Search results for: automatic design
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12974

Search results for: automatic design

12314 Vibration Analysis and Optimization Design of Ultrasonic Horn

Authors: Kuen Ming Shu, Ren Kai Ho

Abstract:

Ultrasonic horn has the functions of amplifying amplitude and reducing resonant impedance in ultrasonic system. Its primary function is to amplify deformation or velocity during vibration and focus ultrasonic energy on the small area. It is a crucial component in design of ultrasonic vibration system. There are five common design methods for ultrasonic horns: analytical method, equivalent circuit method, equal mechanical impedance, transfer matrix method, finite element method. In addition, the general optimization design process is to change the geometric parameters to improve a single performance. Therefore, in the general optimization design process, we couldn't find the relation of parameter and objective. However, a good optimization design must be able to establish the relationship between input parameters and output parameters so that the designer can choose between parameters according to different performance objectives and obtain the results of the optimization design. In this study, an ultrasonic horn provided by Maxwide Ultrasonic co., Ltd. was used as the contrast of optimized ultrasonic horn. The ANSYS finite element analysis (FEA) software was used to simulate the distribution of the horn amplitudes and the natural frequency value. The results showed that the frequency for the simulation values and actual measurement values were similar, verifying the accuracy of the simulation values. The ANSYS DesignXplorer was used to perform Response Surface optimization, which could shows the relation of parameter and objective. Therefore, this method can be used to substitute the traditional experience method or the trial-and-error method for design to reduce material costs and design cycles.

Keywords: horn, natural frequency, response surface optimization, ultrasonic vibration

Procedia PDF Downloads 102
12313 A Fuzzy Control System for Reducing Urban Stormwater Runoff by a Stormwater Storage Tank

Authors: Pingping Zhang, Yanpeng Cai, Jianlong Wang

Abstract:

Stormwater storage tank (SST) is a popular low impact development technology for reducing stormwater runoff in the construction of sponge city. At present, it is difficult to perform the automatic control of SST for reducing peak flow. In this paper, fuzzy control was introduced into the peak control of SST to improve the efficiency of reducing stormwater runoff. Firstly, the design of SST was investigated. A catchment area and a return period were assumed, a SST model was manufactured, and then the storage capacity of the SST was verified. Secondly, the control parameters of the SST based on reducing stormwater runoff were analyzed, and a schematic diagram of real-time control (RTC) system based on peak control SST was established. Finally, fuzzy control system of a double input (flow and water level) and double output (inlet and outlet valve) was designed. The results showed that 1) under the different return periods (one year, three years, five years), the SST had the effect of delayed peak control and storage by increasing the detention time, 2) rainfall, pipeline flow, the influent time and the water level in the SST could be used as RTC parameters, and 3) the response curves of flow velocity and water level fluctuated very little and reached equilibrium in a short time. The combination of online monitoring and fuzzy control was feasible to control the SST automatically. This paper provides a theoretical reference for reducing stormwater runoff and improving the operation efficiency of SST.

Keywords: stormwater runoff, stormwater storage tank, real-time control, fuzzy control

Procedia PDF Downloads 186
12312 The Paradox of Design Aesthetics and the Sustainable Design

Authors: Asena Demirci, Gozen Guner Aktaş, Nur Ayalp

Abstract:

Nature provides a living space for humans, also in contrast it is destroyed by humans for their personal needs and ambitions. For decreasing these damages against nature, solutions are started to generate and to develop. Moreover, precautions are implemented. After 1960s, especially when the ozone layer got harmed and got thinner by toxic substances coming from man made structures, environmental problems which effected human’s activities of daily living. Thus, this subject about environmental solutions and precautions is becoming a priority issue for scientists. Most of the environmental problems are caused by buildings and factories which are built without any concerns about protecting nature. This situation creates awareness about environmental issues and also the terms like sustainability, Renewable energy show up in building, Construction and architecture sectors to provide environmental protection. In this perspective, the design disciplines also should be respectful to nature and the sustainability. Designs which involve the features like sustainability, renewability and being ecologic have specialties to be less detrimental to the environment rather than the designs which do not involve. Furthermore, these designs produce their own energy for consuming, So they do not use the natural resources. They do not contain harmful substances and they are made of recyclable materials. Thus, they are becoming environmentally friendly structures. There is a common concern among designers about the issue of sustainable design. They believe that the idea of sustainability inhibits the creativity. All works of design resemble each other from the point of aesthetics and technological matters. In addition, there is a concern about design ethics which aesthetic designs cannot be accepted as a priority. For these reasons, there are few designs included the features of being eco-friendly and well-designed and also had design concerns around the world. Despite the other design disciplines, The concept of sustainability is getting more important each day in interior architecture and interior design. As it is known that human being spends 90 % of his life in interior spaces, The importance of that concept in interior spaces is obvious. Aesthetic is another vital concern in interior space design also. Most of the time sustainable materials and sustainable interior design applications conflicts with personal aesthetic parameters. This study aims to discuss the great paradox between the design aesthetic and the sustainable design. Does the sustainable approach in interior design disturbs the design aesthetic? This is one of the most popular questions that have been discussed for a while. With this paper this question will be evaluated with a case study which analyzes the aesthetic perceptions and preferences of the users and designers in sustainable interior spaces.

Keywords: aesthetics, interior design, sustainable design, sustainability

Procedia PDF Downloads 273
12311 Parametric Screening and Design Refinement of Ceiling Fan Blades

Authors: Shamraiz Ahmad, Riaz Ahmad, Adnan Maqsood

Abstract:

This paper describes the application of 2k-design of experiment in order to screen the geometric parameters and experimental refinement of ceiling fan blades. The ratio of the air delivery to the power consumed is commonly known as service value (SV) in ceiling fan designer’s community. Service value was considered as the response for 56 inch ceiling fan and four geometric parameters (bend position at root, bend position at tip, bent angle at root and bent angle at tip) of blade were analyzed. With two levels, the 4-design parameters along with their eleven interactions were studied and design of experiment was employed for experimental arrangement. Blade manufacturing and testing were done in a medium scale enterprise. The objective was achieved and service value of ceiling fan was increased by 10.4 % without increasing the cost of production and manufacturing system. Experiments were designed and results were analyzed using Minitab® 16 software package.

Keywords: parametric screening, 2k-design of experiment, ceiling fan, service value, performance improvement

Procedia PDF Downloads 548
12310 Reliability-Based Codified Design of Concrete Structures

Authors: Naser Alenezi, Ibrahim Alsakkaf, Osama Eid

Abstract:

The main objective of this study is to develop an independent reliability based code for reinforced concrete (R/C) structural components and elements solely for the State of Kuwait and its neighboring countries. The proposed code will take into account the harsh Kuwait’s harsh environment, loading conditions and material strengths. The method for developing such a code is based on structural reliability theory that takes into accounts the specific geographical and the various prescribed societal environment of the Kuwait region. These methods were developed according to the following four components: (1) loads, (2) structural strength, (3) reliability analysis, and (4) achieving target reliability levels (reliability index ’s ). The final product from this study will be a design code for R/C structural elements that include beams and columns, and some other structural members. This reliability-based LRFD design code will provide appropriate, easy, fast, and economical approach for designing R/C structural elements such as, beams and columns, for both houses and bridges, and other concrete structures. In addition, this reliability-based codified design of R/C beams, columns, and, possibly, concrete slabs will improve the design and serviceability of R/C bridge and building systems in Kuwait and neighboring GCC countries. Also, it has the potential to reduce the cost of new concrete structures, as fewer materials are used with more design efficiency.

Keywords: live laod, design, evaluation, structural building

Procedia PDF Downloads 327
12309 Immersed in Design: Using an Immersive Teaching Space to Visualize Design Solutions

Authors: Lisa Chandler, Alistair Ward

Abstract:

A significant component of design pedagogy is the need to foster design thinking in various contexts and to support students in understanding links between educational exercises and their potential application in professional design practice. It is also important that educators provide opportunities for students to engage with new technologies and encourage them to imagine applying their design skills for a range of outcomes. Problem solving is central to design so it is also essential that students understand that there can be multiple solutions to a design brief, and are supported in undertaking creative experimentation to generate imaginative outcomes. This paper presents a case study examining some innovative approaches to addressing these elements of design pedagogy. It investigates the effectiveness of the Immerse Lab, a three wall projection room at the University of the Sunshine Coast, Australia, as a learning context for design practice, for generating ideas and for supporting learning involving the comparative display of design outcomes. The project required first year design students to create a simple graphic design derived from an ordinary object and to incorporate specific design criteria. Utilizing custom-designed software, the students’ solutions were projected together onto the Immerse walls to create a large-scale, immersive grid of images, which was used to compare and contrast various responses to the same problem. The software also enabled individual student designs to be transformed, multiplied and enlarged in multiple ways and prompted discussions around the applicability of the designs in real world contexts. Teams of students interacted with their projected designs, brainstorming imaginative applications for their outcomes. Analysis of 77 anonymous student surveys revealed that the majority of students found: learning in the Immerse Lab to be beneficial; comparative review more effective than in standard tutorial rooms; that the activity generated new ideas; it encouraged students to think differently about their designs; it inspired students to develop their existing designs or create new ones. The project demonstrates that curricula involving immersive spaces can be effective in supporting engaging and relevant design pedagogy and might be utilized in other disciplinary areas.

Keywords: design pedagogy, immersive education, technology-enhanced learning, visualization

Procedia PDF Downloads 247
12308 I²C Master-Slave Integration

Authors: Rozita Borhan, Lam Kien Sieng

Abstract:

This paper describes I²C Slave implementation using I²C master obtained from the OpenCores website. This website provides free Verilog and VHDL Codes to users. The design implementation for the I²C slave is in Verilog Language and uses EDA tools for ASIC design known as ModelSim from Mentor Graphic. This tool is used for simulation and verification purposes. Common application for this I²C Master-Slave integration is also included. This paper also addresses the advantages and limitations of the said design.

Keywords: I²C, master, OpenCores, slave, Verilog, verification

Procedia PDF Downloads 428
12307 Optimal Design of Linear Generator to Recharge the Smartphone Battery

Authors: Jin Ho Kim, Yujeong Shin, Seong-Jin Cho, Dong-Jin Kim, U-Syn Ha

Abstract:

Due to the development of the information industry and technologies, cellular phones have must not only function to communicate, but also have functions such as the Internet, e-banking, entertainment, etc. These phones are called smartphones. The performance of smartphones has improved, because of the various functions of smartphones, and the capacity of the battery has been increased gradually. Recently, linear generators have been embedded in smartphones in order to recharge the smartphone's battery. In this study, optimization is performed and an array change of permanent magnets is examined in order to increase efficiency. We propose an optimal design using design of experiments (DOE) to maximize the generated induced voltage. The thickness of the poleshoe and permanent magnet (PM), the height of the poleshoe and PM, and the thickness of the coil are determined to be design variables. We made 25 sampling points using an orthogonal array according to four design variables. We performed electromagnetic finite element analysis to predict the generated induced voltage using the commercial electromagnetic analysis software ANSYS Maxwell. Then, we made an approximate model using the Kriging algorithm, and derived optimal values of the design variables using an evolutionary algorithm. The commercial optimization software PIAnO (Process Integration, Automation, and Optimization) was used with these algorithms. The result of the optimization shows that the generated induced voltage is improved.

Keywords: smartphone, linear generator, design of experiment, approximate model, optimal design

Procedia PDF Downloads 336
12306 Optimal Design of Redundant Hybrid Manipulator for Minimum Singularity

Authors: Arash Rahmani, Ahmad Ghanbari, Abbas Baghernezhad, Babak Safaei

Abstract:

In the design of parallel manipulators, usually mean value of a dexterity measure over the workspace volume is considered as the objective function to be used in optimization algorithms. The mentioned indexes in a hybrid parallel manipulator (HPM) are quite complicated to solve thanks to infinite solutions for every point within the workspace of the redundant manipulators. In this paper, spatial isotropic design axioms are extended as a well-known method for optimum design of manipulators. An upper limit for the isotropy measure of HPM is calculated and instead of computing and minimizing isotropy measure, minimizing the obtained limit is considered. To this end, two different objective functions are suggested which are obtained from objective functions of comprising modules. Finally, by using genetic algorithm (GA), the best geometric parameters for a specific hybrid parallel robot which is composed of two modified Gough-Stewart platforms (MGSP) are achieved.

Keywords: hybrid manipulator, spatial isotropy, genetic algorithm, optimum design

Procedia PDF Downloads 326
12305 Integrating Eye-Tracking Analysis to Enhance Web Usability Evaluation

Authors: Johanna Renny Octavia, Meliana Nurdin, Ignatius Kevin Kurniawan, Ricca Aksara

Abstract:

It is widely believed that usability evaluation is necessary to evaluate a website design for further improvement. Traditional methods of usability evaluation have given sufficient insights to reveal usability problems of websites. Eye-tracking analysis has been considered as a useful method that adds a powerful dimension to web usability evaluation. It allows web designers and usability researchers to understand exactly what users do and do not see on a web page, thus disclose more information on web usability and provide a more complete insights on a website design. This paper elaborates on moving beyond traditional methods of web usability evaluation by integrating eye-tracking analysis to enhance the evaluation of website design, and presents three case studies to support this approach. In these case studies, eye movement metrics such as gaze plots and fixation-derived metrics, and user performance data such as task completion times and number of errors were recorded as objective measurements that can inform the necessity for website design improvements.

Keywords: design, eye-tracking, usability evaluation, website

Procedia PDF Downloads 289
12304 Exploring Artificial Intelligence as a Transformative Tool for Urban Management

Authors: R. R. Govind

Abstract:

In the digital age, artificial intelligence (AI) is having a significant impact on the rapid changes that cities are experiencing. This study explores the profound impact of AI on urban morphology, especially with regard to promoting friendly design choices. It addresses a significant research gap by examining the real-world effects of integrating AI into urban design and management. The main objective is to outline a framework for integrating AI to transform urban settings. The study employs an urban design framework to effectively navigate complicated urban environments, emphasize the need for urban management, and provide efficient planning and design strategies. Taking Gangtok's informal settlements as a focal point, the study employs AI methodologies such as machine learning, predictive analytics, and generative AI to tackle issues of 'urban informality'. The insights garnered not only offer valuable perspectives but also unveil AI's transformative potential in addressing contemporary urban challenges.

Keywords: urban design, artificial intelligence, urban challenges, machine learning, urban informality

Procedia PDF Downloads 46
12303 Global Solar Irradiance: Data Imputation to Analyze Complementarity Studies of Energy in Colombia

Authors: Jeisson A. Estrella, Laura C. Herrera, Cristian A. Arenas

Abstract:

The Colombian electricity sector has been transforming through the insertion of new energy sources to generate electricity, one of them being solar energy, which is being promoted by companies interested in photovoltaic technology. The study of this technology is important for electricity generation in general and for the planning of the sector from the perspective of energy complementarity. Precisely in this last approach is where the project is located; we are interested in answering the concerns about the reliability of the electrical system when climatic phenomena such as El Niño occur or in defining whether it is viable to replace or expand thermoelectric plants. Reliability of the electrical system when climatic phenomena such as El Niño occur, or to define whether it is viable to replace or expand thermoelectric plants with renewable electricity generation systems. In this regard, some difficulties related to the basic information on renewable energy sources from measured data must first be solved, as these come from automatic weather stations. Basic information on renewable energy sources from measured data, since these come from automatic weather stations administered by the Institute of Hydrology, Meteorology and Environmental Studies (IDEAM) and, in the range of study (2005-2019), have significant amounts of missing data. For this reason, the overall objective of the project is to complete the global solar irradiance datasets to obtain time series to develop energy complementarity analyses in a subsequent project. Global solar irradiance data sets to obtain time series that will allow the elaboration of energy complementarity analyses in the following project. The filling of the databases will be done through numerical and statistical methods, which are basic techniques for undergraduate students in technical areas who are starting out as researchers technical areas who are starting out as researchers.

Keywords: time series, global solar irradiance, imputed data, energy complementarity

Procedia PDF Downloads 56
12302 Design of Intelligent Scaffolding Learning Management System for Vocational Education

Authors: Seree Chadcham, Niphon Sukvilai

Abstract:

This study is the research and development which is intended to: 1) design of the Intelligent Scaffolding Learning Management System (ISLMS) for vocational education, 2) assess the suitability of the Design of Intelligent Scaffolding Learning Management System for Vocational Education. Its methods are divided into 2 phases. Phase 1 is the design of the ISLMS for Vocational Education and phase 2 is the assessment of the suitability of the design. The samples used in this study are work done by 15 professionals in the field of Intelligent Scaffolding, Learning Management System, Vocational Education, and Information and Communication Technology in education selected using the purposive sampling method. Data analyzed by arithmetic mean and standard deviation. The results showed that the ISLMS for vocational education consists of 2 main components which are: 1) the Intelligent Learning Management System for Vocational Education, 2) the Intelligent Scaffolding Management System. The result of the system suitability assessment from the professionals is in the highest range.

Keywords: intelligent, scaffolding, learning management system, vocational education

Procedia PDF Downloads 786
12301 Silicon-Photonic-Sensor System for Botulinum Toxin Detection in Water

Authors: Binh T. T. Nguyen, Zhenyu Li, Eric Yap, Yi Zhang, Ai-Qun Liu

Abstract:

Silicon-photonic-sensor system is an emerging class of analytical technologies that use evanescent field wave to sensitively measure the slight difference in the surrounding environment. The wavelength shift induced by local refractive index change is used as an indicator in the system. These devices can be served as sensors for a wide variety of chemical or biomolecular detection in clinical and environmental fields. In our study, a system including a silicon-based micro-ring resonator, microfluidic channel, and optical processing is designed, fabricated for biomolecule detection. The system is demonstrated to detect Clostridium botulinum type A neurotoxin (BoNT) in different water sources. BoNT is one of the most toxic substances known and relatively easily obtained from a cultured bacteria source. The toxin is extremely lethal with LD50 of about 0.1µg/70kg intravenously, 1µg/ 70 kg by inhalation, and 70µg/kg orally. These factors make botulinum neurotoxins primary candidates as bioterrorism or biothreat agents. It is required to have a sensing system which can detect BoNT in a short time, high sensitive and automatic. For BoNT detection, silicon-based micro-ring resonator is modified with a linker for the immobilization of the anti-botulinum capture antibody. The enzymatic reaction is employed to increase the signal hence gains sensitivity. As a result, a detection limit to 30 pg/mL is achieved by our silicon-photonic sensor within a short period of 80 min. The sensor also shows high specificity versus the other type of botulinum. In the future, by designing the multifunctional waveguide array with fully automatic control system, it is simple to simultaneously detect multi-biomaterials at a low concentration within a short period. The system has a great potential to apply for online, real-time and high sensitivity for the label-free bimolecular rapid detection.

Keywords: biotoxin, photonic, ring resonator, sensor

Procedia PDF Downloads 106
12300 Future Design and Innovative Economic Models for Futuristic Markets in Developing Countries

Authors: Nessreen Y. Ibrahim

Abstract:

Designing the future according to realistic analytical study for the futuristic market needs can be a milestone strategy to make a huge improvement in developing countries economics. In developing countries, access to high technology and latest science approaches is very limited. The financial problems in low and medium income countries have negative effects on the kind and quality of imported new technologies and application for their markets. Thus, there is a strong need for shifting paradigm thinking in the design process to improve and evolve their development strategy. This paper discusses future possibilities in developing countries, and how they can design their own future according to specific future models FDM (Future Design Models), which established to solve certain economical problems, as well as political and cultural conflicts. FDM is strategic thinking framework provides an improvement in both content and process. The content includes; beliefs, values, mission, purpose, conceptual frameworks, research, and practice, while the process includes; design methodology, design systems, and design managements tools. In this paper the main objective was building an innovative economic model to design a chosen possible futuristic scenario; by understanding the market future needs, analyze real world setting, solve the model questions by future driven design, and finally interpret the results, to discuss to what extent the results can be transferred to the real world. The paper discusses Egypt as a potential case study. Since, Egypt has highly complex economical problems, extra-dynamic political factors, and very rich cultural aspects; we considered Egypt is a very challenging example for applying FDM. The paper results recommended using FDM numerical modeling as a starting point to design the future.

Keywords: developing countries, economic models, future design, possible futures

Procedia PDF Downloads 257
12299 Optimal Design of Storm Water Networks Using Simulation-Optimization Technique

Authors: Dibakar Chakrabarty, Mebada Suiting

Abstract:

Rapid urbanization coupled with changes in land use pattern results in increasing peak discharge and shortening of catchment time of concentration. The consequence is floods, which often inundate roads and inhabited areas of cities and towns. Management of storm water resulting from rainfall has, therefore, become an important issue for the municipal bodies. Proper management of storm water obviously includes adequate design of storm water drainage networks. The design of storm water network is a costly exercise. Least cost design of storm water networks assumes significance, particularly when the fund available is limited. Optimal design of a storm water system is a difficult task as it involves the design of various components, like, open or closed conduits, storage units, pumps etc. In this paper, a methodology for least cost design of storm water drainage systems is proposed. The methodology proposed in this study consists of coupling a storm water simulator with an optimization method. The simulator used in this study is EPA’s storm water management model (SWMM), which is linked with Genetic Algorithm (GA) optimization method. The model proposed here is a mixed integer nonlinear optimization formulation, which takes care of minimizing the sectional areas of the open conduits of storm water networks, while satisfactorily conveying the runoff resulting from rainfall to the network outlet. Performance evaluations of the developed model show that the proposed method can be used for cost effective design of open conduit based storm water networks.

Keywords: genetic algorithm (GA), optimal design, simulation-optimization, storm water network, SWMM

Procedia PDF Downloads 232
12298 Spatial Practice Towards Urban Identity: The Shift, Limitation and Contemporary Value of Christopher

Authors: Botao Zhao, Hong Jiang

Abstract:

Christopher Alexander's urban design theory challenges the technical rationality of the empiricism that prevailsin the first half of the 20th century. Alexander emphasizes the wholeness of the city through progressive design, conceptual-based participation, shaping of centrality, and other principles. Based on Christopher Alexander’s comprehensive book “a new theory of urban design” and by combining with other major works, this paper puts Alexander into the history of the post-modern shift of architecture and urban planning in the middle and late 20th century and analyzes the uniqueness of Alexander’s systematization of spatial context. Despite the overemphasis on the initiative of design, Alexander's attempt to discover the “objectivity” of good space -the ability to generate people's urban identity-through an expanded concept of space, and a systematic approach to design restructures the visceral connection between urban space and human. The concept of urban identity is then decomposed into the identity of the physical setting, identity of process, and identity of meaning. Professionals need to learn from the reality and history of urban space to construct spatial“vocabulary libraries” and create the wholeness of the city, and in which process strengthen the subjectivity of the discipline simultaneously, to generate living structures in which urban identity could be ultimately cultivated.

Keywords: christopher alexander, a new theory of urban design, Urban identity, pattern language, urban design

Procedia PDF Downloads 132
12297 Bringing Design Science Research Methodology into Real World Applications

Authors: Maya Jaber

Abstract:

In today's ever-changing world, organizational leaders will need to transform their organizations to meet the demands they face from employees, consumers, local and federal governments, and the global market. Change agents and leaders will need a new paradigm of thinking for creative problem solving and innovation in a time of uncertainty. A new framework that is developed from Design Science Research foundations with holistic design thinking methodologies (HTDM) and action research approaches has been developed through Dr. Jaber’s research. It combines these philosophies into a three-step process that can be utilized in practice for any sustainability, change, or project management applications. This framework was developed to assist in the pedagogy for the implementation of her holistic strategy formalized framework Integral Design Thinking (IDT). Her work focuses on real world application for the streamlining and adoption of initiatives into organizational culture transformation. This paper will discuss the foundations of this philosophy and the methods for utilization in practice developed in Dr. Jaber's research.

Keywords: design science research, action research, critical thinking, design thinking, organizational transformation, sustainability management, organizational culture change

Procedia PDF Downloads 170
12296 Design Application Procedures of 15 Storied 3D Reinforced Concrete Shear Wall-Frame Structure

Authors: H. Nikzad, S. Yoshitomi

Abstract:

This paper presents the design application and reinforcement detailing of 15 storied reinforced concrete shear wall-frame structure based on linear static analysis. Databases are generated for section sizes based on automated structural optimization method utilizing Active-set Algorithm in MATLAB platform. The design constraints of allowable section sizes, capacity criteria and seismic provisions for static loads, combination of gravity and lateral loads are checked and determined based on ASCE 7-10 documents and ACI 318-14 design provision. The result of this study illustrates the efficiency of proposed method, and is expected to provide a useful reference in designing of RC shear wall-frame structures.

Keywords: design constraints, ETABS, linear static analysis, MATLAB, RC shear wall-frame structures, structural optimization

Procedia PDF Downloads 249
12295 Predicting Foreign Direct Investment of IC Design Firms from Taiwan to East and South China Using Lotka-Volterra Model

Authors: Bi-Huei Tsai

Abstract:

This work explores the inter-region investment behaviors of integrated circuit (IC) design industry from Taiwan to China using the amount of foreign direct investment (FDI). According to the mutual dependence among different IC design industrial locations, Lotka-Volterra model is utilized to explore the FDI interactions between South and East China. Effects of inter-regional collaborations on FDI flows into China are considered. Evolutions of FDIs into South China for IC design industry significantly inspire the subsequent FDIs into East China, while FDIs into East China for Taiwan’s IC design industry significantly hinder the subsequent FDIs into South China. The supply chain along IC industry includes IC design, manufacturing, packing and testing enterprises. I C manufacturing, packaging and testing industries depend on IC design industry to gain advanced business benefits. The FDI amount from Taiwan’s IC design industry into East China is the greatest among the four regions: North, East, Mid-West and South China. The FDI amount from Taiwan’s IC design industry into South China is the second largest. If IC design houses buy more equipment and bring more capitals in South China, those in East China will have pressure to undertake more FDIs into East China to maintain the leading position advantages of the supply chain in East China. On the other hand, as the FDIs in East China rise, the FDIs in South China will successively decline since capitals have concentrated in East China. Prediction of Lotka-Volterra model in FDI trends is accurate because the industrial interactions between the two regions are included. Finally, this work confirms that the FDI flows cannot reach a stable equilibrium point, so the FDI inflows into East and South China will expand in the future.

Keywords: Lotka-Volterra model, foreign direct investment, competitive, Equilibrium analysis

Procedia PDF Downloads 347
12294 Producing Outdoor Design Conditions based on the Dependency between Meteorological Elements: Copula Approach

Authors: Zhichao Jiao, Craig Farnham, Jihui Yuan, Kazuo Emura

Abstract:

It is common to use the outdoor design weather data to select the air-conditioning capacity in the building design stage. The outdoor design weather data are usually comprised of multiple meteorological elements for a 24-hour period separately, but the dependency between the elements is not well considered, which may cause an overestimation of selecting air-conditioning capacity. Considering the dependency between the air temperature and global solar radiation, we used the copula approach to model the joint distributions of those two weather elements and suggest a new method of selecting more credible outdoor design conditions based on the specific simultaneous occurrence probability of air temperature and global solar radiation. In this paper, the 10-year period hourly weather data from 2001 to 2010 in Osaka, Japan, was used to analyze the dependency structure and joint distribution, the result shows that the Joe-Frank copula fit for almost all hourly data. According to calculating the simultaneous occurrence probability and the common exceeding probability of air temperature and global solar radiation, the results have shown that the maximum difference in design air temperature and global solar radiation of the day is about 2 degrees Celsius and 30W/m2, respectively.

Keywords: energy conservation, design weather database, HVAC, copula approach

Procedia PDF Downloads 246
12293 Unsteady Three-Dimensional Adaptive Spatial-Temporal Multi-Scale Direct Simulation Monte Carlo Solver to Simulate Rarefied Gas Flows in Micro/Nano Devices

Authors: Mirvat Shamseddine, Issam Lakkis

Abstract:

We present an efficient, three-dimensional parallel multi-scale Direct Simulation Monte Carlo (DSMC) algorithm for the simulation of unsteady rarefied gas flows in micro/nanosystems. The algorithm employs a novel spatiotemporal adaptivity scheme. The scheme performs a fully dynamic multi-level grid adaption based on the gradients of flow macro-parameters and an automatic temporal adaptation. The computational domain consists of a hierarchical octree-based Cartesian grid representation of the flow domain and a triangular mesh for the solid object surfaces. The hybrid mesh, combined with the spatiotemporal adaptivity scheme, allows for increased flexibility and efficient data management, rendering the framework suitable for efficient particle-tracing and dynamic grid refinement and coarsening. The parallel algorithm is optimized to run DSMC simulations of strongly unsteady, non-equilibrium flows over multiple cores. The presented method is validated by comparing with benchmark studies and then employed to improve the design of micro-scale hotwire thermal sensors in rarefied gas flows.

Keywords: DSMC, oct-tree hierarchical grid, ray tracing, spatial-temporal adaptivity scheme, unsteady rarefied gas flows

Procedia PDF Downloads 292
12292 Universal Design Implementation in a Private University; Investment, Decision Making, Perceptions and the Value of Social Capital

Authors: Sridara Tipian, Henry Skates Jr., Antika Sawadsri

Abstract:

It is widely recognized that universal design should be implemented as broadly as possible to benefit as many groups and sub groups of people within a society. In Thailand, public buildings such as public universities are obvious places where the benefits of universal design principles are easily appreciated and applied, but there are other building types such as private universities where the benefits may not be just as obvious. In these buildings, the implementation of universal design is not always achieved. There are many reasons given for this among which is the perceived additional cost of implementation. This paper argues that social capital should be taken into consideration when such decisions are being made. The paper investigates the background, principles and theories pertaining to universal design and using a case study of a private university, investigates the implementation of universal design against the background of current legislation and the perceptions of the private university administrators. The study examines the physical facilities of the case study university in the context of current theories and principles of universal design alongside the legal requirements for same. A survey of building users evaluates knowledge of and attitudes to universal design. The research shows that although administrators perceive the initial cost of investment to be prohibitive in the short term, in the long term, changes in societal values in relation to social inclusiveness are changing and that the social capital of investing in universal design should not be underestimated. The results of this study should provide greater incentive for the enforcement of the legal requirements for universal design in Thailand.

Keywords: public buildings, physical facilities, social capital private university, investment, decision making, value, enforcement, legal requirements

Procedia PDF Downloads 262
12291 Advanced Electric Motor Design Using Hollow Conductors for Maximizing Power, Density and Degree of Efficiency

Authors: Michael Naderer, Manuel Hartong, Raad Al-Kinani

Abstract:

The use of hollow conductors is known in electric generators of large MW scale. The application of motors of small scale between 50 and 200kW is new. The latest results in the practical application and set up of machines show that the power density can be raised significantly and the common problem of derating of the motors is prevented. Furthermore, new design dimensions can be realised as continuous current densities up to 75A/mm² are achievable. This paper shows the results of the application of hollow conductors for a motor design used for automotive traction machines comparing common coolings with hollow conductor cooling.

Keywords: degree of efficiency, electric motor design, hollow conductors, power density

Procedia PDF Downloads 184
12290 Rationalized Haar Transforms Approach to Design of Observer for Control Systems with Unknown Inputs

Authors: Joon-Hoon Park

Abstract:

The fundamental concept of observability is important in both theoretical and practical points of modern control systems. In modern control theory, a control system has criteria for determining the design solution exists for the system parameters and design objectives. The idea of observability relates to the condition of observing or estimating the state variables from the output variables that is generally measurable. To design closed-loop control system, the practical problems of implementing the feedback of the state variables must be considered and implementing state feedback control problem has been existed in this case. All the state variables are not available, so it is requisite to design and implement an observer that will estimate the state variables form the output parameters. However sometimes unknown inputs are presented in control systems as practical cases. This paper presents a design method and algorithm for observer of control system with unknown input parameters based on Rationalized Haar transform. The proposed method is more advantageous than the other numerical method.

Keywords: orthogonal functions, rationalized Haar transforms, control system observer, algebraic method

Procedia PDF Downloads 356
12289 The Tourist Satisfaction on Logo Design of Huay Kon Border Market, Chaloemphrakiat District, Nan Province

Authors: Panupong Chanplin, Wilailuk Mepracha, Sathapath Kilaso

Abstract:

The aims of this research were twofold: 1) to logo design of Huay Kon Border Market, Chaloemphrakiat District, Nan Province and 2) to study the level of tourist satisfaction towards logo design of Huay Kon Border Market, Chaloemphrakiat District, Nan Province. Tourist satisfaction was measured using four criteria: a unique product identity, ease of remembrance, product utility, and beauty/impressiveness. The researcher utilized a probability sampling method via simple random sampling. The sample consisted of 30 tourists in the Huay Kon Border Market. Statistics utilized for data analysis were percentage, mean, and standard deviation. The results suggest that tourist had high levels of satisfaction towards all four criteria of the logo design that was designed to target them. This study proposes that specifically logo designed of Huay Kon Border Market could also be implemented with other real media already available on the market.

Keywords: satisfaction, logo, design, Huay Kon border market

Procedia PDF Downloads 216
12288 Practice on Design Knowledge Management and Transfer across the Life Cycle of a New-Built Nuclear Power Plant in China

Authors: Danying Gu, Xiaoyan Li, Yuanlei He

Abstract:

As a knowledge-intensive industry, nuclear industry highly values the importance of safety and quality. The life cycle of a NPP (Nuclear Power Plant) can last 100 years from the initial research and design to its decommissioning. How to implement the high-quality knowledge management and how to contribute to a more safe, advanced and economic NPP (Nuclear Power Plant) is the most important issue and responsibility for knowledge management. As the lead of nuclear industry, nuclear research and design institute has competitive advantages of its advanced technology, knowledge and information, DKM (Design Knowledge Management) of nuclear research and design institute is the core of the knowledge management in the whole nuclear industry. In this paper, the study and practice on DKM and knowledge transfer across the life cycle of a new-built NPP in China is introduced. For this digital intelligent NPP, the whole design process is based on a digital design platform which includes NPP engineering and design dynamic analyzer, visualization engineering verification platform, digital operation maintenance support platform and digital equipment design, manufacture integrated collaborative platform. In order to make all the design data and information transfer across design, construction, commissioning and operation, the overall architecture of new-built digital NPP should become a modern knowledge management system. So a digital information transfer model across the NPP life cycle is proposed in this paper. The challenges related to design knowledge transfer is also discussed, such as digital information handover, data center and data sorting, unified data coding system. On the other hand, effective delivery of design information during the construction and operation phase will contribute to the comprehensive understanding of design ideas and components and systems for the construction contractor and operation unit, largely increasing the safety, quality and economic benefits during the life cycle. The operation and maintenance records generated from the NPP operation process have great significance for maintaining the operating state of NPP, especially the comprehensiveness, validity and traceability of the records. So the requirements of an online monitoring and smart diagnosis system of NPP is also proposed, to help utility-owners to improve the safety and efficiency.

Keywords: design knowledge management, digital nuclear power plant, knowledge transfer, life cycle

Procedia PDF Downloads 265
12287 Precise CNC Machine for Multi-Tasking

Authors: Haroon Jan Khan, Xian-Feng Xu, Syed Nasir Shah, Anooshay Niazi

Abstract:

CNC machines are not only used on a large scale but also now become a prominent necessity among households and smaller businesses. Printed Circuit Boards manufactured by the chemical process are not only risky and unsafe but also expensive and time-consuming. A 3-axis precise CNC machine has been developed, which not only fabricates PCB but has also been used for multi-tasks just by changing the materials used and tools, making it versatile. The advanced CNC machine takes data from CAM software. The TB-6560 controller is used in the CNC machine to adjust variation in the X, Y, and Z axes. The advanced machine is efficient in automatic drilling, engraving, and cutting.

Keywords: CNC, G-code, CAD, CAM, Proteus, FLATCAM, Easel

Procedia PDF Downloads 145
12286 Evaluation of Vehicle Classification Categories: Florida Case Study

Authors: Ren Moses, Jaqueline Masaki

Abstract:

This paper addresses the need for accurate and updated vehicle classification system through a thorough evaluation of vehicle class categories to identify errors arising from the existing system and proposing modifications. The data collected from two permanent traffic monitoring sites in Florida were used to evaluate the performance of the existing vehicle classification table. The vehicle data were collected and classified by the automatic vehicle classifier (AVC), and a video camera was used to obtain ground truth data. The Federal Highway Administration (FHWA) vehicle classification definitions were used to define vehicle classes from the video and compare them to the data generated by AVC in order to identify the sources of misclassification. Six types of errors were identified. Modifications were made in the classification table to improve the classification accuracy. The results of this study include the development of updated vehicle classification table with a reduction in total error by 5.1%, a step by step procedure to use for evaluation of vehicle classification studies and recommendations to improve FHWA 13-category rule set. The recommendations for the FHWA 13-category rule set indicate the need for the vehicle classification definitions in this scheme to be updated to reflect the distribution of current traffic. The presented results will be of interest to States’ transportation departments and consultants, researchers, engineers, designers, and planners who require accurate vehicle classification information for planning, designing and maintenance of transportation infrastructures.

Keywords: vehicle classification, traffic monitoring, pavement design, highway traffic

Procedia PDF Downloads 170
12285 Sustainable Interiors: An Inquiry into Design Approach to Imbibe Energy Efficiency and Well-Being in Corporate Offices

Authors: Lipi Agarwal, Siddhant Patni

Abstract:

The corporate organizations are seeking for the spaces that are energy efficient and maximize occupant health and productivity. Thus, designing workplaces that effectively steward resources and supports the health, the well-being of its occupants has become a dire need of the hour. The purpose of this paper is to understand the design approach for creating sustainable interiors in corporate offices. The objective is to identify the factors that aid energy efficient design and elevates the well-being in building and communities. The paper will employ qualitative methodology and undertake case study approach to comprehend the role of Leadership in Energy and Environmental Design (LEED) and WELL (a global rating system for health and wellness) in providing sustainable interiors. The findings help the design fraternity in designing a workspace that optimizes the use of resources and advances the human health inside the built environment. The paper suggests the framework that leads to interior environment which is sustainable in nature.

Keywords: corporate interiors, energy efficiency, LEED, sustainability, WELL, well-being

Procedia PDF Downloads 116