Search results for: automatic repair
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1439

Search results for: automatic repair

779 Management and Evaluating Technologies of Tissue Engineering Various Fields of Bone

Authors: Arash Sepehri Bonab

Abstract:

Techniques to switch cells between development and differentiation, which tend to be commonly exclusive, are utilized in arrange to supply an expansive cell mass that can perform particular separated capacities required for the tissue to develop. Approaches to tissue engineering center on the have to give signals to cell populaces to advance cell multiplication and separation. Current tissue regenerative procedures depend primarily on tissue repair by transplantation of synthetic/natural inserts. In any case, restrictions on the existing procedures have expanded the request for tissue designing approaches. Tissue engineering innovation and stem cell investigation based on tissue building have made awesome advances in overcoming the issues of tissue and organ damage, useful loss, and surgical complications. Bone tissue has the capability to recover itself; in any case, surrenders of a basic estimate anticipate the bone from recovering and require extra support. The advancement of bone tissue building has been utilized to form useful options to recover the bone. This paper primarily portrays current advances in tissue engineering in different fields of bone and talks about the long-term trend of tissue designing innovation in the treatment of complex diseases.

Keywords: tissue engineering, bone, technologies, treatment

Procedia PDF Downloads 95
778 Effect of Clinical Depression on Automatic Speaker Verification

Authors: Sheeraz Memon, Namunu C. Maddage, Margaret Lech, Nicholas Allen

Abstract:

The effect of a clinical environment on the accuracy of the speaker verification was tested. The speaker verification tests were performed within homogeneous environments containing clinically depressed speakers only, and non-depresses speakers only, as well as within mixed environments containing different mixtures of both climatically depressed and non-depressed speakers. The speaker verification framework included the MFCCs features and the GMM modeling and classification method. The speaker verification experiments within homogeneous environments showed 5.1% increase of the EER within the clinically depressed environment when compared to the non-depressed environment. It indicated that the clinical depression increases the intra-speaker variability and makes the speaker verification task more challenging. Experiments with mixed environments indicated that the increase of the percentage of the depressed individuals within a mixed environment increases the speaker verification equal error rates.

Keywords: speaker verification, GMM, EM, clinical environment, clinical depression

Procedia PDF Downloads 375
777 Effect of Personality Traits on Classification of Political Orientation

Authors: Vesile Evrim, Aliyu Awwal

Abstract:

Today as in the other domains, there are an enormous number of political transcripts available in the Web which is waiting to be mined and used for various purposes such as statistics and recommendations. Therefore, automatically determining the political orientation on these transcripts becomes crucial. The methodologies used by machine learning algorithms to do the automatic classification are based on different features such as Linguistic. Considering the ideology differences between Liberals and Conservatives, in this paper, the effect of Personality Traits on political orientation classification is studied. This is done by considering the correlation between LIWC features and the BIG Five Personality Traits. Several experiments are conducted on Convote U.S. Congressional-Speech dataset with seven benchmark classification algorithms. The different methodologies are applied on selecting different feature sets that constituted by 8 to 64 varying number of features. While Neuroticism is obtained to be the most differentiating personality trait on classification of political polarity, when its top 10 representative features are combined with several classification algorithms, it outperformed the results presented in previous research.

Keywords: politics, personality traits, LIWC, machine learning

Procedia PDF Downloads 495
776 Development of a Rating Scale for Elementary EFL Writing

Authors: Mohammed S. Assiri

Abstract:

In EFL programs, rating scales used in writing assessment are often constructed by intuition. Intuition-based scales tend to provide inaccurate and divisive ratings of learners’ writing performance. Hence, following an empirical approach, this study attempted to develop a rating scale for elementary-level writing at an EFL program in Saudi Arabia. Towards this goal, 98 students’ essays were scored and then coded using comprehensive taxonomy of writing constructs and their measures. An automatic linear modeling was run to find out which measures would best predict essay scores. A nonparametric ANOVA, the Kruskal-Wallis test, was then used to determine which measures could best differentiate among scoring levels. Findings indicated that there were certain measures that could serve as either good predictors of essay scores or differentiators among scoring levels, or both. The main conclusion was that a rating scale can be empirically developed using predictive and discriminative statistical tests.

Keywords: analytic scoring, rating scales, writing assessment, writing constructs, writing performance

Procedia PDF Downloads 463
775 Parameters Tuning of a PID Controller on a DC Motor Using Honey Bee and Genetic Algorithms

Authors: Saeid Jalilzadeh

Abstract:

PID controllers are widely used to control the industrial plants because of their robustness and simple structures. Tuning of the controller's parameters to get a desired response is difficult and time consuming. With the development of computer technology and artificial intelligence in automatic control field, all kinds of parameters tuning methods of PID controller have emerged in endlessly, which bring much energy for the study of PID controller, but many advanced tuning methods behave not so perfect as to be expected. Honey Bee algorithm (HBA) and genetic algorithm (GA) are extensively used for real parameter optimization in diverse fields of study. This paper describes an application of HBA and GA to the problem of designing a PID controller whose parameters comprise proportionality constant, integral constant and derivative constant. Presence of three parameters to optimize makes the task of designing a PID controller more challenging than conventional P, PI, and PD controllers design. The suitability of the proposed approach has been demonstrated through computer simulation using MATLAB/SIMULINK.

Keywords: controller, GA, optimization, PID, PSO

Procedia PDF Downloads 544
774 TechWhiz: Empowering Deaf Students through Inclusive Education

Authors: Paula Escudeiro, Nuno Escudeiro, Márcia Campos, Francisca Escudeiro

Abstract:

In today's world, technical and scientific knowledge plays a vital role in education, research, and employment. Deaf students face unique challenges in educational settings, particularly when it comes to understanding technical and scientific terminology. The reliance on written and spoken languages can create barriers for deaf individuals who primarily communicate using sign language. This lack of accessibility can hinder their learning experience and compromise equity in education. To address this issue, the TechWhiz project has been developed as a comprehensive glossary of scientific and technical concepts explained in sign language. By providing deaf students with access to education in their first language, TechWhiz aims to enhance their learning achievements and promote inclusivity while also fostering equity in education for all students.

Keywords: deaf students, technical and scientific knowledge, automatic sign language, inclusive education

Procedia PDF Downloads 68
773 Computer Aide Discrimination of Benign and Malignant Thyroid Nodules by Ultrasound Imaging

Authors: Akbar Gharbali, Ali Abbasian Ardekani, Afshin Mohammadi

Abstract:

Introduction: Thyroid nodules have an incidence of 33-68% in the general population. More than 5-15% of these nodules are malignant. Early detection and treatment of thyroid nodules increase the cure rate and provide optimal treatment. Between the medical imaging methods, Ultrasound is the chosen imaging technique for assessment of thyroid nodules. The confirming of the diagnosis usually demands repeated fine-needle aspiration biopsy (FNAB). So, current management has morbidity and non-zero mortality. Objective: To explore diagnostic potential of automatic texture analysis (TA) methods in differentiation benign and malignant thyroid nodules by ultrasound imaging in order to help for reliable diagnosis and monitoring of the thyroid nodules in their early stages with no need biopsy. Material and Methods: The thyroid US image database consists of 70 patients (26 benign and 44 malignant) which were reported by Radiologist and proven by the biopsy. Two slices per patient were loaded in Mazda Software version 4.6 for automatic texture analysis. Regions of interests (ROIs) were defined within the abnormal part of the thyroid nodules ultrasound images. Gray levels within an ROI normalized according to three normalization schemes: N1: default or original gray levels, N2: +/- 3 Sigma or dynamic intensity limited to µ+/- 3σ, and N3: present intensity limited to 1% - 99%. Up to 270 multiscale texture features parameters per ROIs per each normalization schemes were computed from well-known statistical methods employed in Mazda software. From the statistical point of view, all calculated texture features parameters are not useful for texture analysis. So, the features based on maximum Fisher coefficient and the minimum probability of classification error and average correlation coefficients (POE+ACC) eliminated to 10 best and most effective features per normalization schemes. We analyze this feature under two standardization states (standard (S) and non-standard (NS)) with Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA) and Non-Linear Discriminant Analysis (NDA). The 1NN classifier was performed to distinguish between benign and malignant tumors. The confusion matrix and Receiver operating characteristic (ROC) curve analysis were used for the formulation of more reliable criteria of the performance of employed texture analysis methods. Results: The results demonstrated the influence of the normalization schemes and reduction methods on the effectiveness of the obtained features as a descriptor on discrimination power and classification results. The selected subset features under 1%-99% normalization, POE+ACC reduction and NDA texture analysis yielded a high discrimination performance with the area under the ROC curve (Az) of 0.9722, in distinguishing Benign from Malignant Thyroid Nodules which correspond to sensitivity of 94.45%, specificity of 100%, and accuracy of 97.14%. Conclusions: Our results indicate computer-aided diagnosis is a reliable method, and can provide useful information to help radiologists in the detection and classification of benign and malignant thyroid nodules.

Keywords: ultrasound imaging, thyroid nodules, computer aided diagnosis, texture analysis, PCA, LDA, NDA

Procedia PDF Downloads 279
772 An Algebraic Geometric Imaging Approach for Automatic Dairy Cow Body Condition Scoring System

Authors: Thi Thi Zin, Pyke Tin, Ikuo Kobayashi, Yoichiro Horii

Abstract:

Today dairy farm experts and farmers have well recognized the importance of dairy cow Body Condition Score (BCS) since these scores can be used to optimize milk production, managing feeding system and as an indicator for abnormality in health even can be utilized to manage for having healthy calving times and process. In tradition, BCS measures are done by animal experts or trained technicians based on visual observations focusing on pin bones, pin, thurl and hook area, tail heads shapes, hook angles and short and long ribs. Since the traditional technique is very manual and subjective, the results can lead to different scores as well as not cost effective. Thus this paper proposes an algebraic geometric imaging approach for an automatic dairy cow BCS system. The proposed system consists of three functional modules. In the first module, significant landmarks or anatomical points from the cow image region are automatically extracted by using image processing techniques. To be specific, there are 23 anatomical points in the regions of ribs, hook bones, pin bone, thurl and tail head. These points are extracted by using block region based vertical and horizontal histogram methods. According to animal experts, the body condition scores depend mainly on the shape structure these regions. Therefore the second module will investigate some algebraic and geometric properties of the extracted anatomical points. Specifically, the second order polynomial regression is employed to a subset of anatomical points to produce the regression coefficients which are to be utilized as a part of feature vector in scoring process. In addition, the angles at thurl, pin, tail head and hook bone area are computed to extend the feature vector. Finally, in the third module, the extracted feature vectors are trained by using Markov Classification process to assign BCS for individual cows. Then the assigned BCS are revised by using multiple regression method to produce the final BCS score for dairy cows. In order to confirm the validity of proposed method, a monitoring video camera is set up at the milk rotary parlor to take top view images of cows. The proposed method extracts the key anatomical points and the corresponding feature vectors for each individual cows. Then the multiple regression calculator and Markov Chain Classification process are utilized to produce the estimated body condition score for each cow. The experimental results tested on 100 dairy cows from self-collected dataset and public bench mark dataset show very promising with accuracy of 98%.

Keywords: algebraic geometric imaging approach, body condition score, Markov classification, polynomial regression

Procedia PDF Downloads 158
771 Analysis of Formation Methods of Range Profiles for an X-Band Coastal Surveillance Radar

Authors: Nguyen Van Loi, Le Thanh Son, Tran Trung Kien

Abstract:

The paper deals with the problem of the formation of range profiles (RPs) for an X-band coastal surveillance radar. Two popular methods, the difference operator method, and the window-based method, are reviewed and analyzed via two tests with different datasets. The test results show that although the original window-based method achieves a better performance than the difference operator method, it has three main drawbacks that are the use of 3 or 4 peaks of an RP for creating the windows, the extension of the window size using the power sum of three adjacent cells in the left and the right sides of the windows and the same threshold applied for all types of vessels to finish the formation process of RPs. These drawbacks lead to inaccurate RPs due to the low signal-to-clutter ratio. Therefore, some suggestions are proposed to improve the original window-based method.

Keywords: range profile, difference operator method, window-based method, automatic target recognition

Procedia PDF Downloads 127
770 A Study of Key Technologies for the Realization of Smart Grid and Its Research Situation in Pakistan and Abroad

Authors: Arjmand Khaliq, Pemra Sohaib

Abstract:

In this paper smart grid technologies which converts conventional grid into smart grid has been discussed. Integration of advanced technologies including two way communication, advanced control system, sensors, smart metering system and other provide opportunity to make conventional grid a intelligent and automatic system which is named as smart grid. This paper gives the concept of smart grid and functional characteristics of smart grid technology, summed up the research progress in Pakistan and abroad and the significance of developing smart grid. Based on the analysis of the smart grid, smart grid technologies will result a reliable and energy efficient power system in the future. On the other hand smart grid technologies have been reviewed in this paper highlighting the key technologies of smart grid, and points out the problems and challenges in the realization of smart grid.

Keywords: energy, power system reliability, power system monitoring and control, sensor, smart grid, two-way communication

Procedia PDF Downloads 396
769 Endometriosis, Bladder Endometriosis (BE), Urinary Tract Endometriosis (UTE), Robotic-Assisted Surgery

Authors: Farida Eid, Hala Nasseif, Hana Mokhtar, Labib Riachi, Mudhar Hasan

Abstract:

Bladder Endometriosis is a rare form of endometriosis and is defined as the presence of endometriotic tissue in the detrusor muscle of the bladder, either in full or partial thickness. Women typically present with dysuria, urinary frequency, hematuria, and recurrent urinary tract infections. Bladder endometriosis is typically found at the bladder base and bladder dome. Transvaginal ultrasound is considered first-line imaging, and the condition is typically managed with laparoscopic partial cystectomy. A 33-year-old nulliparous woman presented with chronic pelvic pain, severe dysmenorrhea, and metrorrhagia. The patient was previously diagnosed with bladder endometriomas two years ago with multiple recurrences. MRI revealed urinary bladder endometriosis measuring 3 x 2 x 1.5 cm. Accordingly, the patient underwent a cystoscopy-guided robotic-assisted excision of the endometriotic implant in the bladder with cystotomy and repair of the bladder mucosa. The operation was tolerated well, and the postoperative period was uneventful. Bladder Endometriosis (BE) typically presents with urinary symptoms and can be mistaken for a bladder tumor upon further imaging. The case was successfully managed with cystoscopy-guided, robotic-assisted excision and fulguration of the endometriotic implant in the bladder.

Keywords: endometriosis, bladder endometriosis (BE), urinary tract endometriosis (UTE), robotic-assisted surgery

Procedia PDF Downloads 30
768 Generation of Photo-Mosaic Images through Block Matching and Color Adjustment

Authors: Hae-Yeoun Lee

Abstract:

Mosaic refers to a technique that makes image by gathering lots of small materials in various colours. This paper presents an automatic algorithm that makes the photomosaic image using photos. The algorithm is composed of four steps: Partition and feature extraction, block matching, redundancy removal and colour adjustment. The input image is partitioned in the small block to extract feature. Each block is matched to find similar photo in database by comparing similarity with Euclidean difference between blocks. The intensity of the block is adjusted to enhance the similarity of image by replacing the value of light and darkness with that of relevant block. Further, the quality of image is improved by minimizing the redundancy of tiles in the adjacent blocks. Experimental results support that the proposed algorithm is excellent in quantitative analysis and qualitative analysis.

Keywords: photomosaic, Euclidean distance, block matching, intensity adjustment

Procedia PDF Downloads 279
767 Radar Signal Detection Using Neural Networks in Log-Normal Clutter for Multiple Targets Situations

Authors: Boudemagh Naime

Abstract:

Automatic radar detection requires some methods of adapting to variations in the background clutter in order to control their false alarm rate. The problem becomes more complicated in non-Gaussian environment. In fact, the conventional approach in real time applications requires a complex statistical modeling and much computational operations. To overcome these constraints, we propose another approach based on artificial neural network (ANN-CMLD-CFAR) using a Back Propagation (BP) training algorithm. The considered environment follows a log-normal distribution in the presence of multiple Rayleigh-targets. To evaluate the performances of the considered detector, several situations, such as scale parameter and the number of interferes targets, have been investigated. The simulation results show that the ANN-CMLD-CFAR processor outperforms the conventional statistical one.

Keywords: radat detection, ANN-CMLD-CFAR, log-normal clutter, statistical modelling

Procedia PDF Downloads 364
766 Examines the Proportionality between the Needs of Industry and Technical and Vocational Training of Male and Female Vocational Schools

Authors: Khalil Aryanfar, Pariya Gholipor, Elmira Hafez

Abstract:

This study examines the proportionality between the needs of industry and technical and vocational training of male and female vocational schools. The research method was descriptive that was conducted in two parts: documentary analysis and needs assessment and Delphi method was used in the need assessment. The statistical population of the study included 312 individuals from the industry sector employers and 52 of them were selected through stratified random sampling. Methods of data collection in this study, upstream documents include: document of the development of technical and vocational training, Statistical Yearbook 1393 in Tehran, the available documents in Isfahan Planning Department, the findings indicate that there is an almost proportionality between the needs of industry and Vocational training of male and female vocational schools in fields of welding, industrial electronics, electro technique, industrial drawing, auto mechanics, design, packaging, machine tool, metalworking, construction, accounting, computer graphics and the Administrative Affairs. The findings indicate that there is no proportionality between the needs of industry and Vocational training of male and female vocational schools in fields of Thermal - cooling systems, building electricity, building drawing, interior architecture, car electricity and motor repair.

Keywords: needs assessment, technical and vocational training, industry

Procedia PDF Downloads 454
765 Temporal Estimation of Hydrodynamic Parameter Variability in Constructed Wetlands

Authors: Mohammad Moezzibadi, Isabelle Charpentier, Adrien Wanko, Robert Mosé

Abstract:

The calibration of hydrodynamic parameters for subsurface constructed wetlands (CWs) is a sensitive process since highly non-linear equations are involved in unsaturated flow modeling. CW systems are engineered systems designed to favour natural treatment processes involving wetland vegetation, soil, and their microbial flora. Their significant efficiency at reducing the ecological impact of urban runoff has been recently proved in the field. Numerical flow modeling in a vertical variably saturated CW is here carried out by implementing the Richards model by means of a mixed hybrid finite element method (MHFEM), particularly well adapted to the simulation of heterogeneous media, and the van Genuchten-Mualem parametrization. For validation purposes, MHFEM results were compared to those of HYDRUS (a software based on a finite element discretization). As van Genuchten-Mualem soil hydrodynamic parameters depend on water content, their estimation is subject to considerable experimental and numerical studies. In particular, the sensitivity analysis performed with respect to the van Genuchten-Mualem parameters reveals a predominant influence of the shape parameters α, n and the saturated conductivity of the filter on the piezometric heads, during saturation and desaturation. Modeling issues arise when the soil reaches oven-dry conditions. A particular attention should also be brought to boundary condition modeling (surface ponding or evaporation) to be able to tackle different sequences of rainfall-runoff events. For proper parameter identification, large field datasets would be needed. As these are usually not available, notably due to the randomness of the storm events, we thus propose a simple, robust and low-cost numerical method for the inverse modeling of the soil hydrodynamic properties. Among the methods, the variational data assimilation technique introduced by Le Dimet and Talagrand is applied. To that end, a variational data assimilation technique is implemented by applying automatic differentiation (AD) to augment computer codes with derivative computations. Note that very little effort is needed to obtain the differentiated code using the on-line Tapenade AD engine. Field data are collected for a three-layered CW located in Strasbourg (Alsace, France) at the water edge of the urban water stream Ostwaldergraben, during several months. Identification experiments are conducted by comparing measured and computed piezometric head by means of the least square objective function. The temporal variability of hydrodynamic parameter is then assessed and analyzed.

Keywords: automatic differentiation, constructed wetland, inverse method, mixed hybrid FEM, sensitivity analysis

Procedia PDF Downloads 164
764 Optimized Road Lane Detection Through a Combined Canny Edge Detection, Hough Transform, and Scaleable Region Masking Toward Autonomous Driving

Authors: Samane Sharifi Monfared, Lavdie Rada

Abstract:

Nowadays, autonomous vehicles are developing rapidly toward facilitating human car driving. One of the main issues is road lane detection for a suitable guidance direction and car accident prevention. This paper aims to improve and optimize road line detection based on a combination of camera calibration, the Hough transform, and Canny edge detection. The video processing is implemented using the Open CV library with the novelty of having a scale able region masking. The aim of the study is to introduce automatic road lane detection techniques with the user’s minimum manual intervention.

Keywords: hough transform, canny edge detection, optimisation, scaleable masking, camera calibration, improving the quality of image, image processing, video processing

Procedia PDF Downloads 96
763 Analysis of Information Sharing and Capacity Constraint on Backlog Bullwhip Effect in Two Level Supply Chain

Authors: Matloub Hussaina

Abstract:

This paper investigates the impact of information sharing and capacity constraints on backlog bullwhip effect of Automatic Pipe Line Inventory and Order Based Production Control System (APIOBPCS). System dynamic simulation using iThink Software has been applied. It has been found that smooth ordering by Tier 1 can be achieved when Tier 1 has medium capacity constraints. Simulation experiments also show that information sharing helps to reduce 50% of backlog bullwhip effect in capacitated supply chains. This knowledge is of value per se, giving supply chain operations managers and designers a practical way in to controlling the backlog bullwhip effect. Future work should investigate the total cost implications of capacity constraints and safety stocks in multi-echelon supply chain.

Keywords: supply chain dynamics, information sharing, capacity constraints, simulation, APIOBPCS

Procedia PDF Downloads 318
762 Lateral Control of Electric Vehicle Based on Fuzzy Logic Control

Authors: Hartani Kada, Merah Abdelkader

Abstract:

Aiming at the high nonlinearities and unmatched uncertainties of the intelligent electric vehicles’ dynamic system, this paper presents a lateral motion control algorithm for intelligent electric vehicles with four in-wheel motors. A fuzzy logic procedure is presented and formulated to realize lateral control in lane change. The vehicle dynamics model and a desired target tracking model were established in this paper. A fuzzy logic controller was designed for integrated active front steering (AFS) and direct yaw moment control (DYC) in order to improve vehicle handling performance and stability, and a fuzzy controller for the automatic steering problem. The simulation results demonstrate the strong robustness and excellent tracking performance of the control algorithm that is proposed.

Keywords: fuzzy logic, lateral control, AFS, DYC, electric car technology, longitudinal control, lateral motion

Procedia PDF Downloads 610
761 An Exposition of Principles of Islamic Fiscal Policy

Authors: Muhammad A. Ishaq, S. U. R. Aliyu

Abstract:

This paper on an exposition of Islamic fiscal policy attempts to discuss the basic principles of Islamic fiscal policy in an Islamic economy. The paper presents a number of definitions of the subject matter, its nature and its tools of application. Government spending, taxation and public borrowings were identified as the tools of the policy. The paper identifies zakat both as a veritable source of revenue and a major instrument of economic stabilization. Furthermore, the paper presents an algebraic 2-sector and 3-sector models from the basic Keynesian model. The paper posits that in view of uniqueness of its instruments, absence of interest rate in the economy and the policy’s derive towards socioeconomic justice and redistribution, Islamic fiscal policy is capable of stabilizing Islamic economy and ushering it into the path of long term economic growth and prosperity.

Keywords: automatic built-in-stabilizers, government spending, Islamic fiscal policy, taxation, zakat

Procedia PDF Downloads 339
760 Statistical Wavelet Features, PCA, and SVM-Based Approach for EEG Signals Classification

Authors: R. K. Chaurasiya, N. D. Londhe, S. Ghosh

Abstract:

The study of the electrical signals produced by neural activities of human brain is called Electroencephalography. In this paper, we propose an automatic and efficient EEG signal classification approach. The proposed approach is used to classify the EEG signal into two classes: epileptic seizure or not. In the proposed approach, we start with extracting the features by applying Discrete Wavelet Transform (DWT) in order to decompose the EEG signals into sub-bands. These features, extracted from details and approximation coefficients of DWT sub-bands, are used as input to Principal Component Analysis (PCA). The classification is based on reducing the feature dimension using PCA and deriving the support-vectors using Support Vector Machine (SVM). The experimental are performed on real and standard dataset. A very high level of classification accuracy is obtained in the result of classification.

Keywords: discrete wavelet transform, electroencephalogram, pattern recognition, principal component analysis, support vector machine

Procedia PDF Downloads 639
759 An Overall Evaluation of Food Nanotechnology

Authors: Raana Babadi Fathipour

Abstract:

Nourishment nanotechnology is an range of rising intrigued and opens up a entirety universe of modern conceivable outcomes for the nourishment industry. The essential categories of nanotechnology applications and functionalities right now within the improvement of nourishment bundling incorporate: the enhancement of plastic materials obstructions, the consolidation of dynamic components that can convey utilitarian properties past those of customary dynamic bundling, and the detecting and signaling of significant data. Nano nourishment bundling materials may amplify nourishment life, move forward nourishment security, alarm buyers that nourishment is sullied or ruined, repair tears in bundling, and indeed release preservatives to expand the life of the nourishment within the bundle. Nanotechnology applications within the nourishment industry can be utilized to identify microbes in bundling, or produce stronger flavors and color quality, and security by expanding the obstruction properties. Nanotechnology holds extraordinary guarantee to supply benefits not fair inside nourishment items but too around nourishment items. In reality, nanotechnology presents modern chances for advancement within the nourishment industry at monstrous speed, but instability and wellbeing concerns are moreover developing. EU/WE/global enactment for the direction of nanotechnology in nourishment are scanty. Besides, current enactment shows up unacceptable to nanotechnology specificity.

Keywords: nano technology, nano foods, food packaging, nano participle

Procedia PDF Downloads 65
758 Faults Diagnosis by Thresholding and Decision tree with Neuro-Fuzzy System

Authors: Y. Kourd, D. Lefebvre

Abstract:

The monitoring of industrial processes is required to ensure operating conditions of industrial systems through automatic detection and isolation of faults. This paper proposes a method of fault diagnosis based on a neuro-fuzzy hybrid structure. This hybrid structure combines the selection of threshold and decision tree. The validation of this method is obtained with the DAMADICS benchmark. In the first phase of the method, a model will be constructed that represents the normal state of the system to fault detection. Signatures of the faults are obtained with residuals analysis and selection of appropriate thresholds. These signatures provide groups of non-separable faults. In the second phase, we build faulty models to see the flaws in the system that cannot be isolated in the first phase. In the latest phase we construct the tree that isolates these faults.

Keywords: decision tree, residuals analysis, ANFIS, fault diagnosis

Procedia PDF Downloads 626
757 Enhancing the Performance of Automatic Logistic Centers by Optimizing the Assignment of Material Flows to Workstations and Flow Racks

Authors: Sharon Hovav, Ilya Levner, Oren Nahum, Istvan Szabo

Abstract:

In modern large-scale logistic centers (e.g., big automated warehouses), complex logistic operations performed by human staff (pickers) need to be coordinated with the operations of automated facilities (robots, conveyors, cranes, lifts, flow racks, etc.). The efficiency of advanced logistic centers strongly depends on optimizing picking technologies in synch with the facility/product layout, as well as on optimal distribution of material flows (products) in the system. The challenge is to develop a mathematical operations research (OR) tool that will optimize system cost-effectiveness. In this work, we propose a model that describes an automatic logistic center consisting of a set of workstations located at several galleries (floors), with each station containing a known number of flow racks. The requirements of each product and the working capacity of stations served by a given set of workers (pickers) are assumed as predetermined. The goal of the model is to maximize system efficiency. The proposed model includes two echelons. The first is the setting of the (optimal) number of workstations needed to create the total processing/logistic system, subject to picker capacities. The second echelon deals with the assignment of the products to the workstations and flow racks, aimed to achieve maximal throughputs of picked products over the entire system given picker capacities and budget constraints. The solutions to the problems at the two echelons interact to balance the overall load in the flow racks and maximize overall efficiency. We have developed an operations research model within each echelon. In the first echelon, the problem of calculating the optimal number of workstations is formulated as a non-standard bin-packing problem with capacity constraints for each bin. The problem arising in the second echelon is presented as a constrained product-workstation-flow rack assignment problem with non-standard mini-max criteria in which the workload maximum is calculated across all workstations in the center and the exterior minimum is calculated across all possible product-workstation-flow rack assignments. The OR problems arising in each echelon are proved to be NP-hard. Consequently, we find and develop heuristic and approximation solution algorithms based on exploiting and improving local optimums. The LC model considered in this work is highly dynamic and is recalculated periodically based on updated demand forecasts that reflect market trends, technological changes, seasonality, and the introduction of new items. The suggested two-echelon approach and the min-max balancing scheme are shown to work effectively on illustrative examples and real-life logistic data.

Keywords: logistics center, product-workstation, assignment, maximum performance, load balancing, fast algorithm

Procedia PDF Downloads 228
756 Rationally Designed Dual PARP-HDAC Inhibitor Elicits Striking Anti-leukemic Effects

Authors: Amandeep Thakur, Yi-Hsuan Chu, Chun-Hsu Pan, Kunal Nepali

Abstract:

The transfer of ADP-ribose residues onto target substrates from nicotinamide adenine dinucleotide (NAD) (PARylation) is catalyzed by Poly (ADP-ribose) polymerases (PARPs). Amongst the PARP family members, the DNA damage response in cancer is majorly regulated by PARP1 and PARP2. The blockade of DNA repair by PARP inhibitors leads to the progression of DNA single-strand breaks (induced by some triggering factors) to double-strand breaks. Notably, PARP inhibitors are remarkably effective in cancers with defective homologous recombination repair (HRR). In particular, cancer cells with BRCA mutations are responsive to therapy with PARP inhibitors. The aforementioned requirement for PARP inhibitors to be effective confers a narrow activity spectrum to PARP inhibitors, which hinders their clinical applicability. Thus, the quest to expand the application horizons of PARP inhibitors beyond BRCA mutations is the need of the hour. Literature precedents reveal that HDAC inhibition induces BRCAness in cancer cells and can broaden the therapeutic scope of PARP inhibitors. Driven by such disclosures, dual inhibitors targeting both PARP and HDAC enzymes were designed by our research group to extend the efficacy of PARP inhibitors beyond BRCA-mutated cancers to cancers with induced BRCAness. The design strategy involved the installation of Veliparib, an investigational PARP inhibitor, as a surface recognition part in the HDAC inhibitor pharmacophore model. The chemical architecture of veliparib was deemed appropriate as a starting point for the generation of dual inhibitors by virtue of its size and structural flexibility. A validatory docking study was conducted at the outset to predict the binding mode of the designed dual modulatory chemical architectures. Subsequently, the designed chemical architectures were synthesized via a multistep synthetic route and evaluated for antitumor efficacy. Delightfully, one compound manifested impressive anti-leukemic effects (HL-60 cell lines) mediated via dual inhibition of PARP and class I HDACs. The outcome of the western blot analysis revealed that the compound could downregulate the expression levels of PARP1 and PARP2 and the HDAC isoforms (HDAC1, 2, and 3). Also, the dual PARP-HDAC inhibitor upregulated the protein expression of the acetyl histone H3, confirming its abrogation potential for class I HDACs. In addition, the dual modulator could arrest the cell cycle at the G0/G1 phase and induce autophagy. Further, polymer-based nanoformulation of the dual inhibitor was furnished to afford targeted delivery of the dual inhibitor at the cancer site. Transmission electron microscopy (TEM) results indicate that the nanoparticles were monodispersed and spherical. Moreover, the polymeric nanoformulation exhibited an appropriate particle size. Delightfully, pH-sensitive behavior was manifested by the polymeric nanoformulation that led to selective antitumor effects towards the HL-60 cell lines. In light of the magnificent anti-leukemic profile of the identified dual PARP-HDAC inhibitor, in-vivo studies (pharmacokinetics and pharmacodynamics) are currently being conducted. Notably, the optimistic findings of the aforementioned study have spurred our research group to initiate several medicinal chemistry campaigns to create bifunctional small molecule inhibitors addressing PARP as the primary target.

Keywords: PARP inhibitors, HDAC inhibitors, BRCA mutations, leukemia

Procedia PDF Downloads 23
755 Biological Activities of Gentiana brachyphylla Vill. Herba from Turkey

Authors: Hulya Tuba Kiyan, Nilgun Ozturk

Abstract:

Gentiana, a member of Gentianaceae, is represented by approximately 400 species in the world and 12 species in Turkey. Flavonoids, iridoids, triterpenoids and also xanthones are the major compounds of this genus, have been previously reported to have antiinflammatory, antimicrobial, antioxidant, hepatoprotective, hypotensive, hypoglycaemic, DNA repair and immunomodulatory properties. The methanolic extract of the aerial parts of Gentiana brachyphylla Vill. from Turkey was evaluated for its biological activities and its total phenolic content in the present study. According to the antioxidant activity results, G. brachyphylla methanolic extract showed very strong anti-DNA damage antioxidant activity with an inhibition of 81.82%. It showed weak ferric-reducing power with a EC50 value of 0.65 when compared to BHT (EC50 = 0.2). Also, at 0.5 mg/ml concentration, the methanolic extract inhibited ABTS radical cation activity with an inhibition of 20.13% when compared to Trolox (79.01%). Chelating ability of G. brachyphylla was 44.71% whereas EDTA showed 78.87% chelating activity at 0.2 mg/ml. Also G. brachyphylla showed weak 27.21% AChE, 20.23% BChE, strong 67.86% MAO-A and moderate 50.06% MAO-B, weak 19.14% COX-1, 29.11% COX-2 inhibitory activities at 0.25 mg/ml. The total phenolic content of G. brachyphylla was 156.23 ± 2.73 mg gallic acid equivalent/100 g extract.

Keywords: antioxidant activity, cholinesterase inhibitory activity, Gentiana brachyphylla Vill., total phenolic content

Procedia PDF Downloads 201
754 Two Dimensional Finite Element Model to Study Calcium Dynamics in Fibroblast Cell with Excess Buffer Approximation Involving ER Flux and SERCA Pump

Authors: Mansha Kotwani

Abstract:

The specific spatio-temporal calcium concentration patterns are required by the fibroblasts to maintain its structure and functions. Thus, calcium concentration is regulated in cell at different levels in various activities of the cell. The variations in cytosolic calcium concentration largely depend on the buffers present in cytosol and influx of calcium into cytosol from ER through IP3Rs or Raynodine receptors followed by reuptake of calcium into ER through sarcoplasmic/endoplasmic reticulum ATPs (SERCA) pump. In order to understand the mechanisms of wound repair, tissue remodeling and growth performed by fibroblasts, it is of crucial importance to understand the mechanisms of calcium concentration regulation in fibroblasts. In this paper, a model has been developed to study calcium distribution in NRK fibroblast in the presence of buffers and ER flux with SERCA pump. The model has been developed for two dimensional unsteady state case. Appropriate initial and boundary conditions have been framed along with physiology of the cell. Finite element technique has been employed to obtain the solution. The numerical results have been used to study the effect of buffers, ER flux and source amplitude on calcium distribution in fibroblast cell.

Keywords: buffers, IP3R, ER flux, SERCA pump, source amplitude

Procedia PDF Downloads 243
753 Analysis of Inventory Control, Lot Size and Reorder Point for Engro Polymers and Chemicals

Authors: Ali Akber Jaffri, Asad Naseem, Javeria Khan

Abstract:

The purpose of this study is to determine safety stock, maximum inventory level, reordering point, and reordering quantity by rearranging lot sizes for supplier and customer in MRO (maintenance repair operations) warehouse of Engro Polymers & Chemicals. To achieve the aim, physical analysis method and excel commands were carried out to elicit the customer and supplier data provided by the company. Initially, we rearranged the current lot sizes and MOUs (measure of units) in SAP software. Due to change in lot sizes we have to determine the new quantities for safety stock, maximum inventory, reordering point and reordering quantity as per company's demand. By proposed system, we saved extra cost in terms of reducing the time of receiving from vendor and in issuance to customer, ease of material handling in MRO warehouse and also reduce human efforts. The information requirements identified in this study can be utilized in calculating Economic Order Quantity.

Keywords: carrying cost, economic order quantity, fast moving, lead time, lot size, MRO, maximum inventory, ordering cost, physical inspection, reorder point

Procedia PDF Downloads 239
752 Policies and Politics of Infrastructure Provisioning in Nigeria

Authors: Olufemi Adedamola Oyedele

Abstract:

Infrastructure provision in Nigeria is now at its lowest ebb in spite of its being critical to the socio-economic and political development of any nation. This is partly because the policy that will ensure its adequate provisioning is missing and partly because politics is affecting its provision. Policy is the basic principles by which a government is guided. Infrastructural development is the basis for measuring the performance of governments and it is the foundation of good governance. Demand for infrastructural development is higher and resources used in its provision are limited. Ethnic-interest agitation and lobbying for infrastructure provision are common things in multi-ethnic state like Nigeria. Most infrastructures are now decayed and need repair or replacement. Government is the system that organizes, control and sensitizes the people in a society in other for all to have an acceptable level of living. Governments have the power to put in place all measures that they deem fit will make an environment conducive for living for everybody. Infrastructure development in any environment requires needs assessment, feasibility and viability studies and carrying out physical development of the project. The challenge in Nigeria is largely carrying out development where they are not needed but where the people are loyal. There are numerous abandoned projects because they were started due to politics and not because they are feasible. Policies and politics greatly affect infrastructure provisioning in Nigeria and this is the premise of this paper.

Keywords: infrastructure challenges, infrastructure development, policy making, politics, project finance

Procedia PDF Downloads 279
751 Edge Detection Using Multi-Agent System: Evaluation on Synthetic and Medical MR Images

Authors: A. Nachour, L. Ouzizi, Y. Aoura

Abstract:

Recent developments on multi-agent system have brought a new research field on image processing. Several algorithms are used simultaneously and improved in deferent applications while new methods are investigated. This paper presents a new automatic method for edge detection using several agents and many different actions. The proposed multi-agent system is based on parallel agents that locally perceive their environment, that is to say, pixels and additional environmental information. This environment is built using Vector Field Convolution that attract free agent to the edges. Problems of partial, hidden or edges linking are solved with the cooperation between agents. The presented method was implemented and evaluated using several examples on different synthetic and medical images. The obtained experimental results suggest that this approach confirm the efficiency and accuracy of detected edge.

Keywords: edge detection, medical MRImages, multi-agent systems, vector field convolution

Procedia PDF Downloads 391
750 TRAC: A Software Based New Track Circuit for Traffic Regulation

Authors: Jérôme de Reffye, Marc Antoni

Abstract:

Following the development of the ERTMS system, we think it is interesting to develop another software-based track circuit system which would fit secondary railway lines with an easy-to-work implementation and a low sensitivity to rail-wheel impedance variations. We called this track circuit 'Track Railway by Automatic Circuits.' To be internationally implemented, this system must not have any mechanical component and must be compatible with existing track circuit systems. For example, the system is independent from the French 'Joints Isolants Collés' that isolate track sections from one another, and it is equally independent from component used in Germany called 'Counting Axles,' in French 'compteur d’essieux.' This track circuit is fully interoperable. Such universality is obtained by replacing the train detection mechanical system with a space-time filtering of train position. The various track sections are defined by the frequency of a continuous signal. The set of frequencies related to the track sections is a set of orthogonal functions in a Hilbert Space. Thus the failure probability of track sections separation is precisely calculated on the basis of signal-to-noise ratio. SNR is a function of the level of traction current conducted by rails. This is the reason why we developed a very powerful algorithm to reject noise and jamming to obtain an SNR compatible with the precision required for the track circuit and SIL 4 level. The SIL 4 level is thus reachable by an adjustment of the set of orthogonal functions. Our major contributions to railway engineering signalling science are i) Train space localization is precisely defined by a calibration system. The operation bypasses the GSM-R radio system of the ERTMS system. Moreover, the track circuit is naturally protected against radio-type jammers. After the calibration operation, the track circuit is autonomous. ii) A mathematical topology adapted to train space localization by following the train through a linear time filtering of the received signal. Track sections are numerically defined and can be modified with a software update. The system was numerically simulated, and results were beyond our expectations. We achieved a precision of one meter. Rail-ground and rail-wheel impedance sensitivity analysis gave excellent results. Results are now complete and ready to be published. This work was initialised as a research project of the French Railways developed by the Pi-Ramses Company under SNCF contract and required five years to obtain the results. This track circuit is already at Level 3 of the ERTMS system, and it will be much cheaper to implement and to work. The traffic regulation is based on variable length track sections. As the traffic growths, the maximum speed is reduced, and the track section lengths are decreasing. It is possible if the elementary track section is correctly defined for the minimum speed and if every track section is able to emit with variable frequencies.

Keywords: track section, track circuits, space-time crossing, adaptive track section, automatic railway signalling

Procedia PDF Downloads 332