Search results for: efficiency classification
7962 Adapted Intersection over Union: A Generalized Metric for Evaluating Unsupervised Classification Models
Authors: Prajwal Prakash Vasisht, Sharath Rajamurthy, Nishanth Dara
Abstract:
In a supervised machine learning approach, metrics such as precision, accuracy, and coverage can be calculated using ground truth labels to help in model tuning, evaluation, and selection. In an unsupervised setting, however, where the data has no ground truth, there are few interpretable metrics that can guide us to do the same. Our approach creates a framework to adapt the Intersection over Union metric, referred to as Adapted IoU, usually used to evaluate supervised learning models, into the unsupervised domain, which solves the problem by factoring in subject matter expertise and intuition about the ideal output from the model. This metric essentially provides a scale that allows us to compare the performance across numerous unsupervised models or tune hyper-parameters and compare different versions of the same model.Keywords: general metric, unsupervised learning, classification, intersection over union
Procedia PDF Downloads 477961 Supervised Learning for Cyber Threat Intelligence
Authors: Jihen Bennaceur, Wissem Zouaghi, Ali Mabrouk
Abstract:
The major aim of cyber threat intelligence (CTI) is to provide sophisticated knowledge about cybersecurity threats to ensure internal and external safeguards against modern cyberattacks. Inaccurate, incomplete, outdated, and invaluable threat intelligence is the main problem. Therefore, data analysis based on AI algorithms is one of the emergent solutions to overcome the threat of information-sharing issues. In this paper, we propose a supervised machine learning-based algorithm to improve threat information sharing by providing a sophisticated classification of cyber threats and data. Extensive simulations investigate the accuracy, precision, recall, f1-score, and support overall to validate the designed algorithm and to compare it with several supervised machine learning algorithms.Keywords: threat information sharing, supervised learning, data classification, performance evaluation
Procedia PDF Downloads 1487960 Off-Farm Work and Cost Efficiency in Staple Food Production among Small-Scale Farmers in North Central Nigeria
Authors: C. E. Ogbanje, S. A. N. D. Chidebelu, N. J. Nweze
Abstract:
The study evaluated off-farm work and cost efficiency in staple food production among small-scale farmers in North Central Nigeria. Multistage sampling technique was used to select 360 respondents (participants and non-participants in off-farm work). Primary data obtained were analysed using stochastic cost frontier and test of means’ difference. Capital input was lower for participants (N2,596.58) than non-participants (N11,099.14). Gamma (γ) was statistically significant. Farm size significantly (p<0.01) increased cost outlay for participants and non-participants. Average input prices of enterprises one and two significantly (p<0.01) increased cost. Sex, household size, credit obtained, formal education, farming experience, and farm income significantly (p<0.05) reduced cost inefficiency for non-participants. Average cost efficiency was 11%. Farm capital was wasted. Participants’ substitution of capital for labour did not put them at a disadvantage. Extension agents should encourage farmers to obtain financial relief from off-farm work but not to the extent of endangering farm cost efficiency.Keywords: cost efficiency, mean difference, North Central Nigeria, off-farm work, participants and non-participants, small-scale farmers
Procedia PDF Downloads 3627959 Using Scale Invariant Feature Transform Features to Recognize Characters in Natural Scene Images
Authors: Belaynesh Chekol, Numan Çelebi
Abstract:
The main purpose of this work is to recognize individual characters extracted from natural scene images using scale invariant feature transform (SIFT) features as an input to K-nearest neighbor (KNN); a classification learner algorithm. For this task, 1,068 and 78 images of English alphabet characters taken from Chars74k data set is used to train and test the classifier respectively. For each character image, We have generated describing features by using SIFT algorithm. This set of features is fed to the learner so that it can recognize and label new images of English characters. Two types of KNN (fine KNN and weighted KNN) were trained and the resulted classification accuracy is 56.9% and 56.5% respectively. The training time taken was the same for both fine and weighted KNN.Keywords: character recognition, KNN, natural scene image, SIFT
Procedia PDF Downloads 2817958 Determination of the Botanical Origin of Honey by the Artificial Neural Network Processing of PARAFAC Scores of Fluorescence Data
Authors: Lea Lenhardt, Ivana Zeković, Tatjana Dramićanin, Miroslav D. Dramićanin
Abstract:
Fluorescence spectroscopy coupled with parallel factor analysis (PARAFAC) and artificial neural networks (ANN) were used for characterization and classification of honey. Excitation emission spectra were obtained for 95 honey samples of different botanical origin (acacia, sunflower, linden, meadow, and fake honey) by recording emission from 270 to 640 nm with excitation in the range of 240-500 nm. Fluorescence spectra were described with a six-component PARAFAC model, and PARAFAC scores were further processed with two types of ANN’s (feed-forward network and self-organizing maps) to obtain algorithms for classification of honey on the basis of their botanical origin. Both ANN’s detected fake honey samples with 100% sensitivity and specificity.Keywords: honey, fluorescence, PARAFAC, artificial neural networks
Procedia PDF Downloads 9547957 Gasification of Groundnut Shell in an Air Bubbling Fluidized Bed Gasifier
Authors: Dharminer Singh, Sanjeev Yadav, Pravakar Mohanty
Abstract:
In this work, gasification of groundnut shell was carried out in an air bubbling fluidized bed gasifier. Atmospheric air used as gasification agent in the gasifier. The groundnut shell used for gasification was in powder form and the locally available river sand was used as bed material. Conventional charcoal was used for heating sand bed. Two cyclones were used for proper segregation of char particles and for proper cleaning and cooling the product gas. Experiments were performed on different equivalence ratio (ER) 0.3 - 0.33 by varying feeding rate 36 - 32.8 kg/h of biomass and by keeping the air flow rate constant at bed temperature between 700 °C – 800 °C. Performance of gasifier was evaluated on the basis of different parameters such as cold gas efficiency, carbon conversion efficiency (CCE), Tar and Suspended particles matter (SPM) generation, gas yield, and Higher heating value (HHV) of gas. The optimal ER value for gasification of groundnut shell (GNS) powder in an air bubbling fluidized bed gasifier was found to be 0.31. Cold gas efficiency and CCE value at optimal ER was found to be 63.7 %, and 91 %, respectively. Concentration of Tar and SPM, HHV of gas, and gas yield at optimal ER was found to be 11.88 g/Nm3, 2.38 MJ/Nm3, and 2.01m3/kg, respectively. In the product gas, concentrations of CO, CO2, CH4 and H2 were found to be 12.94%, 13.5%, 5.74% and 13.77%, respectively. At ER 0.31, it was observed that bed temperature of gasifier was in steady state for long time at 714 °C with 5 – 10 °C fluctuation.Keywords: air bubbling fluidized bed gasifier, groundnut shell powder, equivalence ratio (ER), cold gas efficiency, carbon conversion efficiency (CCE), high heating value (HHV)
Procedia PDF Downloads 2807956 An Improvement of Multi-Label Image Classification Method Based on Histogram of Oriented Gradient
Authors: Ziad Abdallah, Mohamad Oueidat, Ali El-Zaart
Abstract:
Image Multi-label Classification (IMC) assigns a label or a set of labels to an image. The big demand for image annotation and archiving in the web attracts the researchers to develop many algorithms for this application domain. The existing techniques for IMC have two drawbacks: The description of the elementary characteristics from the image and the correlation between labels are not taken into account. In this paper, we present an algorithm (MIML-HOGLPP), which simultaneously handles these limitations. The algorithm uses the histogram of gradients as feature descriptor. It applies the Label Priority Power-set as multi-label transformation to solve the problem of label correlation. The experiment shows that the results of MIML-HOGLPP are better in terms of some of the evaluation metrics comparing with the two existing techniques.Keywords: data mining, information retrieval system, multi-label, problem transformation, histogram of gradients
Procedia PDF Downloads 3747955 High Efficiency Achievement by a New Heterojunction N-Zno:Al/P-Si Solar Cell
Authors: A. Bouloufa, F. Khaled, K. Djessas
Abstract:
This paper presents a new structure of solar cell based on p-type microcrystalline silicon as an absorber and n-type aluminum doped zinc oxide (ZnO:Al) transparent conductive oxide as an optical window. The ZnO:Al layer deposited by rf-magnetron sputtering at room temperature yields a low resistivity about 7,64.10-2Ω.cm and more than 85% mean optical transmittance in the VIS–NIR range, with an optical band gap of 3.3 eV. These excellent optical properties of this layer in combination with an optimal contact at the front surface result in a superior light trapping yielding to efficiencies about 20%. In order to improve efficiency, we have used a p+-µc-Si thin layer highly doped as a back surface field which minimizes significantly the impact of rear surface recombination velocity on voltage and current leading to a high efficiency of 24%. Optoelectronic parameters were determined using the current density-voltage (J-V) curve by means of a numerical simulation with Analysis of Microelectronic and Photonic Structures (AMPS-1D) device simulator.Keywords: optical window, thin film, solar cell, efficiency
Procedia PDF Downloads 2877954 Classification of Barley Varieties by Artificial Neural Networks
Authors: Alper Taner, Yesim Benal Oztekin, Huseyin Duran
Abstract:
In this study, an Artificial Neural Network (ANN) was developed in order to classify barley varieties. For this purpose, physical properties of barley varieties were determined and ANN techniques were used. The physical properties of 8 barley varieties grown in Turkey, namely thousand kernel weight, geometric mean diameter, sphericity, kernel volume, surface area, bulk density, true density, porosity and colour parameters of grain, were determined and it was found that these properties were statistically significant with respect to varieties. As ANN model, three models, N-l, N-2 and N-3 were constructed. The performances of these models were compared. It was determined that the best-fit model was N-1. In the N-1 model, the structure of the model was designed to be 11 input layers, 2 hidden layers and 1 output layer. Thousand kernel weight, geometric mean diameter, sphericity, kernel volume, surface area, bulk density, true density, porosity and colour parameters of grain were used as input parameter; and varieties as output parameter. R2, Root Mean Square Error and Mean Error for the N-l model were found as 99.99%, 0.00074 and 0.009%, respectively. All results obtained by the N-l model were observed to have been quite consistent with real data. By this model, it would be possible to construct automation systems for classification and cleaning in flourmills.Keywords: physical properties, artificial neural networks, barley, classification
Procedia PDF Downloads 1787953 System-Wide Impact of Energy Efficiency in the Industry Sector: A Comparative Study between Canada and Denmark
Authors: M. Baldini, H. K. Jacobsen, M. Jaccard
Abstract:
In light of the international efforts to comply with the Paris agreement and emission targets for future energy systems, Denmark and Canada are among the front-runner countries dealing with climate change. The experiences in the energy sector have seen both countries coping with trade-offs between investments in renewable energy technologies and energy efficiency, thus tackling the climate issue from the supply and demand side respectively. On the demand side, the industrial sector is going through a remarkable transformation, with implementation of energy efficiency measures, change of input fuel for end-use processes and forecasted electrification as main features under the spotlight. By looking at Canada and Denmark's experiences as pathfinders on the demand and supply approach to climate change, it is possible to obtain valuable experience that may be applied to other countries aiming at the same goal. This paper presents a comparative study on industrial energy efficiency between Canada and Denmark. The study focuses on technologies and system options, policy design and implementation and modelling methodologies when implementing industrial energy savings in optimization models in comparison to simulation models. The study identifies gaps and junctures in the approach towards climate change actions and, learning from each other, lessen the differences to further foster the adoption of energy efficiency measurements in the industrial sector, aiming at reducing energy consumption and, consequently, CO₂ emissions.Keywords: industrial energy efficiency, comparative study, CO₂ reduction, energy system modelling
Procedia PDF Downloads 1727952 Speech Emotion Recognition: A DNN and LSTM Comparison in Single and Multiple Feature Application
Authors: Thiago Spilborghs Bueno Meyer, Plinio Thomaz Aquino Junior
Abstract:
Through speech, which privileges the functional and interactive nature of the text, it is possible to ascertain the spatiotemporal circumstances, the conditions of production and reception of the discourse, the explicit purposes such as informing, explaining, convincing, etc. These conditions allow bringing the interaction between humans closer to the human-robot interaction, making it natural and sensitive to information. However, it is not enough to understand what is said; it is necessary to recognize emotions for the desired interaction. The validity of the use of neural networks for feature selection and emotion recognition was verified. For this purpose, it is proposed the use of neural networks and comparison of models, such as recurrent neural networks and deep neural networks, in order to carry out the classification of emotions through speech signals to verify the quality of recognition. It is expected to enable the implementation of robots in a domestic environment, such as the HERA robot from the RoboFEI@Home team, which focuses on autonomous service robots for the domestic environment. Tests were performed using only the Mel-Frequency Cepstral Coefficients, as well as tests with several characteristics of Delta-MFCC, spectral contrast, and the Mel spectrogram. To carry out the training, validation and testing of the neural networks, the eNTERFACE’05 database was used, which has 42 speakers from 14 different nationalities speaking the English language. The data from the chosen database are videos that, for use in neural networks, were converted into audios. It was found as a result, a classification of 51,969% of correct answers when using the deep neural network, when the use of the recurrent neural network was verified, with the classification with accuracy equal to 44.09%. The results are more accurate when only the Mel-Frequency Cepstral Coefficients are used for the classification, using the classifier with the deep neural network, and in only one case, it is possible to observe a greater accuracy by the recurrent neural network, which occurs in the use of various features and setting 73 for batch size and 100 training epochs.Keywords: emotion recognition, speech, deep learning, human-robot interaction, neural networks
Procedia PDF Downloads 1707951 Safeguarding Product Quality through Pre-Qualification of Material Manufacturers: A Ship and Offshore Classification Society's Perspective
Authors: Sastry Y. Kandukuri, Isak Andersen
Abstract:
Despite recent advances in the manufacturing sector, quality issues remain a frequent occurrence, and can result in fatal accidents, equipment downtime, and loss of life. Adequate quality is of high importance in high-risk industries such as sea-going vessels and offshore installations in which third party quality assurance and product control play an important essential role in ensuring manufacturing quality of critical components. Classification societies play a vital role in mitigating risk in these industries by making sure that all the stakeholders i.e. manufacturers, builders, and end users are provided with adequate rules and standards that effectively ensures components produced at a high level of quality based on the area of application and risk of its failure. Quality issues have also been linked to the lack of competence or negligence of stakeholders in supply value chain. However, continued actions and regulatory reforms through modernization of rules and requirements has provided additional tools for purchasers and manufacturers to confront these issues. Included among these tools are updated ‘approval of manufacturer class programs’ aimed at developing and implementing a set of standardized manufacturing quality metrics for use by the manufacturer and verified by the classification society. The establishment and collection of manufacturing and testing requirements described in these programs could provide various stakeholders – from industry to vessel owners – with greater insight into the state of quality at a given manufacturing facility, and allow stakeholders to anticipate better and address quality issues while simultaneously reducing unnecessary failures that are costly to the industry. The publication introduces, explains and discusses critical manufacturing and testing requirements set in a leading class society’s approval of manufacturer regime and its rationale and some case studies.Keywords: classification society, manufacturing, materials processing, materials testing, quality control
Procedia PDF Downloads 3557950 Efficiency and Reliability Analysis of SiC-Based and Si-Based DC-DC Buck Converters in Thin-Film PV Systems
Authors: Elaid Bouchetob, Bouchra Nadji
Abstract:
This research paper compares the efficiency and reliability (R(t)) of SiC-based and Si-based DC-DC buck converters in thin layer PV systems with an AI-based MPPT controller. Using Simplorer/Simulink simulations, the study assesses their performance under varying conditions. Results show that the SiC-based converter outperforms the Si-based one in efficiency and cost-effectiveness, especially in high temperature and low irradiance conditions. It also exhibits superior reliability, particularly at high temperature and voltage. Reliability calculation (R(t)) is analyzed to assess system performance over time. The SiC-based converter demonstrates better reliability, considering factors like component failure rates and system lifetime. The research focuses on the buck converter's role in charging a Lithium battery within the PV system. By combining the SiC-based converter and AI-based MPPT controller, higher charging efficiency, improved reliability, and cost-effectiveness are achieved. The SiC-based converter proves superior under challenging conditions, emphasizing its potential for optimizing PV system charging. These findings contribute insights into the efficiency, reliability, and reliability calculation of SiC-based and Si-based converters in PV systems. SiC technology's advantages, coupled with advanced control strategies, promote efficient and sustainable energy storage using Lithium batteries. The research supports PV system design and optimization for reliable renewable energy utilization.Keywords: efficiency, reliability, artificial intelligence, sic device, thin layer, buck converter
Procedia PDF Downloads 627949 Hybrid Approach for Software Defect Prediction Using Machine Learning with Optimization Technique
Authors: C. Manjula, Lilly Florence
Abstract:
Software technology is developing rapidly which leads to the growth of various industries. Now-a-days, software-based applications have been adopted widely for business purposes. For any software industry, development of reliable software is becoming a challenging task because a faulty software module may be harmful for the growth of industry and business. Hence there is a need to develop techniques which can be used for early prediction of software defects. Due to complexities in manual prediction, automated software defect prediction techniques have been introduced. These techniques are based on the pattern learning from the previous software versions and finding the defects in the current version. These techniques have attracted researchers due to their significant impact on industrial growth by identifying the bugs in software. Based on this, several researches have been carried out but achieving desirable defect prediction performance is still a challenging task. To address this issue, here we present a machine learning based hybrid technique for software defect prediction. First of all, Genetic Algorithm (GA) is presented where an improved fitness function is used for better optimization of features in data sets. Later, these features are processed through Decision Tree (DT) classification model. Finally, an experimental study is presented where results from the proposed GA-DT based hybrid approach is compared with those from the DT classification technique. The results show that the proposed hybrid approach achieves better classification accuracy.Keywords: decision tree, genetic algorithm, machine learning, software defect prediction
Procedia PDF Downloads 3297948 Black-Box-Base Generic Perturbation Generation Method under Salient Graphs
Authors: Dingyang Hu, Dan Liu
Abstract:
DNN (Deep Neural Network) deep learning models are widely used in classification, prediction, and other task scenarios. To address the difficulties of generic adversarial perturbation generation for deep learning models under black-box conditions, a generic adversarial ingestion generation method based on a saliency map (CJsp) is proposed to obtain salient image regions by counting the factors that influence the input features of an image on the output results. This method can be understood as a saliency map attack algorithm to obtain false classification results by reducing the weights of salient feature points. Experiments also demonstrate that this method can obtain a high success rate of migration attacks and is a batch adversarial sample generation method.Keywords: adversarial sample, gradient, probability, black box
Procedia PDF Downloads 1047947 Analysis on the Building Energy Performance of a Retrofitted Residential Building with RETScreen Expert Software
Authors: Abdulhameed Babatunde Owolabi, Benyoh Emmanuel Kigha Nsafon, Jeung-Soo Huh
Abstract:
Energy efficiency measures for residential buildings in South Korea is a national issue because most of the apartments built in the last decades were constructed without proper energy efficiency measures making the energy performance of old buildings to be very poor when compared with new buildings. However, the adoption of advanced building technologies and regulatory building codes are effective energy efficiency strategies for new construction. There is a need to retrofits the existing building using energy conservation measures (ECMs) equipment’s in order to conserve energy and reduce GHGs emissions. To achieve this, the Institute for Global Climate Change and Energy (IGCCE), Kyungpook National University (KNU), Daegu, South Korea employed RETScreen Expert software to carry out measurement and verification (M&V) analysis on an existing building in Korea by using six years gas consumption data collected from Daesung Energy Co., Ltd in order to determine the building energy performance after the introduction of ECM. Through the M&V, energy efficiency is attained, and the resident doubt was reduced. From the analysis, a total of 657 Giga Joules (GJ) of liquefied natural gas (LNG) was consumed at the rate of 0.34 GJ/day having a peak in the year 2015, which cost the occupant the sum of $10,821.Keywords: energy efficiency, measurement and verification, performance analysis, RETScreen experts
Procedia PDF Downloads 1397946 Identity Verification Using k-NN Classifiers and Autistic Genetic Data
Authors: Fuad M. Alkoot
Abstract:
DNA data have been used in forensics for decades. However, current research looks at using the DNA as a biometric identity verification modality. The goal is to improve the speed of identification. We aim at using gene data that was initially used for autism detection to find if and how accurate is this data for identification applications. Mainly our goal is to find if our data preprocessing technique yields data useful as a biometric identification tool. We experiment with using the nearest neighbor classifier to identify subjects. Results show that optimal classification rate is achieved when the test set is corrupted by normally distributed noise with zero mean and standard deviation of 1. The classification rate is close to optimal at higher noise standard deviation reaching 3. This shows that the data can be used for identity verification with high accuracy using a simple classifier such as the k-nearest neighbor (k-NN).Keywords: biometrics, genetic data, identity verification, k nearest neighbor
Procedia PDF Downloads 2587945 Determination of Optimum Torque of an Internal Combustion Engine by Exergy Analysis
Authors: Veena Chaudhary, Rakesh P. Gakkhar
Abstract:
In this study, energy and exergy analysis are applied to the experimental data of an internal combustion engine operating on conventional diesel cycle. The experimental data are collected using an engine unit which enables accurate measurements of fuel flow rate, combustion air flow rate, engine load, engine speed and all relevant temperatures. First and second law efficiencies are calculated for different engine speed and compared. Results indicate that the first law (energy) efficiency is maximum at 1700 rpm whereas exergy efficiency is maximum and exergy destruction is minimum at 1900 rpm.Keywords: diesel engine, exergy destruction, exergy efficiency, second law of thermodynamics
Procedia PDF Downloads 3297944 The Impact of Cryptocurrency Classification on Money Laundering: Analyzing the Preferences of Criminals for Stable Coins, Utility Coins, and Privacy Tokens
Authors: Mohamed Saad, Huda Ismail
Abstract:
The purpose of this research is to examine the impact of cryptocurrency classification on money laundering crimes and to analyze how the preferences of criminals differ according to the type of digital currency used. Specifically, we aim to explore the roles of stablecoins, utility coins, and privacy tokens in facilitating or hindering money laundering activities and to identify the key factors that influence the choices of criminals in using these cryptocurrencies. To achieve our research objectives, we used a dataset for the most highly traded cryptocurrencies (32 currencies) that were published on the coin market cap for 2022. In addition to conducting a comprehensive review of the existing literature on cryptocurrency and money laundering, with a focus on stablecoins, utility coins, and privacy tokens, Furthermore, we conducted several Multivariate analyses. Our study reveals that the classification of cryptocurrency plays a significant role in money laundering activities, as criminals tend to prefer certain types of digital currencies over others, depending on their specific needs and goals. Specifically, we found that stablecoins are more commonly used in money laundering due to their relatively stable value and low volatility, which makes them less risky to hold and transfer. Utility coins, on the other hand, are less frequently used in money laundering due to their lack of anonymity and limited liquidity. Finally, privacy tokens, such as Monero and Zcash, are increasingly becoming a preferred choice among criminals due to their high degree of privacy and untraceability. In summary, our study highlights the importance of understanding the nuances of cryptocurrency classification in the context of money laundering and provides insights into the preferences of criminals in using digital currencies for illegal activities. Based on our findings, our recommendation to the policymakers is to address the potential misuse of cryptocurrencies for money laundering. By implementing measures to regulate stable coins, strengthening cross-border cooperation, fostering public-private partnerships, and increasing cooperation, policymakers can help prevent and detect money laundering activities involving digital currencies.Keywords: crime, cryptocurrency, money laundering, tokens.
Procedia PDF Downloads 877943 Land Cover Mapping Using Sentinel-2, Landsat-8 Satellite Images, and Google Earth Engine: A Study Case of the Beterou Catchment
Authors: Ella Sèdé Maforikan
Abstract:
Accurate land cover mapping is essential for effective environmental monitoring and natural resources management. This study focuses on assessing the classification performance of two satellite datasets and evaluating the impact of different input feature combinations on classification accuracy in the Beterou catchment, situated in the northern part of Benin. Landsat-8 and Sentinel-2 images from June 1, 2020, to March 31, 2021, were utilized. Employing the Random Forest (RF) algorithm on Google Earth Engine (GEE), a supervised classification categorized the land into five classes: forest, savannas, cropland, settlement, and water bodies. GEE was chosen due to its high-performance computing capabilities, mitigating computational burdens associated with traditional land cover classification methods. By eliminating the need for individual satellite image downloads and providing access to an extensive archive of remote sensing data, GEE facilitated efficient model training on remote sensing data. The study achieved commendable overall accuracy (OA), ranging from 84% to 85%, even without incorporating spectral indices and terrain metrics into the model. Notably, the inclusion of additional input sources, specifically terrain features like slope and elevation, enhanced classification accuracy. The highest accuracy was achieved with Sentinel-2 (OA = 91%, Kappa = 0.88), slightly surpassing Landsat-8 (OA = 90%, Kappa = 0.87). This underscores the significance of combining diverse input sources for optimal accuracy in land cover mapping. The methodology presented herein not only enables the creation of precise, expeditious land cover maps but also demonstrates the prowess of cloud computing through GEE for large-scale land cover mapping with remarkable accuracy. The study emphasizes the synergy of different input sources to achieve superior accuracy. As a future recommendation, the application of Light Detection and Ranging (LiDAR) technology is proposed to enhance vegetation type differentiation in the Beterou catchment. Additionally, a cross-comparison between Sentinel-2 and Landsat-8 for assessing long-term land cover changes is suggested.Keywords: land cover mapping, Google Earth Engine, random forest, Beterou catchment
Procedia PDF Downloads 637942 A Case-Based Reasoning-Decision Tree Hybrid System for Stock Selection
Authors: Yaojun Wang, Yaoqing Wang
Abstract:
Stock selection is an important decision-making problem. Many machine learning and data mining technologies are employed to build automatic stock-selection system. A profitable stock-selection system should consider the stock’s investment value and the market timing. In this paper, we present a hybrid system including both engage for stock selection. This system uses a case-based reasoning (CBR) model to execute the stock classification, uses a decision-tree model to help with market timing and stock selection. The experiments show that the performance of this hybrid system is better than that of other techniques regarding to the classification accuracy, the average return and the Sharpe ratio.Keywords: case-based reasoning, decision tree, stock selection, machine learning
Procedia PDF Downloads 4207941 Multi-Labeled Aromatic Medicinal Plant Image Classification Using Deep Learning
Authors: Tsega Asresa, Getahun Tigistu, Melaku Bayih
Abstract:
Computer vision is a subfield of artificial intelligence that allows computers and systems to extract meaning from digital images and video. It is used in a wide range of fields of study, including self-driving cars, video surveillance, medical diagnosis, manufacturing, law, agriculture, quality control, health care, facial recognition, and military applications. Aromatic medicinal plants are botanical raw materials used in cosmetics, medicines, health foods, essential oils, decoration, cleaning, and other natural health products for therapeutic and Aromatic culinary purposes. These plants and their products not only serve as a valuable source of income for farmers and entrepreneurs but also going to export for valuable foreign currency exchange. In Ethiopia, there is a lack of technologies for the classification and identification of Aromatic medicinal plant parts and disease type cured by aromatic medicinal plants. Farmers, industry personnel, academicians, and pharmacists find it difficult to identify plant parts and disease types cured by plants before ingredient extraction in the laboratory. Manual plant identification is a time-consuming, labor-intensive, and lengthy process. To alleviate these challenges, few studies have been conducted in the area to address these issues. One way to overcome these problems is to develop a deep learning model for efficient identification of Aromatic medicinal plant parts with their corresponding disease type. The objective of the proposed study is to identify the aromatic medicinal plant parts and their disease type classification using computer vision technology. Therefore, this research initiated a model for the classification of aromatic medicinal plant parts and their disease type by exploring computer vision technology. Morphological characteristics are still the most important tools for the identification of plants. Leaves are the most widely used parts of plants besides roots, flowers, fruits, and latex. For this study, the researcher used RGB leaf images with a size of 128x128 x3. In this study, the researchers trained five cutting-edge models: convolutional neural network, Inception V3, Residual Neural Network, Mobile Network, and Visual Geometry Group. Those models were chosen after a comprehensive review of the best-performing models. The 80/20 percentage split is used to evaluate the model, and classification metrics are used to compare models. The pre-trained Inception V3 model outperforms well, with training and validation accuracy of 99.8% and 98.7%, respectively.Keywords: aromatic medicinal plant, computer vision, convolutional neural network, deep learning, plant classification, residual neural network
Procedia PDF Downloads 1867940 Development of a Computer Aided Diagnosis Tool for Brain Tumor Extraction and Classification
Authors: Fathi Kallel, Abdulelah Alabd Uljabbar, Abdulrahman Aldukhail, Abdulaziz Alomran
Abstract:
The brain is an important organ in our body since it is responsible about the majority actions such as vision, memory, etc. However, different diseases such as Alzheimer and tumors could affect the brain and conduct to a partial or full disorder. Regular diagnosis are necessary as a preventive measure and could help doctors to early detect a possible trouble and therefore taking the appropriate treatment, especially in the case of brain tumors. Different imaging modalities are proposed for diagnosis of brain tumor. The powerful and most used modality is the Magnetic Resonance Imaging (MRI). MRI images are analyzed by doctor in order to locate eventual tumor in the brain and describe the appropriate and needed treatment. Diverse image processing methods are also proposed for helping doctors in identifying and analyzing the tumor. In fact, a large Computer Aided Diagnostic (CAD) tools including developed image processing algorithms are proposed and exploited by doctors as a second opinion to analyze and identify the brain tumors. In this paper, we proposed a new advanced CAD for brain tumor identification, classification and feature extraction. Our proposed CAD includes three main parts. Firstly, we load the brain MRI. Secondly, a robust technique for brain tumor extraction is proposed. This technique is based on both Discrete Wavelet Transform (DWT) and Principal Component Analysis (PCA). DWT is characterized by its multiresolution analytic property, that’s why it was applied on MRI images with different decomposition levels for feature extraction. Nevertheless, this technique suffers from a main drawback since it necessitates a huge storage and is computationally expensive. To decrease the dimensions of the feature vector and the computing time, PCA technique is considered. In the last stage, according to different extracted features, the brain tumor is classified into either benign or malignant tumor using Support Vector Machine (SVM) algorithm. A CAD tool for brain tumor detection and classification, including all above-mentioned stages, is designed and developed using MATLAB guide user interface.Keywords: MRI, brain tumor, CAD, feature extraction, DWT, PCA, classification, SVM
Procedia PDF Downloads 2497939 Classification of Business Models of Italian Bancassurance by Balance Sheet Indicators
Authors: Andrea Bellucci, Martina Tofi
Abstract:
The aim of paper is to analyze business models of bancassurance in Italy for life business. The life insurance business is very developed in the Italian market and banks branches have 80% of the market share. Given its maturity, the life insurance market needs to consolidate its organizational form to allow for the development of non-life business, which nowadays collects few premiums but represents a great opportunity to enlarge the market share of bancassurance using its strength in the distribution channel while the market share of independent agents is decreasing. Starting with the main business model of bancassurance for life business, this paper will analyze the performances of life companies in the Italian market by balance sheet indicators and by main discriminant variables of business models. The study will observe trends from 2013 to 2015 for the Italian market by exploiting a database managed by Associazione Nazionale delle Imprese di Assicurazione (ANIA). The applied approach is based on a bottom-up analysis starting with variables and indicators to define business models’ classification. The statistical classification algorithm proposed by Ward is employed to design business models’ profiles. Results from the analysis will be a representation of the main business models built by their profile related to indicators. In that way, an unsupervised analysis is developed that has the limit of its judgmental dimension based on research opinion, but it is possible to obtain a design of effective business models.Keywords: bancassurance, business model, non life bancassurance, insurance business value drivers
Procedia PDF Downloads 2987938 Comparison of Machine Learning and Deep Learning Algorithms for Automatic Classification of 80 Different Pollen Species
Authors: Endrick Barnacin, Jean-Luc Henry, Jimmy Nagau, Jack Molinie
Abstract:
Palynology is a field of interest in many disciplines due to its multiple applications: chronological dating, climatology, allergy treatment, and honey characterization. Unfortunately, the analysis of a pollen slide is a complicated and time consuming task that requires the intervention of experts in the field, which are becoming increasingly rare due to economic and social conditions. That is why the need for automation of this task is urgent. A lot of studies have investigated the subject using different standard image processing descriptors and sometimes hand-crafted ones.In this work, we make a comparative study between classical feature extraction methods (Shape, GLCM, LBP, and others) and Deep Learning (CNN, Autoencoders, Transfer Learning) to perform a recognition task over 80 regional pollen species. It has been found that the use of Transfer Learning seems to be more precise than the other approachesKeywords: pollens identification, features extraction, pollens classification, automated palynology
Procedia PDF Downloads 1367937 Efficiency Enhancement of Blue OLED by Incorporating Ag Nanoplate Layers
Authors: So-Jeong Kim, Nak-Kwan Chung, Jintae Kim, Juyoung Yun
Abstract:
The metal nanoplates are potentially used for electroluminescence enhancement of OLEDs owing to the localized surface plasmon resonance. In our study, enhanced electroluminescence in blue organic light-emitting diodes is demonstrated by incorporating silver nanoplates into poly(3,4-ethylene dioxythiophene):polystyrene sulfonic acid. To have surface plasmon resonance absorption peak matching with photoluminescent (PL) peak of blue, Ag nanoplates with triangular shape are used in this study. Finally, about 30 % enhancement in electroluminescence intensity and current efficiency for blue emission devices is obtained via Ag nanoplates.Keywords: efficiency enhancement, nanoplate, OLED, surface plasmon resonance
Procedia PDF Downloads 3427936 ANFIS Approach for Locating Faults in Underground Cables
Authors: Magdy B. Eteiba, Wael Ismael Wahba, Shimaa Barakat
Abstract:
This paper presents a fault identification, classification and fault location estimation method based on Discrete Wavelet Transform and Adaptive Network Fuzzy Inference System (ANFIS) for medium voltage cable in the distribution system. Different faults and locations are simulated by ATP/EMTP, and then certain selected features of the wavelet transformed signals are used as an input for a training process on the ANFIS. Then an accurate fault classifier and locator algorithm was designed, trained and tested using current samples only. The results obtained from ANFIS output were compared with the real output. From the results, it was found that the percentage error between ANFIS output and real output is less than three percent. Hence, it can be concluded that the proposed technique is able to offer high accuracy in both of the fault classification and fault location.Keywords: ANFIS, fault location, underground cable, wavelet transform
Procedia PDF Downloads 5137935 Energy Efficiency in Hot Arid Climates Code Compliance and Enforcement for Residential Buildings
Authors: Mohamed Edesy, Carlo Cecere
Abstract:
This paper is a part of an ongoing research that proposes energy strategies for residential buildings in hot arid climates. In Egypt, the residential sector is dominated by increase in consumption rates annually. A building energy efficiency code was introduced by the government in 2005; it indicates minimum design and application requirements for residential buildings. Submission is mandatory and should lead to about 20% energy savings with an increase in comfort levels. However, compliance is almost nonexistent, electricity is subsidized and incentives to adopt energy efficient patterns are very low. This work presents an overview of the code and analyzes the impact of its introduction on different sectors. It analyses compliance barriers and indicates challenges that stand in the way of a realistic enforcement. It proposes an action plan for immediate code enforcement, updating current code to include retrofit, and development of rating systems for buildings. This work presents a broad national plan for energy efficiency empowerment in the residential sector.Keywords: energy efficiency, housing, energy policies, code enforcement
Procedia PDF Downloads 3477934 Optimizing Design Parameters for Efficient Saturated Steam Production in Fire Tube Boilers: A Cost-Effective Approach
Authors: Yoftahe Nigussie Worku
Abstract:
This research focuses on advancing fire tube boiler technology by systematically optimizing design parameters to achieve efficient saturated steam production. The main objective is to design a high-performance boiler with a production capacity of 2000kg/h at a 12-bar design pressure while minimizing costs. The methodology employs iterative analysis, utilizing relevant formulas, and considers material selection and production methods. The study successfully results in a boiler operating at 85.25% efficiency, with a fuel consumption rate of 140.37kg/hr and a heat output of 1610kW. Theoretical importance lies in balancing efficiency, safety considerations, and cost minimization. The research addresses key questions on parameter optimization, material choices, and safety-efficiency balance, contributing valuable insights to fire tube boiler design.Keywords: safety consideration, efficiency, production methods, material selection
Procedia PDF Downloads 667933 Kernel-Based Double Nearest Proportion Feature Extraction for Hyperspectral Image Classification
Authors: Hung-Sheng Lin, Cheng-Hsuan Li
Abstract:
Over the past few years, kernel-based algorithms have been widely used to extend some linear feature extraction methods such as principal component analysis (PCA), linear discriminate analysis (LDA), and nonparametric weighted feature extraction (NWFE) to their nonlinear versions, kernel principal component analysis (KPCA), generalized discriminate analysis (GDA), and kernel nonparametric weighted feature extraction (KNWFE), respectively. These nonlinear feature extraction methods can detect nonlinear directions with the largest nonlinear variance or the largest class separability based on the given kernel function. Moreover, they have been applied to improve the target detection or the image classification of hyperspectral images. The double nearest proportion feature extraction (DNP) can effectively reduce the overlap effect and have good performance in hyperspectral image classification. The DNP structure is an extension of the k-nearest neighbor technique. For each sample, there are two corresponding nearest proportions of samples, the self-class nearest proportion and the other-class nearest proportion. The term “nearest proportion” used here consider both the local information and other more global information. With these settings, the effect of the overlap between the sample distributions can be reduced. Usually, the maximum likelihood estimator and the related unbiased estimator are not ideal estimators in high dimensional inference problems, particularly in small data-size situation. Hence, an improved estimator by shrinkage estimation (regularization) is proposed. Based on the DNP structure, LDA is included as a special case. In this paper, the kernel method is applied to extend DNP to kernel-based DNP (KDNP). In addition to the advantages of DNP, KDNP surpasses DNP in the experimental results. According to the experiments on the real hyperspectral image data sets, the classification performance of KDNP is better than that of PCA, LDA, NWFE, and their kernel versions, KPCA, GDA, and KNWFE.Keywords: feature extraction, kernel method, double nearest proportion feature extraction, kernel double nearest feature extraction
Procedia PDF Downloads 344