parameters and to adjust the overall bioprocess evolution through an expert system and a fuzzy structure. The design of the control algorithm as well as its tuning through realistic simulations is presented. Taking into consideration the synergism of different paradigms like fuzzy logic, neural network, and symbolic artificial intelligence (AI), in this paper we present a real and fulfilled intelligent control architecture with application in bioprocess control.

Keywords: bioprocess, intelligent control, neural nets, fuzzy structure, hybrid techniques

Procedia PDF Downloads 424
2410 The Synopsis of the AI-Powered Therapy Web Platform ‘Free AI Therapist'

Authors: Arwa Alnowaiser, Hala Shoukri

Abstract:

The ‘FreeAITherapist’ is an artificial intelligence application that uses the power of AI to offer advice and mental health counseling to its users through its chatbot services. The AI therapist is designed to understand users' issues, concerns, and problems and respond appropriately; it provides empathy and guidance and uses evidence-based therapeutic techniques. With its user-friendly platform, it ensures accessibility for individuals in need, regardless of their geographical location. This website was created in direct response to the growing demand for mental health support, aiming to provide a cost-effective and confidential solution. Through promising confidentiality, it considers user privacy and data security. The ‘FreeAITherapist’ strives to bridge the gap in mental health services, offering a reliable resource for individuals seeking guidance and counseling to improve their overall well-being.

Keywords: artificial intelligence, mental health, AI therapist, website, counseling

Procedia PDF Downloads 46
2409 Artificial Intelligence for Generative Modelling

Authors: Shryas Bhurat, Aryan Vashistha, Sampreet Dinakar Nayak, Ayush Gupta

Abstract:

As the technology is advancing more towards high computational resources, there is a paradigm shift in the usage of these resources to optimize the design process. This paper discusses the usage of ‘Generative Design using Artificial Intelligence’ to build better models that adapt the operations like selection, mutation, and crossover to generate results. The human mind thinks of the simplest approach while designing an object, but the intelligence learns from the past & designs the complex optimized CAD Models. Generative Design takes the boundary conditions and comes up with multiple solutions with iterations to come up with a sturdy design with the most optimal parameter that is given, saving huge amounts of time & resources. The new production techniques that are at our disposal allow us to use additive manufacturing, 3D printing, and other innovative manufacturing techniques to save resources and design artistically engineered CAD Models. Also, this paper discusses the Genetic Algorithm, the Non-Domination technique to choose the right results using biomimicry that has evolved for current habitation for millions of years. The computer uses parametric models to generate newer models using an iterative approach & uses cloud computing to store these iterative designs. The later part of the paper compares the topology optimization technology with Generative Design that is previously being used to generate CAD Models. Finally, this paper shows the performance of algorithms and how these algorithms help in designing resource-efficient models.

Keywords: genetic algorithm, bio mimicry, generative modeling, non-dominant techniques

Procedia PDF Downloads 149
2408 Exploring Program Directors’ and Faculty’s Perception and Factors Leading to Burnout in Higher Education Institutions in Azerbaijan

Authors: Gunay Imanguliyeva

Abstract:

Burnout is one of the concerning issues in education. The present paper aimed to explore the concept of burnout among program directors and faculty working in three higher education institutions (HEIs) in Azerbaijan and identify the factors contributing to burnout and the possible consequences of this syndrome on research participants’ professional and personal life. The researcher believed that if the concept of burnout was defined precisely and explored among more faculty, administration, and educational institutions, university leadership may have looked for the ways to support program directors and faculty, which would increase job satisfaction and decrease turnover. An exploratory qualitative research design was chosen for this study. The conceptual framework of this study was based on the Maslach Burnout Inventory. The instruments of the research were semi-structured interviews, observation, and document review. Three EFL (Teaching English as a Foreign Language) instructors and three program directors of the English Language Department working in three higher educational institutions in Azerbaijan participated in this study. The major findings of this study showed that both program directors and faculty suffered from burnout. Though they were aware of the factors that caused burnout, they did not know how to deal with this feeling. While research participants had high feeling of Emotional Exhaustion and Depersonalization, they had a low feeling of Personal Accomplishment. The researcher suggests that further research is important to measure the level of burnout and to enable HEIs to increase the productivity of program directors’ and faculty’s work as well as decrease the rate of retention in future. Also, in order to help program directors and faculty to cope with burnout, the research recommends the university leadership to meet their psycho-social needs, emotional-physical needs, and personal-intellectual needs. Keywords: burnout, emotional exhaustion, factors, well-being, higher education

Keywords: burnout, well-being, higher education, factors

Procedia PDF Downloads 107
2407 Adaptation and Validation of Voice Handicap Index in Telugu Language

Authors: B. S. Premalatha, Kausalya Sahani

Abstract:

Background: Voice is multidimensional which convey emotion, feelings, and communication. Voice disorders have an adverse effect on the physical, emotional and functional domains of an individual. Self-rating by clients about their voice problem helps the clinicians to plan intervention strategies. Voice handicap index is one such self-rating scale contains 30 questions that quantify the functional, physical and emotional impacts of a voice disorder on a patient’s quality of life. Each subsection has 10 questions. Though adapted and validated versions of VHI are available in other Indian languages but not in Telugu, which is a Dravidian language native to India. It is mainly spoken in Andhra Pradesh and neighbouring states in southern India. Objectives: To adapt and validate the English version of Voice Handicap Index (VHI) into Telugu language and evaluate its internal consistency and clinical validate in Telugu speaking population. Materials: The study carried out in three stages. First stage was a forward translation of English version of VHI, was given to ten experts, who were well proficient in writing and reading Telugu and five speech-language pathologists to translate into Telugu. Second Stage was backward translation where translated version of Telugu was given to a different group of ten experts (who were well proficient in writing and reading Telugu) and five speech-language pathologists who were native Telugu speakers and had good proficiency in Telugu and English. The third stage was an administration of translated version on Telugu to the targeted population. Totally 40 clinical subjects and 40 normal controls served as participants, and each group had 26 males and 14 females’ age range of 20 to 60 years. Clinical group comprised of individuals with laryngectomee with the Tracheoesophageal puncture (n=18), laryngitis (n=11), vocal nodules (n=7) and vocal fold palsy (n=4). Participants were asked to mark of their each experience on a 5 point equal appearing scale (0=never, 1=almost never, 2=sometimes, 3=almost always, 4=always) with a maximum total score of 120. Results: Statistical analysis was made by using SPSS software (22.0.0 Version). Mean, standard deviation and percentage (%) were calculated all the participants for both the groups. Internal consistency of VHI in Telugu was found to be excellent with the consistency scores for all the domains such as physical, emotional and functional are 0.742, 0.934and 0.938. The validity of scores showed a significant difference between clinical population and control group for domains like physical, emotional and functional and total scores. P value found to be less than 0.001( < 0.001). Negative correlation found in age and gender among self-domains such as physical, emotional and functional total scores in dysphonic and control group. Conclusion: The present study indicated that VHI in Telugu is able to discriminate participants having voice pathology from normal populations, which make this as a valid tool to collect information about their voice from the participants.

Keywords: adaptation, Telugu Version, translation, Voice Handicap Index (VHI)

Procedia PDF Downloads 277
2406 Review of Full Body Imaging and High-Resolution Automatic 3D Mapping Systems for Medical Application

Authors: Jurijs Salijevs, Katrina Bolocko

Abstract:

The integration of artificial intelligence and neural networks has significantly changed full-body imaging and high-resolution 3D mapping systems, and this paper reviews research in these areas. With an emphasis on their use in the early identification of melanoma and other disorders, the goal is to give a wide perspective on the current status and potential future of these medical imaging technologies. Authors also examine methodologies such as machine learning and deep learning, seeking to identify efficient procedures that enhance diagnostic capabilities through the analysis of 3D body scans. This work aims to encourage further research and technological development to harness the full potential of AI in disease diagnosis.

Keywords: artificial intelligence, neural networks, 3D scan, body scan, 3D mapping system, healthcare

Procedia PDF Downloads 104
2405 Artificial Intelligence-Based Thermal Management of Battery System for Electric Vehicles

Authors: Raghunandan Gurumurthy, Aricson Pereira, Sandeep Patil

Abstract:

The escalating adoption of electric vehicles (EVs) across the globe has underscored the critical importance of advancing battery system technologies. This has catalyzed a shift towards the design and development of battery systems that not only exhibit higher energy efficiency but also boast enhanced thermal performance and sophisticated multi-material enclosures. A significant leap in this domain has been the incorporation of simulation-based design optimization for battery packs and Battery Management Systems (BMS), a move further enriched by integrating artificial intelligence/machine learning (AI/ML) approaches. These strategies are pivotal in refining the design, manufacturing, and operational processes for electric vehicles and energy storage systems. By leveraging AI/ML, stakeholders can now predict battery performance metrics—such as State of Health, State of Charge, and State of Power—with unprecedented accuracy. Furthermore, as Li-ion batteries (LIBs) become more prevalent in urban settings, the imperative for bolstering thermal and fire resilience has intensified. This has propelled Battery Thermal Management Systems (BTMs) to the forefront of energy storage research, highlighting the role of machine learning and AI not just as tools for enhanced safety management through accurate temperature forecasts and diagnostics but also as indispensable allies in the early detection and warning of potential battery fires.

Keywords: electric vehicles, battery thermal management, industrial engineering, machine learning, artificial intelligence, manufacturing

Procedia PDF Downloads 97
2404 Guidelines for School Management to Enhance School Engagement of Bangkok Christian College Students

Authors: Wichai Srisud, Shunnawat Pungbangkradee, Sukanya Chaemchoy

Abstract:

This research study aims to analyze and assess school management guidelines designed to enhance the level of Student School Engagement of students at Bangkok Christian College, according to three following primary objectives: 1) to evaluate the level of Student School Engagement among Bangkok Christian College students, 2) to examine the Priority Needs Index of school management for promoting an optimum level of Student School Engagement among Bangkok Christian College students, and 3) to develop additional guidelines for school management to further enhance the level of Student School Engagement of Bangkok Christian College students. The research was conducted using Explanatory Design research methodology, with data obtained from a sample comprised of 291 students and 6 administrative personnel. The research findings indicated that: 1) The overall level of Student School Engagement was high. Emotional engagement averaged at the highest level, followed by Behavioral Engagement and Cognitive Engagement, respectively. 2) The Priority Needs Index of school management for promoting Student School Engagement of Bangkok Christian College students was examined, revealing that Evaluation averaged at the highest PNI level, followed by Planning and Implementation, respectively. 3) Guidelines for school management to enhance Student School Engagement of Bangkok Christian College students should consist of four approaches: 3.1) A Cognitive Engagement Enhancing Approach, which must include (1) fostering students’ problem-solving flexibility, and their ability to devise solutions for overcoming potential challenges, and (2) encouraging students to deal effectively with academic setbacks, rather than becoming overwhelmed by what they may perceive as failures, 3.2) An Emotional Engagement Enhancing Approach, cultivating students’ interests, aspirations and goals in learning to maximize emotional investment in their academic pursuits, and 3.3) A Behavioral Engagement Enhancing Approach, for elevating students’ focus and attentiveness during learning, and improving their ability to avoid distractions during study time.

Keywords: school engagement, guidelines for school management

Procedia PDF Downloads 63
2403 Using AI for Analysing Political Leaders

Authors: Shuai Zhao, Shalendra D. Sharma, Jin Xu

Abstract:

This research uses advanced machine learning models to learn a number of hypotheses regarding political executives. Specifically, it analyses the impact these powerful leaders have on economic growth by using leaders’ data from the Archigos database from 1835 to the end of 2015. The data is processed by the AutoGluon, which was developed by Amazon. Automated Machine Learning (AutoML) and AutoGluon can automatically extract features from the data and then use multiple classifiers to train the data. Use a linear regression model and classification model to establish the relationship between leaders and economic growth (GDP per capita growth), and to clarify the relationship between their characteristics and economic growth from a machine learning perspective. Our work may show as a model or signal for collaboration between the fields of statistics and artificial intelligence (AI) that can light up the way for political researchers and economists.

Keywords: comparative politics, political executives, leaders’ characteristics, artificial intelligence

Procedia PDF Downloads 86
2402 Educational Leadership and Artificial Intelligence

Authors: Sultan Ghaleb Aldaihani

Abstract:

- The environment in which educational leadership takes place is becoming increasingly complex due to factors like globalization and rapid technological change. - This is creating a "leadership gap" where the complexity of the environment outpaces the ability of leaders to effectively respond. - Educational leadership involves guiding teachers and the broader school system towards improved student learning and achievement. 2. Implications of Artificial Intelligence (AI) in Educational Leadership: - AI has great potential to enhance education, such as through intelligent tutoring systems and automating routine tasks to free up teachers. - AI can also have significant implications for educational leadership by providing better information and data-driven decision-making capabilities. - Computer-adaptive testing can provide detailed, individualized data on student learning that leaders can use for instructional decisions and accountability. 3. Enhancing Decision-Making Processes: - Statistical models and data mining techniques can help identify at-risk students earlier, allowing for targeted interventions. - Probability-based models can diagnose students likely to drop out, enabling proactive support. - These data-driven approaches can make resource allocation and decision-making more effective. 4. Improving Efficiency and Productivity: - AI systems can automate tasks and change processes to improve the efficiency of educational leadership and administration. - Integrating AI can free up leaders to focus more on their role's human, interactive elements.

Keywords: Education, Leadership, Technology, Artificial Intelligence

Procedia PDF Downloads 45
2401 Child Abuse: Emotional, Physical, Neglect, Sexual and the Psychological Effects: A Case Scenario in Lagos State

Authors: Aminu Ololade Matilda

Abstract:

Child abuse is a significant issue worldwide, affecting the socio-development and mental and physical health of young individuals. It is the maltreatment of a child by an adult or a child. This paper focuses on child abuse in Communities in Lagos State. The aim of this study is to investigate the extent of child abuse and its impact on the mood, social activities, self-worth, concentration, and academic performance of children in Communities in Lagos State. The primary research instrument used in this study was the interview (Forensic), which consisted of two sections. The first section gathered data on the details of the child and the forms and impacts of abuse experienced, while the second section focused on parental style. The study found that children who experienced various forms of abuse, such as emotional, neglect, physical, or sexual abuse, were hesitant to report it out of fear of threats or even death from the abuser. These abused children displayed withdrawn behaviour, depression, and low self-worth and underperformed academically compared to their peers who did not experience abuse. The findings align with socio-learning and intergenerational transmission of violence theories, which suggest that parents and caregivers who engage in child abuse often do so because they themselves experienced or witnessed abuse as children, thereby normalizing violence. The study highlights the prevalent issue of child abuse in Lagos State and emphasizes the need for advocacy programs and capacity building to raise awareness about child abuse and prevention. The distribution of the Child’s Rights Act in various sectors is also recommended to underscore the importance of protecting the rights of children. Additionally, the inclusion of courses on child abuse in the school curriculum is proposed to ensure children are educated on recognizing and reporting abuse.

Keywords: abuse, child, awareness, effects, emotional, neglect, physical, psychological, sexual, recognize, reporting, right

Procedia PDF Downloads 81
2400 Machine Learning Techniques to Develop Traffic Accident Frequency Prediction Models

Authors: Rodrigo Aguiar, Adelino Ferreira

Abstract:

Road traffic accidents are the leading cause of unnatural death and injuries worldwide, representing a significant problem of road safety. In this context, the use of artificial intelligence with advanced machine learning techniques has gained prominence as a promising approach to predict traffic accidents. This article investigates the application of machine learning algorithms to develop traffic accident frequency prediction models. Models are evaluated based on performance metrics, making it possible to do a comparative analysis with traditional prediction approaches. The results suggest that machine learning can provide a powerful tool for accident prediction, which will contribute to making more informed decisions regarding road safety.

Keywords: machine learning, artificial intelligence, frequency of accidents, road safety

Procedia PDF Downloads 89
2399 Human Resource Management Challenges in Age of Artificial Intelligence: Methodology of Case Analysis

Authors: Olga Leontjeva

Abstract:

In the age of Artificial Intelligence (AI), some organization management approaches need to be adapted or changed. Human Resource Management (HRM) is a part of organization management that is under the managers' focus nowadays, because AI integration into organization activities brings some HRM-connected challenges. The topic became more significant during the crises of many organizations in the world caused by the coronavirus pandemic (COVID-19). The paper presents an approach, which will be used for the study that is going to be focused on the various case analysis. The author of the future study will analyze the cases of the organizations from Latvia and Spain that are grouped by the size, type of activity and area of business. The information for the cases will be collected through structured interviews and online surveys. The main result presented is the questionnaire developed that will be used for the study as well as the definition and description of sampling. The first round of the survey will be based on convenience sampling that is the main limitation of the study. To conclude, the approach developed will help to collect valid data if the organizations participating in the survey are ready to share their cases in depth, so the researchers could draw the right conclusions and generalize compared organizations’ cases. The questionnaire developed for the survey is applicable for both written online data collection as well as for the interviews. The case analysis will help to identify some HRM challenges that are connected to AI integration into organization activities such as management of different generation employees and their training peculiarities.

Keywords: age of artificial intelligence, case analysis, generation Y and Z employees, human resource management

Procedia PDF Downloads 169
2398 A Pilot Study on the Sensory Processing Difficulty Pattern Association between the Hot and Cold Executive Function Deficits in Attention Deficit Hyperactivity Deficit Child

Authors: Sheng-Fen Fan, Sung-Hui Tseng

Abstract:

Attention deficit hyperactivity deficit (ADHD) child display diverse sensory processing difficulty behaviors. There is less evidence to figure out how the association between executive function and sensory deficit. To determine whether sensory deficit influence the executive functions, we examined sensory processing by SPM and try to indicate hot/cold executive function (EF) by BRIEF2, respectively. We found that the hot executive function deficit might associate with auditory processing in a variety of settings, and vestibular input to maintain balance and upright posture; the cold EF deficit might opposite to the hot EF deficit, the vestibular sensory modulation difficulty association with emotion shifting and emotional regulation. These results suggest that sensory processing might be another consideration factor to influence the higher cognitive control or emotional regulation of EF. Overall, this study indicates the distinction between hot and cold EF impairments with different sensory modulation problem. Moreover, for clinician, it needs more cautious consideration to conduct intervention with ADHD.

Keywords: hot executive function, cold executive function, sensory processing, ADHD

Procedia PDF Downloads 286
2397 Enhancing the Aussie Optimism Positive Thinking Skills Program: Short-term Effects on Anxiety and Depression in Youth aged 9-11 Years Old

Authors: Rosanna M. Rooney, Sharinaz Hassan, Maryanne McDevitt, Jacob D. Peckover, Robert T. Kane

Abstract:

Anxiety and depression are the most common mental health problems experienced by Australian children and adolescents. Research into youth mental health points to the importance of considering emotional competence, parental influence on the child’s emotional development, and the fact that cognitions are still developing in childhood when designing and implementing positive psychology interventions. Additionally, research into such interventions has suggested the inclusion of a coaching component aimed at supporting those implementing the intervention enhances the effects of the intervention itself. In light of these findings and given the burden of anxiety and depression in the longer term, it is necessary to enhance the Aussie Optimism Positive Thinking Skills program and evaluate its efficacy in terms of children’s mental health outcomes. It was expected that the enhancement of the emotional and cognitive aspects of the Aussie Optimism Positive Thinking Skills program, the addition of coaching, and the inclusion of a parent manual would lead to significant prevention effects in internalizing problems at post-test, 6- and 18-months after the completion of the intervention. 502 students (9-11 years old) were randomly assigned to the intervention group (n = 347) or control group (n = 155). At each time point (baseline, post-test, 6-month follow-up, and 18-month follow-up), students completed a battery of self-report measures. The ten intervention sessions making up the enhanced Aussie Optimism Positive Thinking Skills program were run weekly. At post-test and 6-month follow-up, the intervention group reported significantly lower depression than the control group, with no group differences at the 18-month follow-up. The intervention group reported significantly lower anxiety than the control group only at the 6-month follow-up, with no group differences in the post-test or at the 18-month follow-up. Results suggest that the enhanced Aussie Optimism Positive Thinking Skills program can reduce depressive and anxious symptoms in the short term and highlight the importance of universally implemented positive psychology interventions.

Keywords: positive psychology, emotional competence, internalizing symptoms, universal implementation

Procedia PDF Downloads 69
2396 Control HVAC Parameters by Brain Emotional Learning Based Intelligent Controller (BELBIC)

Authors: Javad Abdi, Azam Famil Khalili

Abstract:

Modeling emotions have attracted much attention in recent years, both in cognitive psychology and design of artificial systems. However, it is a negative factor in decision-making; emotions have shown to be a strong faculty for making fast satisfying decisions. In this paper, we have adapted a computational model based on the limbic system in the mammalian brain for control engineering applications. Learning in this model based on Temporal Difference (TD) Learning, we applied the proposed controller (termed BELBIC) for a simple model of a submarine. The model was supposed to reach the desired depth underwater. Our results demonstrate excellent control action, disturbance handling, and system parameter robustness for TDBELBIC. The proposal method, regarding the present conditions, the system action in the part and the controlling aims, can control the system in a way that these objectives are attained in the least amount of time and the best way.

Keywords: artificial neural networks, temporal difference, brain emotional learning based intelligent controller, heating- ventilating and air conditioning

Procedia PDF Downloads 434
2395 Effect of Phonological Complexity in Children with Specific Language Impairment

Authors: Irfana M., Priyandi Kabasi

Abstract:

Children with specific language impairment (SLI) have difficulty acquiring and using language despite having all the requirements of cognitive skills to support language acquisition. These children have normal non-verbal intelligence, hearing, and oral-motor skills, with no history of social/emotional problems or significant neurological impairment. Nevertheless, their language acquisition lags behind their peers. Phonological complexity can be considered to be the major factor that causes the inaccurate production of speech in this population. However, the implementation of various ranges of complex phonological stimuli in the treatment session of SLI should be followed for a better prognosis of speech accuracy. Hence there is a need to study the levels of phonological complexity. The present study consisted of 7 individuals who were diagnosed with SLI and 10 developmentally normal children. All of them were Hindi speakers with both genders and their age ranged from 4 to 5 years. There were 4 sets of stimuli; among them were minimal contrast vs maximal contrast nonwords, minimal coarticulation vs maximal coarticulation nonwords, minimal contrast vs maximal contrast words and minimal coarticulation vs maximal coarticulation words. Each set contained 10 stimuli and participants were asked to repeat each stimulus. Results showed that production of maximal contrast was significantly accurate, followed by minimal coarticulation, minimal contrast and maximal coarticulation. A similar trend was shown for both word and non-word categories of stimuli. The phonological complexity effect was evident in the study for each participant group. Moreover, present study findings can be implemented for the management of SLI, specifically for the selection of stimuli.

Keywords: coarticulation, minimal contrast, phonological complexity, specific language impairment

Procedia PDF Downloads 143
2394 The Study of Sensory Breadth Experiences in an Online Try-On Environment

Authors: Tseng-Lung Huang

Abstract:

Sensory breadth experiences, such as visualization, a sense of self-location, and haptic experiences, are critical in an online try-on environment. This research adopts an emotional appeal perspective, including concrete and abstract effects, to clarify the relationship between sensory experience and consumer's behavior intention in an online try-on context. This study employed an augmented reality interactive technology (ARIT) in an online clothes-fitting context and applied snowball sampling using e-mail to invite online consumers, first to use ARIT for trying on online apparel and then to complete a questionnaire. One hundred sixty-eight valid questionnaires were collected, and partial least squares (PLS) path modeling was used to test our hypotheses. The results showed that sensory breadth, by arousing concrete effect, induces impulse buying intention and willingness to pay a price premium of online shopping. Parasocial presence, as an abstract effect, diminishes the effect of concrete effects on willingness to pay a price premium.

Keywords: sensory breadth, impulsive behavior, price premium, emotional appeal, online try-on context

Procedia PDF Downloads 548
2393 Using a Phenomenological Approach to Explore the Experiences of Nursing Students in Coping with Their Emotional Responses in Caring for End-Of-Life Patients

Authors: Yun Chan Lee

Abstract:

Background: End-of-life care is a large area of all nursing practice and student nurses are likely to meet dying patients in many placement areas. It is therefore important to understand the emotional responses and coping strategies of student nurses in order for nursing education systems to have some appreciation of how nursing students might be supported in the future. Methodology: This research used a qualitative phenomenological approach. Six student nurses understanding a degree-level adult nursing course were interviewed. Their responses to questions were analyzed using interpretative phenomenological analysis. Finding: The findings identified 3 main themes. First, the common experience of ‘unpreparedness’. A very small number of participants felt that this was unavoidable and that ‘no preparation is possible’, the majority felt that they were unprepared because of ‘insufficient input’ from the university and as a result of wider ‘social taboos’ around death and dying. The second theme showed that emotions were affected by ‘the personal connection to the patient’ and the important sub-themes of ‘the evoking of memories’, ‘involvement in care’ and ‘sense of responsibility’. The third theme, the coping strategies used by students, seemed to fall into two broad areas those ‘internal’ with the student and those ‘external’. In terms of the internal coping strategies, ‘detachment’, ‘faith’, ‘rationalization’ and ‘reflective skills’ are the important components of this part. Regarding the external coping strategies, ‘clinical staff’ and ‘the importance of family and friends’ are the importance of accessing external forms of support. Implication: It is clear that student nurses are affected emotionally by caring for dying patients and many of them have apprehension even before they begin on their placements but very often this is unspoken. Those anxieties before the placement become more pronounced during and continue after the placements. This has implications for when support is offered and possibly its duration. Another significant point of the study is that participants often highlighted their wish to speak to qualified nurses after their experiences of being involved in end-of-life care and especially when they had been present at the time of death. Many of the students spoke that qualified nurses were not available to them. This seemed to be due to a number of reasons. Because the qualified nurses were not available, students had to make use of family members and friends to talk to. Consequently, the implication of this study is not only to educate student nurses but also to educate the qualified mentors on the importance of providing emotional support to students.

Keywords: nursing students, coping strategies, end-of-life care, emotional responses

Procedia PDF Downloads 162
2392 Tommy: Communication in Education about Disability

Authors: Karen V. Lee

Abstract:

The background and significance of this study involve communication in education by a faculty advisor exploring story and music that informs others about a disabled teacher. Social issues draw deep reflection about the emotional turmoil. As a musician becoming a teacher is a passionate yet complex endeavor, the faculty advisor shares a poetic but painful story about a disabled teacher being inducted into the teaching profession. The qualitative research method as theoretical framework draws on autoethnography of music and story where the faculty advisor approaches a professor for advice. His musicianship shifts her forward, backward, and sideways through feelings that evoke and provoke curriculum to remove communication barriers in education. They discover they do not transfer knowledge from educational method classes. Instead, the autoethnography embeds musical language as a metaphorical conduit for removing communication barriers in teacher education. Sub-themes involve communication barriers and educational technologies to ensure teachers receive social, emotional, physical, spiritual, and intervention disability resources that evoke visceral, emotional responses from the audience. Major findings of the study discover how autoethnography of music and story bring the authors to understand wider political issues of the practicum internship for teachers with disabilities. An epiphany reveals the irony of living in a culture of both uniformity and diversity. They explore the constructs of secrecy, ideology, abnormality, and marginalization by evoking visceral and emotional responses from the audience. As the voices harmonize plot, climax, characterization, and denouement, they dramatize meaning that is episodic yet incomplete to highlight the circumstances surrounding the disabled protagonist’s life. In conclusion, the qualitative research method argues for embracing storied experiences that depict communication in education. Scholarly significance embraces personal thoughts and feelings as a way of understanding social phenomena while highlighting the importance of removing communication barriers in education. The circumstance about a teacher with a disability is not uncommon in society. Thus, the authors resolve to removing barriers in education by using stories to transform the personal and cultural influences that provoke new ways of thinking about the curriculum for a disabled teacher.

Keywords: communication in education, communication barriers, autoethnography, teaching

Procedia PDF Downloads 240
2391 Individual Differences in Affective Neuroscience Personality Traits Predict Several Dimensions of Psychological Wellbeing. A Cross-Sectional Study in Healthy Subjects

Authors: Valentina Colonnello, Paolo Maria Russo

Abstract:

Decades of cross-species affective neuroscience research by Panksepp and others have identified basic evolutionarily preserved subcortical emotional systems that humans share with mammals and many vertebrates. These primary emotional systems encode unconditional affective responses and contribute to the development of personality traits throughout ontogenesis and interactions with the environment. The Affective Neuroscience Personality Scale (ANPS) measures individual differences in affective personality traits associated with the basic emotional systems of CARE, PLAY, SEEKING, SADNESS, FEAR, and ANGER, along with Spirituality, which is a more cognitively and socially refined expression of affectivity. Though the ANPS’s power to predict human psychological distress has been documented, to the best of our knowledge, its predictive power for psychological wellbeing has not been explored. This study therefore investigates the relationship between affective neuroscience traits and psychological wellbeing facets. Because the emotional systems are thought to influence cognitively-mediated mental processes about the self and the world, understanding the relationship between affective traits and psychological wellbeing is particularly relevant to understanding the affective dimensions of health. In a cross-sectional study, healthy participants (n = 402) completed the ANPS and the Psychological Wellbeing scale. Multiple regressions revealed that each facet of wellbeing was explained by two to four affective traits, and each trait was significantly related to at least one aspect of wellbeing. Specifically, SEEKING predicted all the wellbeing facets, except for positive relations; CARE predicted personal growth, positive relations, purpose in life, and self-acceptance; PLAY and, inversely, ANGER predicted positive relations; SADNESS inversely predicted autonomy, while FEAR inversely predicted purpose in life. SADNESS and FEAR inversely predicted environmental mastery and self-acceptance. Finally, Spirituality predicted personal growth, positive relations, and self-acceptance. These findings are the first to show the relationship between affective neuroscience personality traits and psychological wellbeing. They also call attention to the distinctive role of FEAR and PANIC traits in psychological wellbeing facets, thereby complementing or even overcoming the traditional personality approach to neuroticism as a global trait.

Keywords: affective neuroscience, individual differences, personality, wellbeing

Procedia PDF Downloads 120
2390 Systematic Review of Associations between Interoception, Vagal Tone, and Emotional Regulation

Authors: Darren Edwards, Thomas Pinna

Abstract:

Background: Interoception and heart rate variability have been found to predict outcomes of mental health and well-being. However, these have usually been investigated independently of one another. Objectives: This review aimed to explore the associations between interoception and heart rate variability (HRV) with emotion regulation (ER) and ER strategies within the existing literature and utilizing systematic review methodology. Methods: The process of article retrieval and selection followed the preferred reporting items for systematic review and meta-analyses (PRISMA) guidelines. Databases PsychINFO, Web of Science, PubMed, CINAHL, and MEDLINE were scanned for papers published. Preliminary inclusion and exclusion criteria were specified following the patient, intervention, comparison, and outcome (PICO) framework, whilst the checklist for critical appraisal and data extraction for systematic reviews of prediction modeling studies (CHARMS) framework was used to help formulate the research question, and to critically assess for bias in the identified full-length articles. Results: 237 studies were identified after initial database searches. Of these, eight studies were included in the final selection. Six studies explored the associations between HRV and ER, whilst three investigated the associations between interoception and ER (one of which was included in the HRV selection too). Overall, the results seem to show that greater HRV and interoception are associated with better ER. Specifically, high parasympathetic activity largely predicted the use of adaptive ER strategies such as reappraisal, and better acceptance of emotions. High interoception, instead, was predictive of effective down-regulation of negative emotions and handling of social uncertainty, there was no association with any specific ER strategy. Conclusions: Awareness of one’s own bodily feelings and vagal activation seem to be of central importance for the effective regulation of emotional responses.

Keywords: emotional regulation, vagal tone, interoception, chronic conditions, health and well-being, psychological flexibility

Procedia PDF Downloads 115
2389 The World of Fireworks Factory Working Children in Bocaue, Bulacan

Authors: Agnes Crisostomo, Alvin Joseph Mapoy

Abstract:

This is a qualitative study which focuses on ten (10) children, with a mean age of 13.6, working in fireworks factories in Bocaue, Bulacan. The municipality of Bocaue was chosen since it is the center of trade for fireworks, and child laborers can easily penetrate in factories here. The researcher wanted to know what the possible negative effects are caused by working at an early age of a child in the physical, psychosocial, intellectual and emotional aspects of life. Results showed that social status of their parents and their lack of income forced the children to work for their family. Second, the child laborers still allot time for studying. They still do not give up in pursuing education even if they experience fatigue and illness which affect their physical development. Third, working has a great influence to the child’s life. Fourth, through socializing with others, they become more aware of life’s hardships. Usually, their co-workers are also their family members and friends; this is how they know the social status is their place, that due to poverty even the children should work for a living. Fifth, these child laborers are still hoping for a better future. Despite of their poor situation, they are still hoping that they can turn it upside down through education, perseverance and determination.

Keywords: child labor, emotional, intellectual, psychosocial

Procedia PDF Downloads 266
2388 Performance Prediction Methodology of Slow Aging Assets

Authors: M. Ben Slimene, M.-S. Ouali

Abstract:

Asset management of urban infrastructures faces a multitude of challenges that need to be overcome to obtain a reliable measurement of performances. Predicting the performance of slowly aging systems is one of those challenges, which helps the asset manager to investigate specific failure modes and to undertake the appropriate maintenance and rehabilitation interventions to avoid catastrophic failures as well as to optimize the maintenance costs. This article presents a methodology for modeling the deterioration of slowly degrading assets based on an operating history. It consists of extracting degradation profiles by grouping together assets that exhibit similar degradation sequences using an unsupervised classification technique derived from artificial intelligence. The obtained clusters are used to build the performance prediction models. This methodology is applied to a sample of a stormwater drainage culvert dataset.

Keywords: artificial Intelligence, clustering, culvert, regression model, slow degradation

Procedia PDF Downloads 112
2387 Artificial Intelligence for Traffic Signal Control and Data Collection

Authors: Reggie Chandra

Abstract:

Trafficaccidents and traffic signal optimization are correlated. However, 70-90% of the traffic signals across the USA are not synchronized. The reason behind that is insufficient resources to create and implement timing plans. In this work, we will discuss the use of a breakthrough Artificial Intelligence (AI) technology to optimize traffic flow and collect 24/7/365 accurate traffic data using a vehicle detection system. We will discuss what are recent advances in Artificial Intelligence technology, how does AI work in vehicles, pedestrians, and bike data collection, creating timing plans, and what is the best workflow for that. Apart from that, this paper will showcase how Artificial Intelligence makes signal timing affordable. We will introduce a technology that uses Convolutional Neural Networks (CNN) and deep learning algorithms to detect, collect data, develop timing plans and deploy them in the field. Convolutional Neural Networks are a class of deep learning networks inspired by the biological processes in the visual cortex. A neural net is modeled after the human brain. It consists of millions of densely connected processing nodes. It is a form of machine learning where the neural net learns to recognize vehicles through training - which is called Deep Learning. The well-trained algorithm overcomes most of the issues faced by other detection methods and provides nearly 100% traffic data accuracy. Through this continuous learning-based method, we can constantly update traffic patterns, generate an unlimited number of timing plans and thus improve vehicle flow. Convolutional Neural Networks not only outperform other detection algorithms but also, in cases such as classifying objects into fine-grained categories, outperform humans. Safety is of primary importance to traffic professionals, but they don't have the studies or data to support their decisions. Currently, one-third of transportation agencies do not collect pedestrian and bike data. We will discuss how the use of Artificial Intelligence for data collection can help reduce pedestrian fatalities and enhance the safety of all vulnerable road users. Moreover, it provides traffic engineers with tools that allow them to unleash their potential, instead of dealing with constant complaints, a snapshot of limited handpicked data, dealing with multiple systems requiring additional work for adaptation. The methodologies used and proposed in the research contain a camera model identification method based on deep Convolutional Neural Networks. The proposed application was evaluated on our data sets acquired through a variety of daily real-world road conditions and compared with the performance of the commonly used methods requiring data collection by counting, evaluating, and adapting it, and running it through well-established algorithms, and then deploying it to the field. This work explores themes such as how technologies powered by Artificial Intelligence can benefit your community and how to translate the complex and often overwhelming benefits into a language accessible to elected officials, community leaders, and the public. Exploring such topics empowers citizens with insider knowledge about the potential of better traffic technology to save lives and improve communities. The synergies that Artificial Intelligence brings to traffic signal control and data collection are unsurpassed.

Keywords: artificial intelligence, convolutional neural networks, data collection, signal control, traffic signal

Procedia PDF Downloads 171