Search results for: defective ground
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2089

Search results for: defective ground

1429 Structural Stress of Hegemon’s Power Loss: A Pestle Analysis for Pacification and Security Policy Plan

Authors: Sehrish Qayyum

Abstract:

Active military power contention is shifting to economic and cyberwar to retain hegemony. Attuned Pestle analysis confirms that structural stress of hegemon’s power loss drives a containment approach towards caging actions. Ongoing diplomatic, asymmetric, proxy and direct wars are increasing stress hegemon’s power retention due to tangled military and economic alliances. It creates the condition of catalepsy with defective reflexive control which affects the core warfare operations. When one’s own power is doubted it gives power to one’s own doubt to ruin all planning either done with superlative cost-benefit analysis. Strategically calculated estimation of Hegemon’s power game since the early WWI to WWII, WWII-to Cold War and then to the current era in three chronological periods exposits that Thucydides’s trap became the reason for war broke out. Thirst for power is the demise of imagination and cooperation for better sense to prevail instead it drives ashes to dust. Pestle analysis is a wide array of evaluation from political and economic to legal dimensions of the state matters. It helps to develop the Pacification and Security Policy Plan (PSPP) to avoid hegemon’s structural stress of power loss in fact, in turn, creates an alliance with maximum amicable outputs. PSPP may serve to regulate and pause the hurricane of power clashes. PSPP along with a strategic work plan is based on Pestle analysis to deal with any conceivable war condition and approach for saving international peace. Getting tangled into self-imposed epistemic dilemmas results in regret that becomes the only option of performance. It is a generic application of probability tests to find the best possible options and conditions to develop PSPP for any adversity possible so far. Innovation in expertise begets innovation in planning and action-plan to serve as a rheostat approach to deal with any plausible power clash.

Keywords: alliance, hegemon, pestle analysis, pacification and security policy plan, security

Procedia PDF Downloads 93
1428 Influence Zone of Strip Footing on Untreated and Cement Treated Sand Mat Underlain by Soft Clay (2nd reviewed)

Authors: Sharifullah Ahmed

Abstract:

Shallow foundation on soft soils without ground improvement can represent a high level of settlement. In such a case, an alternative to pile foundations may be shallow strip footings placed on a soil system in which the upper layer is untreated or cement-treated compacted sand to limit the settlement within a permissible level. This research work deals with a rigid plane-strain strip footing of 2.5m width placed on a soil consisting of untreated or cement treated sand layer underlain by homogeneous soft clay. Both the thin and thick compared the footing width was considered. The soft inorganic cohesive NC clay layer is considered undrained for plastic loading stages and drained in consolidation stages, and the sand layer is drained in all loading stages. FEM analysis was done using PLAXIS 2D Version 8.0 with a model consisting of clay deposits of 15m thickness and 18m width. The soft clay layer was modeled using the Hardening Soil Model, Soft Soil Model, Soft Soil Creep model, and the upper improvement layer was modeled using only the Hardening Soil Model. The system is considered fully saturated. The value of natural void ratio 1.2 is used. Total displacement fields of strip footing and subsoil layers in the case of Untreated and Cement treated Sand as Upper layer are presented. For Hi/B =0.6 or above, the distribution of major deformation within an upper layer and the influence zone of footing is limited in an upper layer which indicates the complete effectiveness of the upper layer in bearing the foundation effectively in case of the untreated upper layer. For Hi/B =0.3 or above, the distribution of major deformation occurred within an upper layer, and the function of footing is limited in the upper layer. This indicates the complete effectiveness of the cement-treated upper layer. Brittle behavior of cemented sand and fracture or cracks is not considered in this analysis.

Keywords: displacement, ground improvement, influence depth, PLAXIS 2D, primary and secondary settlement, sand mat, soft clay

Procedia PDF Downloads 78
1427 Structural Properties of CuCl, CuBr, and CuI Compounds under Hydrostatic Pressure

Authors: S. Louhibi-Fasla, H. Rekab Djabri, H. Achour

Abstract:

The aim of this work is to investigate the structural phase-transitions and electronic properties of copper halides. Our calculations were performed within the PLW extension to the first principle FPLMTO method, which enables an accurate treatment of all kinds of structures including the open ones. Results are given for lattice parameters, bulk modulus and its first derivatives in five different surface phases, and are compared with the available theoretical and experimental data. In the zinc-blende (B3) and PbO (B10) phases, the fundamental gap remains direct with both the top of VB and the bottom of CB located at Γ.

Keywords: FPLMTO, structural properties, Copper halides, phase transitions, ground state phase

Procedia PDF Downloads 413
1426 Calculation of Instrumental Results of the Tohoku Earthquake, Japan (Mw 9.0) on March 11, 2011 and Other Destructive Earthquakes during Seismic Hazard Assessment

Authors: J. K. Karapetyan

Abstract:

In this paper seismological-statistical analysis of actual instrumental data on the main tremor of the Great Japan earthquake 11.03.2011 is implemented for finding out the dependence between maximal values of peak ground accelerations (PGA) and epicentric distances. A number of peculiarities of manifestation of accelerations' maximum values at the interval of long epicentric distances are revealed which do not correspond with current scales of seismic intensity.

Keywords: earthquakes, instrumental records, seismic hazard, Japan

Procedia PDF Downloads 355
1425 Streamflow Modeling Using the PyTOPKAPI Model with Remotely Sensed Rainfall Data: A Case Study of Gilgel Ghibe Catchment, Ethiopia

Authors: Zeinu Ahmed Rabba, Derek D Stretch

Abstract:

Remote sensing contributes valuable information to streamflow estimates. Usually, stream flow is directly measured through ground-based hydrological monitoring station. However, in many developing countries like Ethiopia, ground-based hydrological monitoring networks are either sparse or nonexistent, which limits the manage water resources and hampers early flood-warning systems. In such cases, satellite remote sensing is an alternative means to acquire such information. This paper discusses the application of remotely sensed rainfall data for streamflow modeling in Gilgel Ghibe basin in Ethiopia. Ten years (2001-2010) of two satellite-based precipitation products (SBPP), TRMM and WaterBase, were used. These products were combined with the PyTOPKAPI hydrological model to generate daily stream flows. The results were compared with streamflow observations at Gilgel Ghibe Nr, Assendabo gauging station using four statistical tools (Bias, R², NS and RMSE). The statistical analysis indicates that the bias-adjusted SBPPs agree well with gauged rainfall compared to bias-unadjusted ones. The SBPPs with no bias-adjustment tend to overestimate (high Bias and high RMSE) the extreme precipitation events and the corresponding simulated streamflow outputs, particularly during wet months (June-September) and underestimate the streamflow prediction over few dry months (January and February). This shows that bias-adjustment can be important for improving the performance of the SBPPs in streamflow forecasting. We further conclude that the general streamflow patterns were well captured at daily time scales when using SBPPs after bias adjustment. However, the overall results demonstrate that the simulated streamflow using the gauged rainfall is superior to those obtained from remotely sensed rainfall products including bias-adjusted ones.

Keywords: Ethiopia, PyTOPKAPI model, remote sensing, streamflow, Tropical Rainfall Measuring Mission (TRMM), waterBase

Procedia PDF Downloads 264
1424 Seismic Isolation of Existing Masonry Buildings: Recent Case Studies in Italy

Authors: Stefano Barone

Abstract:

Seismic retrofit of buildings through base isolation represents a consolidated protection strategy against earthquakes. It consists in decoupling the ground motion from that of the structure and introducing anti-seismic devices at the base of the building, characterized by high horizontal flexibility and medium/high dissipative capacity. This allows to protect structural elements and to limit damages to non-structural ones. For these reasons, full functionality is guaranteed after an earthquake event. Base isolation is applied extensively to both new and existing buildings. For the latter, it usually does not require any interruption of the structure use and occupants evacuation, a special advantage for strategic buildings such as schools, hospitals, and military buildings. This paper describes the application of seismic isolation to three existing masonry buildings in Italy: Villa “La Maddalena” in Macerata (Marche region), “Giacomo Matteotti” and “Plinio Il Giovane” school buildings in Perugia (Umbria region). The seismic hazard of the sites is characterized by a Peak Ground Acceleration (PGA) of 0.213g-0.287g for the Life Safety Limit State and between 0.271g-0.359g for the Collapse Limit State. All the buildings are isolated with a combination of free sliders type TETRON® CD with confined elastomeric disk and anti-seismic rubber isolators type ISOSISM® HDRB to reduce the eccentricity between the center of mass and stiffness, thus limiting torsional effects during a seismic event. The isolation systems are designed to lengthen the original period of vibration (i.e., without isolators) by at least three times and to guarantee medium/high levels of energy dissipation capacity (equivalent viscous damping between 12.5% and 16%). This allows the structures to resist 100% of the seismic design action. This article shows the performances of the supplied anti-seismic devices with particular attention to the experimental dynamic response. Finally, a special focus is given to the main site activities required to isolate a masonry building.

Keywords: retrofit, masonry buildings, seismic isolation, energy dissipation, anti-seismic devices

Procedia PDF Downloads 53
1423 A Method of Detecting the Difference in Two States of Brain Using Statistical Analysis of EEG Raw Data

Authors: Digvijaysingh S. Bana, Kiran R. Trivedi

Abstract:

This paper introduces various methods for the alpha wave to detect the difference between two states of brain. One healthy subject participated in the experiment. EEG was measured on the forehead above the eye (FP1 Position) with reference and ground electrode are on the ear clip. The data samples are obtained in the form of EEG raw data. The time duration of reading is of one minute. Various test are being performed on the alpha band EEG raw data.The readings are performed in different time duration of the entire day. The statistical analysis is being carried out on the EEG sample data in the form of various tests.

Keywords: electroencephalogram(EEG), biometrics, authentication, EEG raw data

Procedia PDF Downloads 450
1422 Impacts of Community Forest on Forest Resources Management and Livelihood Improvement of Local People in Nepal

Authors: Samipraj Mishra

Abstract:

Despite the successful implementation of community forestry program, a number of pros and cons have been raised on Terai community forestry in the case of lowland locally called Terai region of Nepal, which is climatically belongs to tropical humid and possessed high quality forests in terms of ecology and economy. The study aims to investigate the local pricing strategy of forest products and its impacts on equitable forest benefit sharing, collection of community fund and carrying out livelihood improvement activities. The study was carried out on six community forests revealed that local people have substantially benefited from the community forests. However, being the region is heterogeneous by socio-economic conditions and forest resources have higher economical potential, the decision of low pricing strategy made by the local people have created inequality problems while sharing the forest benefits, and poorly contributed to community fund collection and consequently carrying out limited activities of livelihood improvement. The paper argued that the decision of low pricing strategy of forest products is counter-productive to promote the equitable benefit sharing in the areas of heterogeneous socio-economic conditions with high value forests. The low pricing strategy has been increasing accessibility of better off households at higher rate than poor; as such households always have higher affording capacity. It is also defective to increase the community fund and carry out activities of livelihood improvement effectively. The study concluded that unilateral decentralized forest policy and decision-making autonomy to the local people seems questionable unless their decision-making capacities are enriched sufficiently. Therefore, it is recommended that empowerment of decision-making capacity of local people and their respective institutions together with policy and program formulation are prerequisite for efficient and equitable community forest management and its long-term sustainability.

Keywords: community forest, livelihood, socio-economy, pricing system, Nepal

Procedia PDF Downloads 258
1421 The Role of Agroforestry Practices in Climate Change Mitigation in Western Kenya

Authors: Humphrey Agevi, Harrison Tsingalia, Richard Onwonga, Shem Kuyah

Abstract:

Most of the world ecosystems have been affected by the effects of climate change. Efforts have been made to mitigate against climate change effects. While most studies have been done in forest ecosystems and pure plant plantations, trees on farms including agroforestry have only received attention recently. Agroforestry systems and tree cover on agricultural lands make an important contribution to climate change mitigation but are not systematically accounted for in the global carbon budgets. This study sought to: (i) determine tree diversity in different agroforestry practices; (ii) determine tree biomass in different agroforestry practices. Study area was determined according to the Land degradation surveillance framework (LSDF). Two study sites were established. At each of the site, a 5km x 10km block was established on a map using Google maps and satellite images. Way points were then uploaded in a GPS helped locate the blocks on the ground. In each of the blocks, Nine (8) sentinel clusters measuring 1km x 1km were randomized. Randomization was done in a common spreadsheet program and later be downloaded to a Global Positioning System (GPS) so that during surveys the researchers were able to navigate to the sampling points. In each of the sentinel cluster, two farm boundaries were randomly identified for convenience and to avoid bias. This led to 16 farms in Kakamega South and 16 farms in Kakamega North totalling to 32 farms in Kakamega Site. Species diversity was determined using Shannon wiener index. Tree biomass was determined using allometric equation. Two agroforestry practices were found; homegarden and hedgerow. Species diversity ranged from 0.25-2.7 with a mean of 1.8 ± 0.10. Species diversity in homegarden ranged from 1-2.7 with a mean of 1.98± 0.14. Hedgerow species diversity ranged from 0.25-2.52 with a mean of 1.74± 0.11. Total Aboveground Biomass (AGB) determined was 13.96±0.37 Mgha-1. Homegarden with the highest abundance of trees had higher above ground biomass (AGB) compared to hedgerow agroforestry. This study is timely as carbon budgets in the agroforestry can be incorporated in the global carbon budgets and improve the accuracy of national reporting of greenhouse gases.

Keywords: agroforestry, allometric equations, biomass, climate change

Procedia PDF Downloads 338
1420 Comparing SVM and Naïve Bayes Classifier for Automatic Microaneurysm Detections

Authors: A. Sopharak, B. Uyyanonvara, S. Barman

Abstract:

Diabetic retinopathy is characterized by the development of retinal microaneurysms. The damage can be prevented if disease is treated in its early stages. In this paper, we are comparing Support Vector Machine (SVM) and Naïve Bayes (NB) classifiers for automatic microaneurysm detection in images acquired through non-dilated pupils. The Nearest Neighbor classifier is used as a baseline for comparison. Detected microaneurysms are validated with expert ophthalmologists’ hand-drawn ground-truths. The sensitivity, specificity, precision and accuracy of each method are also compared.

Keywords: diabetic retinopathy, microaneurysm, naive Bayes classifier, SVM classifier

Procedia PDF Downloads 314
1419 Forest Products Pricing System in Community Forestry Program: An Analysis of Its Impacts on Forest Resources Management and Livelihood Improvement of Local People

Authors: Mohan Bikram Thapa

Abstract:

Despite the successful implementation of community forestry program, a number of pros and cons have been raised on Terai community forestry in the case of lowland locally called Terai region of Nepal, which climatically belongs to tropical humid and possessed high-quality forests in terms of ecology and economy. The study aims to investigate the local pricing strategy of forest products and its impacts on equitable forest benefits sharing, the collection of community fund and carrying out livelihood improvement activities. The study was carried out on six community forests revealed that local people have substantially benefited from the community forests. However, being the region is heterogeneous by socio-economic conditions and forest resources have higher economic potential, the decision of low pricing strategy made by the local people have created inequality problems while sharing the forest benefits, and poorly contributed to community fund collection and consequently carrying out limited activities of livelihood improvement. The paper argued that the decision of low pricing strategy of forest products is counterproductive to promote the equitable benefit-sharing in the areas of heterogeneous socio-economic conditions with high-value forests. The low pricing strategy has been increasing accessibility of better off households at a higher rate than poor, as such households always have the higher affording capacity. It is also defective to increase the community fund and carry out activities of livelihood improvement effectively. The study concluded that unilateral decentralized forest policy and decision-making autonomy to the local people seems questionable unless their decision-making capacities are enriched sufficiently. Therefore, it is recommended that empowerments of decision-making capacity of local people and their respective institutions together with policy and program formulation are prerequisite for efficient and equitable community forest management and its long-term sustainability.

Keywords: benefit sharing, community forest, livelihood, pricing mechanism, Nepal

Procedia PDF Downloads 357
1418 Rigorous Photogrammetric Push-Broom Sensor Modeling for Lunar and Planetary Image Processing

Authors: Ahmed Elaksher, Islam Omar

Abstract:

Accurate geometric relation algorithms are imperative in Earth and planetary satellite and aerial image processing, particularly for high-resolution images that are used for topographic mapping. Most of these satellites carry push-broom sensors. These sensors are optical scanners equipped with linear arrays of CCDs. These sensors have been deployed on most EOSs. In addition, the LROC is equipped with two push NACs that provide 0.5 meter-scale panchromatic images over a 5 km swath of the Moon. The HiRISE carried by the MRO and the HRSC carried by MEX are examples of push-broom sensor that produces images of the surface of Mars. Sensor models developed in photogrammetry relate image space coordinates in two or more images with the 3D coordinates of ground features. Rigorous sensor models use the actual interior orientation parameters and exterior orientation parameters of the camera, unlike approximate models. In this research, we generate a generic push-broom sensor model to process imageries acquired through linear array cameras and investigate its performance, advantages, and disadvantages in generating topographic models for the Earth, Mars, and the Moon. We also compare and contrast the utilization, effectiveness, and applicability of available photogrammetric techniques and softcopies with the developed model. We start by defining an image reference coordinate system to unify image coordinates from all three arrays. The transformation from an image coordinate system to a reference coordinate system involves a translation and three rotations. For any image point within the linear array, its image reference coordinates, the coordinates of the exposure center of the array in the ground coordinate system at the imaging epoch (t), and the corresponding ground point coordinates are related through the collinearity condition that states that all these three points must be on the same line. The rotation angles for each CCD array at the epoch t are defined and included in the transformation model. The exterior orientation parameters of an image line, i.e., coordinates of exposure station and rotation angles, are computed by a polynomial interpolation function in time (t). The parameter (t) is the time at a certain epoch from a certain orbit position. Depending on the types of observations, coordinates, and parameters may be treated as knowns or unknowns differently in various situations. The unknown coefficients are determined in a bundle adjustment. The orientation process starts by extracting the sensor position and, orientation and raw images from the PDS. The parameters of each image line are then estimated and imported into the push-broom sensor model. We also define tie points between image pairs to aid the bundle adjustment model, determine the refined camera parameters, and generate highly accurate topographic maps. The model was tested on different satellite images such as IKONOS, QuickBird, and WorldView-2, HiRISE. It was found that the accuracy of our model is comparable to those of commercial and open-source software, the computational efficiency of the developed model is high, the model could be used in different environments with various sensors, and the implementation process is much more cost-and effort-consuming.

Keywords: photogrammetry, push-broom sensors, IKONOS, HiRISE, collinearity condition

Procedia PDF Downloads 53
1417 Steady State Rolling and Dynamic Response of a Tire at Low Frequency

Authors: Md Monir Hossain, Anne Staples, Kuya Takami, Tomonari Furukawa

Abstract:

Tire noise has a significant impact on ride quality and vehicle interior comfort, even at low frequency. Reduction of tire noise is especially important due to strict state and federal environmental regulations. The primary sources of tire noise are the low frequency structure-borne noise and the noise that originates from the release of trapped air between the tire tread and road surface during each revolution of the tire. The frequency response of the tire changes at low and high frequency. At low frequency, the tension and bending moment become dominant, while the internal structure and local deformation become dominant at higher frequencies. Here, we analyze tire response in terms of deformation and rolling velocity at low revolution frequency. An Abaqus FEA finite element model is used to calculate the static and dynamic response of a rolling tire under different rolling conditions. The natural frequencies and mode shapes of a deformed tire are calculated with the FEA package where the subspace-based steady state dynamic analysis calculates dynamic response of tire subjected to harmonic excitation. The analysis was conducted on the dynamic response at the road (contact point of tire and road surface) and side nodes of a static and rolling tire when the tire was excited with 200 N vertical load for a frequency ranging from 20 to 200 Hz. The results show that frequency has little effect on tire deformation up to 80 Hz. But between 80 and 200 Hz, the radial and lateral components of displacement of the road and side nodes exhibited significant oscillation. For the static analysis, the fluctuation was sharp and frequent and decreased with frequency. In contrast, the fluctuation was periodic in nature for the dynamic response of the rolling tire. In addition to the dynamic analysis, a steady state rolling analysis was also performed on the tire traveling at ground velocity with a constant angular motion. The purpose of the computation was to demonstrate the effect of rotating motion on deformation and rolling velocity with respect to a fixed Newtonian reference point. The analysis showed a significant variation in deformation and rolling velocity due to centrifugal and Coriolis acceleration with respect to a fixed Newtonian point on ground.

Keywords: natural frequency, rotational motion, steady state rolling, subspace-based steady state dynamic analysis

Procedia PDF Downloads 353
1416 Towards Conservation and Recovery of Species at Risk in Ontario: Progress on Recovery Planning and Implementation and an Overview of Key Research Needs

Authors: Rachel deCatanzaro, Madeline Austen, Ken Tuininga, Kathy St. Laurent, Christina Rohe

Abstract:

In Canada, the federal Species at Risk Act (SARA) provides protection for wildlife species at risk and a national legislative framework for the conservation or recovery of species that are listed as endangered, threatened, or special concern under Schedule 1 of SARA. Key aspects of the federal species at risk program include the development of recovery documents (recovery strategies, action plans, and management plans) outlining threats, objectives, and broad strategies or measures for conservation or recovery of the species; the identification and protection of critical habitat for threatened and endangered species; and working with groups and organizations to implement on-the-ground recovery actions. Environment Canada’s progress on the development of recovery documents and on the identification and protection of critical habitat in Ontario will be presented, along with successes and challenges associated with on-the ground implementation of recovery actions. In Ontario, Environment Canada is currently involved in several recovery and monitoring programs for at-risk bird species such as the Loggerhead Shrike, Piping Plover, Golden-winged Warbler and Cerulean Warbler and has provided funding for a wide variety of recovery actions targeting priority species at risk and geographic areas each year through stewardship programs including the Habitat Stewardship Program, Aboriginal Fund for Species at Risk, and the Interdepartmental Recovery Fund. Key research needs relevant to the recovery of species at risk have been identified, and include: surveys and monitoring of population sizes and threats, population viability analyses, and addressing knowledge gaps identified for individual species (e.g., species biology and habitat needs). The engagement of all levels of government, the local and international conservation communities, and the scientific research community plays an important role in the conservation and recovery of species at risk in Ontario– through surveying and monitoring, filling knowledge gaps, conducting public outreach, and restoring, protecting, or managing habitat – and will be critical to the continued success of the federal species at risk program.

Keywords: conservation biology, habitat protection, species at risk, wildlife recovery

Procedia PDF Downloads 429
1415 Assessing Water Quality Using GIS: The Case of Northern Lebanon Miocene Aquifer

Authors: M. Saba, A. Iaaly, E. Carlier, N. Georges

Abstract:

This research focuses on assessing the ground water quality of Northern Lebanon affected by saline water intrusion. The chemical, physical and microbiological parameters were collected in various seasons spanning over the period of two years. Results were assessed using Geographic Information System (GIS) due to its visual capabilities in presenting the pollution extent in the studied region. Future projections of the excessive pumping were also simulated using GIS in order to assess the extent of the problem of saline intrusion in the near future.

Keywords: GIS, saline water, quality control, drinkable water quality standards, pumping

Procedia PDF Downloads 345
1414 Density functional (DFT), Study of the Structural and Phase Transition of ThC and ThN: LDA vs GGA Computational

Authors: Hamza Rekab Djabri, Salah Daoud

Abstract:

The present paper deals with the computational of structural and electronic properties of ThC and ThN compounds using density functional theory within generalized-gradient (GGA) apraximation and local density approximation (LDA). We employ the full potential linear muffin-tin orbitals (FP-LMTO) as implemented in the Lmtart code. We have used to examine structure parameter in eight different structures such as in NaCl (B1), CsCl (B2), ZB (B3), NiAs (B8), PbO (B10), Wurtzite (B4) , HCP (A3) βSn (A5) structures . The equilibrium lattice parameter, bulk modulus, and its pressure derivative were presented for all calculated phases. The calculated ground state properties are in good agreement with available experimental and theoretical results.

Keywords: DFT, GGA, LDA, properties structurales, ThC, ThN

Procedia PDF Downloads 82
1413 The Effect of Different Parameters on a Single Invariant Lateral Displacement Distribution to Consider the Higher Modes Effect in a Displacement-Based Pushover Procedure

Authors: Mohamad Amin Amini, Mehdi Poursha

Abstract:

Nonlinear response history analysis (NL-RHA) is a robust analytical tool for estimating the seismic demands of structures responding in the inelastic range. However, because of its conceptual and numerical complications, the nonlinear static procedure (NSP) is being increasingly used as a suitable tool for seismic performance evaluation of structures. The conventional pushover analysis methods presented in various codes (FEMA 356; Eurocode-8; ATC-40), are limited to the first-mode-dominated structures, and cannot take higher modes effect into consideration. Therefore, since more than a decade ago, researchers developed enhanced pushover analysis procedures to take higher modes effect into account. The main objective of this study is to propose an enhanced invariant lateral displacement distribution to take higher modes effect into consideration in performing a displacement-based pushover analysis, whereby a set of laterally applied displacements, rather than forces, is monotonically applied to the structure. For this purpose, the effect of different parameters such as the spectral displacement of ground motion, the modal participation factor, and the effective modal participating mass ratio on the lateral displacement distribution is investigated to find the best distribution. The major simplification of this procedure is that the effect of higher modes is concentrated into a single invariant lateral load distribution. Therefore, only one pushover analysis is sufficient without any need to utilize a modal combination rule for combining the responses. The invariant lateral displacement distribution for pushover analysis is then calculated by combining the modal story displacements using the modal combination rules. The seismic demands resulting from the different procedures are compared to those from the more accurate nonlinear response history analysis (NL-RHA) as a benchmark solution. Two structures of different heights including 10 and 20-story special steel moment resisting frames (MRFs) were selected and evaluated. Twenty ground motion records were used to conduct the NL-RHA. The results show that more accurate responses can be obtained in comparison with the conventional lateral loads when the enhanced modal lateral displacement distributions are used.

Keywords: displacement-based pushover, enhanced lateral load distribution, higher modes effect, nonlinear response history analysis (NL-RHA)

Procedia PDF Downloads 262
1412 Encoding the Design of the Memorial Park and the Family Network as the Icon of 9/11 in Amy Waldman's the Submission

Authors: Masami Usui

Abstract:

After 9/11, the American literary scene was confronted with new perspectives that enabled both writers and readers to recognize the hidden aspects of their political, economic, legal, social, and cultural phenomena. There appeared an argument over new and challenging multicultural aspects after 9/11 and this argument is presented by a tension of space related to 9/11. In Amy Waldman’s the Submission (2011), designing both the memorial park and the family network has a significant meaning in establishing the progress of understanding from multiple perspectives. The most intriguing and controversial topic of racism is reflected in the Submission, where one young architect’s blind entry to the competition for the memorial of Ground Zero is nominated, yet he is confronted with strong objections and hostility as soon as he turns out to be a Muslim named Mohammad Khan. This ‘Khan’ issue, immediately enlarged into a social controversial issue on American soil, causes repeated acts of hostility to Muslim women by ignorant citizens all over America. His idea of the park is to design a new concept of tracing the cultural background of the open space. Against his will, his name is identified as the ‘ingredient’ of the networking of the resistant community with his supporters: on the other hand, the post 9/11 hysteria and victimization is presented in such family associations as the Angry Family Members and Grieving Family Members. These rapidly expanding networks, whether political or not, constructed by the internet, embody the contemporary societal connection and representation. The contemporary quest for the significance of human relationships is recognized as a quest for global peace. Designing both the memorial park and the communication networks strengthens a process of facing the shared conflicts and healing the survivors’ trauma. The tension between the idea and networking of the Garden for the memorial site and the collapse of Ground Zero signifies the double mission of the site: to establish the space to ease the wounded and to remember the catastrophe. Reading the design of these icons of 9/11 in the Submission means that decoding the myth of globalization and its representations in this century.

Keywords: American literature, cultural studies, globalization, literature of catastrophe

Procedia PDF Downloads 516
1411 Monitoring Large-Coverage Forest Canopy Height by Integrating LiDAR and Sentinel-2 Images

Authors: Xiaobo Liu, Rakesh Mishra, Yun Zhang

Abstract:

Continuous monitoring of forest canopy height with large coverage is essential for obtaining forest carbon stocks and emissions, quantifying biomass estimation, analyzing vegetation coverage, and determining biodiversity. LiDAR can be used to collect accurate woody vegetation structure such as canopy height. However, LiDAR’s coverage is usually limited because of its high cost and limited maneuverability, which constrains its use for dynamic and large area forest canopy monitoring. On the other hand, optical satellite images, like Sentinel-2, have the ability to cover large forest areas with a high repeat rate, but they do not have height information. Hence, exploring the solution of integrating LiDAR data and Sentinel-2 images to enlarge the coverage of forest canopy height prediction and increase the prediction repeat rate has been an active research topic in the environmental remote sensing community. In this study, we explore the potential of training a Random Forest Regression (RFR) model and a Convolutional Neural Network (CNN) model, respectively, to develop two predictive models for predicting and validating the forest canopy height of the Acadia Forest in New Brunswick, Canada, with a 10m ground sampling distance (GSD), for the year 2018 and 2021. Two 10m airborne LiDAR-derived canopy height models, one for 2018 and one for 2021, are used as ground truth to train and validate the RFR and CNN predictive models. To evaluate the prediction performance of the trained RFR and CNN models, two new predicted canopy height maps (CHMs), one for 2018 and one for 2021, are generated using the trained RFR and CNN models and 10m Sentinel-2 images of 2018 and 2021, respectively. The two 10m predicted CHMs from Sentinel-2 images are then compared with the two 10m airborne LiDAR-derived canopy height models for accuracy assessment. The validation results show that the mean absolute error (MAE) for year 2018 of the RFR model is 2.93m, CNN model is 1.71m; while the MAE for year 2021 of the RFR model is 3.35m, and the CNN model is 3.78m. These demonstrate the feasibility of using the RFR and CNN models developed in this research for predicting large-coverage forest canopy height at 10m spatial resolution and a high revisit rate.

Keywords: remote sensing, forest canopy height, LiDAR, Sentinel-2, artificial intelligence, random forest regression, convolutional neural network

Procedia PDF Downloads 69
1410 Evaluation of a Remanufacturing for Lithium Ion Batteries from Electric Cars

Authors: Achim Kampker, Heiner H. Heimes, Mathias Ordung, Christoph Lienemann, Ansgar Hollah, Nemanja Sarovic

Abstract:

Electric cars with their fast innovation cycles and their disruptive character offer a high degree of freedom regarding innovative design for remanufacturing. Remanufacturing increases not only the resource but also the economic efficiency by a prolonged product life time. The reduced power train wear of electric cars combined with high manufacturing costs for batteries allow new business models and even second life applications. Modular and intermountable designed battery packs enable the replacement of defective or outdated battery cells, allow additional cost savings and a prolongation of life time. This paper discusses opportunities for future remanufacturing value chains of electric cars and their battery components and how to address their potentials with elaborate designs. Based on a brief overview of implemented remanufacturing structures in different industries, opportunities of transferability are evaluated. In addition to an analysis of current and upcoming challenges, promising perspectives for a sustainable electric car circular economy enabled by design for remanufacturing are deduced. Two mathematical models describe the feasibility of pursuing a circular economy of lithium ion batteries and evaluate remanufacturing in terms of sustainability and economic efficiency. Taking into consideration not only labor and material cost but also capital costs for equipment and factory facilities to support the remanufacturing process, cost benefit analysis prognosticate that a remanufacturing battery can be produced more cost-efficiently. The ecological benefits were calculated on a broad database from different research projects which focus on the recycling, the second use and the assembly of lithium ion batteries. The results of this calculations show a significant improvement by remanufacturing in all relevant factors especially in the consumption of resources and greenhouse warming potential. Exemplarily suitable design guidelines for future remanufacturing lithium ion batteries, which consider modularity, interfaces and disassembly, are used to illustrate the findings. For one guideline, potential cost improvements were calculated and upcoming challenges are pointed out.

Keywords: circular economy, electric mobility, lithium ion batteries, remanufacturing

Procedia PDF Downloads 340
1409 The Importance of Localization in Large Constraction Projects

Authors: Ali Mohammadi

Abstract:

The basis for the construction of any project is a map, a map where the surveyor can determine the coordinates of the points on the ground by using the coordinates and using the total station, projects such as dams, roads, tunnels and pipelines, if the base points are determined using GPS prepared can create challenges for the surveyor to control. First, we will examine some map projection on which the maps are designed, and a summary of their differences and the challenges that surveyors face in order to control them, because in order to build projects, we need real lengths and angles, so we have to use coordinates that provide us with the results of the calculations. We will examine some examples to understand the concept of localization so that the surveyor knows if he is facing a challenge or not and if he is faced with this challenge, how should he solve this problem.

Keywords: UTM, scale factor, cartesian, traverse

Procedia PDF Downloads 59
1408 A Study on the Establishment of Performance Evaluation Criteria for MR-Based Simulation Device to Train K-9 Self-Propelled Artillery Operators

Authors: Yonggyu Lee, Byungkyu Jung, Bom Yoon, Jongil Yoon

Abstract:

MR-based simulation devices have been recently used in various fields such as entertainment, medicine, manufacturing, and education. Different simulation devices are also being developed for military equipment training. This is to address the concerns regarding safety accidents as well as cost issues associated with training with expensive equipment. An important aspect of developing simulation devices to replicate military training is that trainees experience the same effect as training with real devices. In this study, the criteria for performance evaluation are established to compare the training effect of an MR-based simulation device to that of an actual device. K-9 Self-propelled artillery (SPA) operators are selected as training subjects. First, MR-based software is developed to simulate the training ground and training scenarios currently used for training SPA operators in South Korea. Hardware that replicates the interior of SPA is designed, and a simulation device that is linked to the software is developed. Second, criteria are established to evaluate the simulation device based on real-life training scenarios. A total of nine performance evaluation criteria were selected based on the actual SPA operation training scenarios. Evaluation items were selected to evaluate whether the simulation device was designed such that trainees would experience the same effect as training in the field with a real SPA. To eval-uate the level of replication by the simulation device of the actual training environments (driving and passing through trenches, pools, protrusions, vertical obstacles, and slopes) and driving conditions (rapid steering, rapid accelerating, and rapid braking) as per the training scenarios, tests were performed under the actual training conditions and in the simulation device, followed by the comparison of the results. In addition, the level of noise felt by operators during training was also selected as an evaluation criterion. Due to the nature of the simulation device, there may be data latency between HW and SW. If the la-tency in data transmission is significant, the VR image information delivered to trainees as they maneuver HW might not be consistent. This latency in data transmission was also selected as an evaluation criterion to improve the effectiveness of the training. Through this study, the key evaluation metrics were selected to achieve the same training effect as training with real equipment in a training ground during the develop-ment of the simulation device for military equipment training.

Keywords: K-9 self-propelled artillery, mixed reality, simulation device, synchronization

Procedia PDF Downloads 48
1407 Designing Offshore Pipelines Facing the Geohazard of Active Seismic Faults

Authors: Maria Trimintziou, Michael Sakellariou, Prodromos Psarropoulos

Abstract:

Nowadays, the exploitation of hydrocarbons reserves in deep seas and oceans, in combination with the need to transport hydrocarbons among countries, has made the design, construction and operation of offshore pipelines very significant. Under this perspective, it is evident that many more offshore pipelines are expected to be constructed in the near future. Since offshore pipelines are usually crossing extended areas, they may face a variety of geohazards that impose substantial permanent ground deformations (PGDs) to the pipeline and potentially threaten its integrity. In case of a geohazard area, there exist three options to proceed. The first option is to avoid the problematic area through rerouting, which is usually regarded as an unfavorable solution due to its high cost. The second is to apply (if possible) mitigation/protection measures in order to eliminate the geohazard itself. Finally, the last appealing option is to allow the pipeline crossing through the geohazard area, provided that the pipeline will have been verified against the expected PGDs. In areas with moderate or high seismicity the design of an offshore pipeline is more demanding due to the earthquake-related geohazards, such as landslides, soil liquefaction phenomena, and active faults. It is worthy to mention that although worldwide there is a great experience in offshore geotechnics and pipeline design, the experience in seismic design of offshore pipelines is rather limited due to the fact that most of the pipelines have been constructed in non-seismic regions (e.g. North Sea, West Australia, Gulf of Mexico, etc.). The current study focuses on the seismic design of offshore pipelines against active faults. After an extensive literature review of the provisions of the seismic norms worldwide and of the available analytical methods, the study simulates numerically (through finite-element modeling and strain-based criteria) the distress of offshore pipelines subjected to PGDs induced by active seismic faults at the seabed. Factors, such as the geometrical properties of the fault, the mechanical properties of the ruptured soil formations, and the pipeline characteristics, are examined. After some interesting conclusions regarding the seismic vulnerability of offshore pipelines, potential cost-effective mitigation measures are proposed taking into account constructability issues.

Keywords: offhore pipelines, seismic design, active faults, permanent ground deformations (PGDs)

Procedia PDF Downloads 567
1406 Geomorphology of Leyte, Philippines: Seismic Response and Remote Sensing Analysis and Its Implication to Landslide Hazard Assessment

Authors: Arturo S. Daag, Ira Karrel D. L. San Jose, Mike Gabriel G. Pedrosa, Ken Adrian C. Villarias, Rayfred P. Ingeniero, Cyrah Gale H. Rocamora, Margarita P. Dizon, Roland Joseph B. De Leon, Teresito C. Bacolcol

Abstract:

The province of Leyte consists of various geomorphological landforms: These are: a) landforms of tectonic origin transect large part of the volcanic centers in upper Ormoc area; b) landforms of volcanic origin, several inactive volcanic centers located in Upper Ormoc are transected by Philippine Fault; c) landforms of volcano-denudational and denudational slopes dominates the area where most of the earthquake-induced landslide occurred; and d) Colluvium and alluvial deposits dominate the foot slope of Ormoc and Jaro-Pastrana plain. Earthquake ground acceleration and geotechnical properties of various landforms are crucial for landslide studies. To generate the landslide critical acceleration model of sliding block, various data were considered, these are: geotechnical data (i.e., soil and rock strength parameters), slope, topographic wetness index (TWI), landslide inventory, soil map, geologic maps for the calculation of the factor of safety. Horizontal-to-vertical spectral ratio (HVSR) surveying methods, refraction microtremor (ReMi), and three-component microtremor (3CMT) were conducted to measure site period and surface wave velocity as well as to create a soil thickness model. Critical acceleration model of various geomorphological unit using Remote Sensing, field geotechnical, geophysical, and geospatial data collected from the areas affected by the 06 July 2017 M6.5 Leyte earthquake. Spatial analysis of earthquake-induced landslide from the 06 July 2017, were then performed to assess the relationship between the calculated critical acceleration and peak ground acceleration. The observed trends proved helpful in establishing the role of critical acceleration as a determining factor in the distribution of co-seismic landslides.

Keywords: earthquake-induced landslide, remote sensing, geomorphology, seismic response

Procedia PDF Downloads 97
1405 A Review on Application of Waste Tire in Concrete

Authors: M. A. Yazdi, J. Yang, L. Yihui, H. Su

Abstract:

The application of recycle waste tires into civil engineering practices, namely asphalt paving mixtures and cementbased materials has been gaining ground across the world. This review summarizes and compares the recent achievements in the area of plain rubberized concrete (PRC), in details. Different treatment methods have been discussed to improve the performance of rubberized Portland cement concrete. The review also includes the effects of size and amount of tire rubbers on mechanical and durability properties of PRC. The microstructure behaviour of the rubberized concrete was detailed.

Keywords: waste rubber aggregates, microstructure, treatment methods, size and content effects

Procedia PDF Downloads 308
1404 An Optimal Hybrid EMS System for a Hyperloop Prototype Vehicle

Authors: J. F. Gonzalez-Rojo, Federico Lluesma-Rodriguez, Temoatzin Gonzalez

Abstract:

Hyperloop, a new mode of transport, is gaining significance. It consists of the use of a ground-based transport system which includes a levitation system, that avoids rolling friction forces, and which has been covered with a tube, controlling the inner atmosphere lowering the aerodynamic drag forces. Thus, hyperloop is proposed as a solution to the current limitation on ground transportation. Rolling and aerodynamic problems, that limit large speeds for traditional high-speed rail or even maglev systems, are overcome using a hyperloop solution. Zeleros is one of the companies developing technology for hyperloop application worldwide. It is working on a concept that reduces the infrastructure cost and minimizes the power consumption as well as the losses associated with magnetic drag forces. For this purpose, Zeleros proposes a Hybrid ElectroMagnetic Suspension (EMS) for its prototype. In the present manuscript an active and optimal electromagnetic suspension levitation method based on nearly zero power consumption individual modules is presented. This system consists of several hybrid permanent magnet-coil levitation units that can be arranged along the vehicle. The proposed unit manages to redirect the magnetic field along a defined direction forming a magnetic circuit and minimizing the loses due to field dispersion. This is achieved using an electrical steel core. Each module can stabilize the gap distance using the coil current and either linear or non-linear control methods. The ratio between weight and levitation force for each unit is 1/10. In addition, the quotient between the lifted weight and power consumption at the target gap distance is 1/3 [kg/W]. One degree of freedom (DoF) (along the gap direction) is controlled by a single unit. However, when several units are present, a 5 DoF control (2 translational and 3 rotational) can be achieved, leading to the full attitude control of the vehicle. The proposed system has been successfully tested reaching TRL-4 in a laboratory test bench and is currently in TRL-5 state development if the module association in order to control 5 DoF is considered.

Keywords: active optimal control, electromagnetic levitation, HEMS, high-speed transport, hyperloop

Procedia PDF Downloads 131
1403 Genetic Testing and Research in South Africa: The Sharing of Data Across Borders

Authors: Amy Gooden, Meshandren Naidoo

Abstract:

Genetic research is not confined to a particular jurisdiction. Using direct-to-consumer genetic testing (DTC-GT) as an example, this research assesses the status of data sharing into and out of South Africa (SA). While SA laws cover the sending of genetic data out of SA, prohibiting such transfer unless a legal ground exists, the position where genetic data comes into the country depends on the laws of the country from where it is sent – making the legal position less clear.

Keywords: cross-border, data, genetic testing, law, regulation, research, sharing, South Africa

Procedia PDF Downloads 141
1402 GPU-Based Back-Projection of Synthetic Aperture Radar (SAR) Data onto 3D Reference Voxels

Authors: Joshua Buli, David Pietrowski, Samuel Britton

Abstract:

Processing SAR data usually requires constraints in extent in the Fourier domain as well as approximations and interpolations onto a planar surface to form an exploitable image. This results in a potential loss of data requires several interpolative techniques, and restricts visualization to two-dimensional plane imagery. The data can be interpolated into a ground plane projection, with or without terrain as a component, all to better view SAR data in an image domain comparable to what a human would view, to ease interpretation. An alternate but computationally heavy method to make use of more of the data is the basis of this research. Pre-processing of the SAR data is completed first (matched-filtering, motion compensation, etc.), the data is then range compressed, and lastly, the contribution from each pulse is determined for each specific point in space by searching the time history data for the reflectivity values for each pulse summed over the entire collection. This results in a per-3D-point reflectivity using the entire collection domain. New advances in GPU processing have finally allowed this rapid projection of acquired SAR data onto any desired reference surface (called backprojection). Mathematically, the computations are fast and easy to implement, despite limitations in SAR phase history data size and 3D-point cloud size. Backprojection processing algorithms are embarrassingly parallel since each 3D point in the scene has the same reflectivity calculation applied for all pulses, independent of all other 3D points and pulse data under consideration. Therefore, given the simplicity of the single backprojection calculation, the work can be spread across thousands of GPU threads allowing for accurate reflectivity representation of a scene. Furthermore, because reflectivity values are associated with individual three-dimensional points, a plane is no longer the sole permissible mapping base; a digital elevation model or even a cloud of points (collected from any sensor capable of measuring ground topography) can be used as a basis for the backprojection technique. This technique minimizes any interpolations and modifications of the raw data, maintaining maximum data integrity. This innovative processing will allow for SAR data to be rapidly brought into a common reference frame for immediate exploitation and data fusion with other three-dimensional data and representations.

Keywords: backprojection, data fusion, exploitation, three-dimensional, visualization

Procedia PDF Downloads 56
1401 Investigating Underground Explosion-Like Sounds in Sarableh City and Its Possible Connection with Geological Hazards

Authors: Hosein Almasikia

Abstract:

Sarableh City is located in the west of Iran and in the seismic zone of Zagros. After the Azgole-Sarpol Zahab earthquake with a magnitude of 3.7 Richter on November 21, 2016, in some parts of Sarableh city, horrible sounds were heard by people. There is also a sound similar to the wear of the mill by some of the residents. Vibration studies and field investigations showed that these sounds have a geological origin and are emitted from the ground to the surface and may be related to geological hazards such as landslides, collapse of karstic zones, etc. In this study, an attempt has been made to investigate the possible relationship between these abnormal sounds and geological hazards.

Keywords: Sarable, Zagros, landslide, karstic zone

Procedia PDF Downloads 41
1400 Superhydrophobic Materials: A Promising Way to Enhance Resilience of Electric System

Authors: M. Balordi, G. Santucci de Magistris, F. Pini, P. Marcacci

Abstract:

The increasing of extreme meteorological events represents the most important causes of damages and blackouts of the whole electric system. In particular, the icing on ground-wires and overheads lines, due to snowstorms or harsh winter conditions, very often gives rise to the collapse of cables and towers both in cold and warm climates. On the other hand, the high concentration of contaminants in the air, due to natural and/or antropic causes, is reflected in high levels of pollutants layered on glass and ceramic insulators, causing frequent and unpredictable flashover events. Overheads line and insulator failures lead to blackouts, dangerous and expensive maintenances and serious inefficiencies in the distribution service. Inducing superhydrophobic (SHP) properties to conductors, ground-wires and insulators, is one of the ways to face all these problems. Indeed, in some cases, the SHP surface can delay the ice nucleation time and decrease the ice nucleation temperature, preventing ice formation. Besides, thanks to the low surface energy, the adhesion force between ice and a superhydrophobic material are low and the ice can be easily detached from the surface. Moreover, it is well known that superhydrophobic surfaces can have self-cleaning properties: these hinder the deposition of pollution and decrease the probability of flashover phenomena. Here this study presents three different studies to impart superhydrophobicity to aluminum, zinc and glass specimens, which represent the main constituent materials of conductors, ground-wires and insulators, respectively. The route to impart the superhydrophobicity to the metallic surfaces can be summarized in a three-step process: 1) sandblasting treatment, 2) chemical-hydrothermal treatment and 3) coating deposition. The first step is required to create a micro-roughness. In the chemical-hydrothermal treatment a nano-scale metallic oxide (Al or Zn) is grown and, together with the sandblasting treatment, bring about a hierarchical micro-nano structure. By coating an alchilated or fluorinated siloxane coating, the surface energy decreases and gives rise to superhydrophobic surfaces. In order to functionalize the glass, different superhydrophobic powders, obtained by a sol-gel synthesis, were prepared. Further, the specimens were covered with a commercial primer and the powders were deposed on them. All the resulting metallic and glass surfaces showed a noticeable superhydrophobic behavior with a very high water contact angles (>150°) and a very low roll-off angles (<5°). The three optimized processes are fast, cheap and safe, and can be easily replicated on industrial scales. The anti-icing and self-cleaning properties of the surfaces were assessed with several indoor lab-tests that evidenced remarkable anti-icing properties and self-cleaning behavior with respect to the bare materials. Finally, to evaluate the anti-snow properties of the samples, some SHP specimens were exposed under real snow-fall events in the RSE outdoor test-facility located in Vinadio, western Alps: the coated samples delay the formation of the snow-sleeves and facilitate the detachment of the snow. The good results for both indoor and outdoor tests make these materials promising for further development in large scale applications.

Keywords: superhydrophobic coatings, anti-icing, self-cleaning, anti-snow, overheads lines

Procedia PDF Downloads 170