Search results for: finite element models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10088

Search results for: finite element models

3278 Derivation of Runoff Susceptibility Map Using Slope-Adjusted SCS-CN in a Tropical River Basin

Authors: Abolghasem Akbari

Abstract:

The Natural Resources Conservation Service Curve Number (NRCS-CN) method is widely used for predicting direct runoff from rainfall. It employs the hydrologic soil groups and land use information along with period soil moisture conditions to derive NRCS-CN. This method has been well documented and available in popular rainfall-runoff models such as HEC-HMS, SWAT, SWMM and much more. Despite all benefits and advantages of this well documented and easy-to-use method, it does not take into account the effect of terrain slope and drainage area. This study aimed to first investigate the effect of slope on CN and then slope-adjusted runoff potential map is generated for Kuantan River Basin, Malaysia. The Hanng method was used to adjust CN values provided in National Handbook of Engineering and The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) version 2 is used to derive slope map with the spatial resolution of 30 m for Kuantan River Basin (KRB). The study significantly enhanced the application of GIS tools and recent advances in earth observation technology to analyze the hydrological process.

Keywords: Kuantan, ASTER-GDEM, SCS-CN, runoff

Procedia PDF Downloads 291
3277 Analgesic and Antipyretic Activity of Thunbergia laurifolia Lindl. Extract

Authors: Nantawan Soonklang, Linda Chularojanamontri, Urarat Nanna

Abstract:

Ethnopharmacological relevance: Thunbergia laurifolia Lindl. belongs to the family Acanthaceae commonly known as Rang jeud in Thailand. This plant is traditionally used in Thailand for centuries as an antidote for several poisons and drug overdose. Aim of the study: This research aimed to study the analgesic and antipyretic activities of T. laurifolia water extract by using animal models. Materials and Methods: The analgesic activity was studied using 2 methods of pain induction including acetic acid and heat induced pain. And the antipyretic activity study was performed by yeast-induced hyperthermia. Results: The results showed that the administration of T. laurifolia extract possessed analgesic activity by reducing acetic acid-induced writhing response and heat-induced pain as well as showed antipyretic activity by decreasing body temperature of hyperthermic rats induced by brewer’s yeast. Conclusion: The study indicates that the T. laurifolia extract possesses analgesic and antipyretic activities in animals.

Keywords: Thunbergia laurifolia extract, analgesic activity, antipyretic activity, hyperthermia

Procedia PDF Downloads 387
3276 Studying the Effect of Heartfulness Meditation on Brain Activity

Authors: Norman Farb, Anirudh Kumar, Abdul Subhan, Pallavi Gupta, Jahnavi Mundluru, Abdul Subhan, Shankar Pathmakanthan

Abstract:

Long term meditation practice is increasingly recognized for its health benefits. Among a diversity of contemplative traditions, Heartfulness meditation represents a quickly growing set of practices that is largely unstudied. Heartfulness is unique in that it is a meditation practice that focuses on the Heart. It helps individuals to connect to themselves and find inner peace while meditating. In order to deepen ones’ meditation on the heart, the element of Yogic Energy (‘pranahuti’) is used as an aid during meditation. The purpose of this study was to determine whether consistent EEG effects of Heartfulness meditation be observed in sixty experienced Heartfulness meditators, each of whom attended 6 testing sessions. In each session, participants performed three conditions: a set of cognitive tasks, Heartfulness guided relaxation, and Heartfulness Meditation. To measure EEG, the MUSE EEG head band (product of Interaxon Inc) was used. Participants during the cognitive portion were required to answer questions that tested their logical thinking (Cognitive Reflective Test) and creative thinking skills. (Random Associative Test) The order of condition was randomly counter balanced across six sessions. It was hypothesized that Heartfulness meditation would bring increased alpha (8-12Hz) brain activity during meditation and better cognitive task scores in sessions where the tasks followed meditation. Results show that cognitive task scores were higher after meditation in both CRT and RAT, suggesting stronger right brain and left brain activation. Heartfulness meditation produces a significant decrease in brain activity (as indexed by higher levels of alpha) during the early stages of meditation. As the meditation progressed deep meditative state (as indexed by higher levels of delta) were observed until the end of the condition. This lead to the conclusion that Heartfulness Meditation produces a state that is clearly distinguishable from effortful problem solving.

Keywords: heartfulness meditation, neuroplasticity, brain activity, relaxation response

Procedia PDF Downloads 341
3275 Multi-Objective Production Planning Problem: A Case Study of Certain and Uncertain Environment

Authors: Ahteshamul Haq, Srikant Gupta, Murshid Kamal, Irfan Ali

Abstract:

This case study designs and builds a multi-objective production planning model for a hardware firm with certain & uncertain data. During the time of interaction with the manager of the firm, they indicate some of the parameters may be vague. This vagueness in the formulated model is handled by the concept of fuzzy set theory. Triangular & Trapezoidal fuzzy numbers are used to represent the uncertainty in the collected data. The fuzzy nature is de-fuzzified into the crisp form using well-known defuzzification method via graded mean integration representation method. The proposed model attempts to maximize the production of the firm, profit related to the manufactured items & minimize the carrying inventory costs in both certain & uncertain environment. The recommended optimal plan is determined via fuzzy programming approach, and the formulated models are solved by using optimizing software LINGO 16.0 for getting the optimal production plan. The proposed model yields an efficient compromise solution with the overall satisfaction of decision maker.

Keywords: production planning problem, multi-objective optimization, fuzzy programming, fuzzy sets

Procedia PDF Downloads 217
3274 The Influence of the Normative Gender Binary in Diversity Management: A Multi-Method Study on Gender Diversity of Diversity Management

Authors: Robin C. Ladwig

Abstract:

Diversity Management, as a substantial element of Human Resource Management, aims to secure the economic benefit that assumingly comes with a diverse workforce. Consequently, diversity managers focus on the protection of employees and securing equality measurements to assure organisational gender diversity. Gender diversity as one aspect of Diversity Management seems to adhere to gender binarism and cis-normativity. Workplaces are gendered spaces which are echoing the binary gender-normativity presented in Diversity Management, sold under the label of gender diversity. While the expectation of Diversity Management implies the inclusion of a multiplicity of marginalised groups, such as trans and gender diverse people, in current literature and practice, the reality is curated by gender binarism and cis-normativity. The qualitative multi-method research showed a lack of knowledge about trans and gender diverse matters within the profession of Diversity Management and Human Resources. The semi-structured interviews with trans and gender diverse individuals from various backgrounds and occupations in Australia exposed missing considerations of trans and gender diverse experiences in the inclusivity and gender equity of various workplaces. Even if practitioners consider trans and gender diverse matters under gender diversity, the practical execution is limited to gender binary structures and cis-normative actions as the photo-elicit questionnaire with diversity managers, human resource officers, and personnel management demonstrates. Diversity Management should approach a broader source of informed practice by extending their business focus to the knowledge of humanity studies. Humanity studies could include diversity, queer, or gender studies to increase the inclusivity of marginalised groups such as trans and gender diverse employees and people. Furthermore, the definition of gender diversity should be extended beyond the gender binary and cis-normative experience. People may lose trust in Diversity Management as a supportive ally of marginalised employees if the understanding of inclusivity is limited to a gender binary and cis-normativity value system that misrepresents the richness of gender diversity.

Keywords: cis-normativity, diversity management, gender binarism, trans and gender diversity

Procedia PDF Downloads 209
3273 ANN Based Simulation of PWM Scheme for Seven Phase Voltage Source Inverter Using MATLAB/Simulink

Authors: Mohammad Arif Khan

Abstract:

This paper analyzes and presents the development of Artificial Neural Network based controller of space vector modulation (ANN-SVPWM) for a seven-phase voltage source inverter. At first, the conventional method of producing sinusoidal output voltage by utilizing six active and one zero space vectors are used to synthesize the input reference, is elaborated and then new PWM scheme called Artificial Neural Network Based PWM is presented. The ANN based controller has the advantage of the very fast implementation and analyzing the algorithms and avoids the direct computation of trigonometric and non-linear functions. The ANN controller uses the individual training strategy with the fixed weight and supervised models. A computer simulation program has been developed using Matlab/Simulink together with the neural network toolbox for training the ANN-controller. A comparison of the proposed scheme with the conventional scheme is presented based on various performance indices. Extensive Simulation results are provided to validate the findings.

Keywords: space vector PWM, total harmonic distortion, seven-phase, voltage source inverter, multi-phase, artificial neural network

Procedia PDF Downloads 457
3272 Optimization and Coordination of Organic Product Supply Chains under Competition: An Analytical Modeling Perspective

Authors: Mohammadreza Nematollahi, Bahareh Mosadegh Sedghy, Alireza Tajbakhsh

Abstract:

The last two decades have witnessed substantial attention to organic and sustainable agricultural supply chains. Motivated by real-world practices, this paper aims to address two main challenges observed in organic product supply chains: decentralized decision-making process between farmers and their retailers, and competition between organic products and their conventional counterparts. To this aim, an agricultural supply chain consisting of two farmers, a conventional farmer and an organic farmer who offers an organic version of the same product, is considered. Both farmers distribute their products through a single retailer, where there exists competition between the organic and the conventional product. The retailer, as the market leader, sets the wholesale price, and afterward, the farmers set their production quantity decisions. This paper first models the demand functions of the conventional and organic products by incorporating the effect of asymmetric brand equity, which captures the fact that consumers usually pay a premium for organic due to positive perceptions regarding their health and environmental benefits. Then, profit functions with consideration of some characteristics of organic farming, including crop yield gap and organic cost factor, are modeled. Our research also considers both economies and diseconomies of scale in farming production as well as the effects of organic subsidy paid by the government to support organic farming. This paper explores the investigated supply chain in three scenarios: decentralized, centralized, and coordinated decision-making structures. In the decentralized scenario, the conventional and organic farmers and the retailer maximize their own profits individually. In this case, the interaction between the farmers is modeled under the Bertrand competition, while analyzing the interaction between the retailer and farmers under the Stackelberg game structure. In the centralized model, the optimal production strategies are obtained from the entire supply chain perspective. Analytical models are developed to derive closed-form optimal solutions. Moreover, analytical sensitivity analyses are conducted to explore the effects of main parameters like the crop yield gap, organic cost factor, organic subsidy, and percent price premium of the organic product on the farmers’ and retailer’s optimal strategies. Afterward, a coordination scenario is proposed to convince the three supply chain members to shift from the decentralized to centralized decision-making structure. The results indicate that the proposed coordination scenario provides a win-win-win situation for all three members compared to the decentralized model. Moreover, our paper demonstrates that the coordinated model respectively increases and decreases the production and price of organic produce, which in turn motivates the consumption of organic products in the market. Moreover, the proposed coordination model helps the organic farmer better handle the challenges of organic farming, including the additional cost and crop yield gap. Last but not least, our results highlight the active role of the organic subsidy paid by the government as a means of promoting sustainable organic product supply chains. Our paper shows that although the amount of organic subsidy plays a significant role in the production and sales price of organic products, the allocation method of subsidy between the organic farmer and retailer is not of that importance.

Keywords: analytical game-theoretic model, product competition, supply chain coordination, sustainable organic supply chain

Procedia PDF Downloads 116
3271 Fault Diagnosis of Nonlinear Systems Using Dynamic Neural Networks

Authors: E. Sobhani-Tehrani, K. Khorasani, N. Meskin

Abstract:

This paper presents a novel integrated hybrid approach for fault diagnosis (FD) of nonlinear systems. Unlike most FD techniques, the proposed solution simultaneously accomplishes fault detection, isolation, and identification (FDII) within a unified diagnostic module. At the core of this solution is a bank of adaptive neural parameter estimators (NPE) associated with a set of single-parameter fault models. The NPEs continuously estimate unknown fault parameters (FP) that are indicators of faults in the system. Two NPE structures including series-parallel and parallel are developed with their exclusive set of desirable attributes. The parallel scheme is extremely robust to measurement noise and possesses a simpler, yet more solid, fault isolation logic. On the contrary, the series-parallel scheme displays short FD delays and is robust to closed-loop system transients due to changes in control commands. Finally, a fault tolerant observer (FTO) is designed to extend the capability of the NPEs to systems with partial-state measurement.

Keywords: hybrid fault diagnosis, dynamic neural networks, nonlinear systems, fault tolerant observer

Procedia PDF Downloads 406
3270 Investigation of Antidepressant Activity of Dracaena Trifasciata in Rats

Authors: Samiah Rehman, Kashmira J. Gohil

Abstract:

Objective: Dracaena trifascaita extract (DTE) possesses strong antioxidant and anti-inflammatory properties that play a vital role in the treatment of mental disorders like depression. The present study was designed to evaluate the antidepressant effects of hydroalcoholic extracts of DT on behavioral models of depression. Methodology: Animals were randomly divided into 6 groups of 5 each: Group 1 and 2 received distilled water and standard drug, imipramine: 25mg/kg, respectively. Groups 4, 5 and 6 received DTE treatment orally at doses of 200 ,400 and 600mg/ kg, respectively, for 14 days. Time of immobility was noted by force swimming test (FST)and tail suspension test (TST) on the 1st,7th and 14th days. Results: The time of immobility was reduced in the treatment group as compared to the control and standard. DTE600 mg/kg showed the highest and most significant antidepressant effects as compared to the standard drug imipramine. (25mg/kg). Conclusion: DTE has good potential as an alternative therapy for depression.

Keywords: Dracaena trifasciata, antidepressants, force swimming test, tail suspension test, herbal drug of depression

Procedia PDF Downloads 78
3269 Anti-Obesity Activity of Garcinia xanthochymus: Biochemical Characterization and In vivo Studies in High Fat Diet-Rat Model

Authors: Mahesh M. Patil, K. A. Anu-Appaiah

Abstract:

Overweight and obesity is a serious medical problem, increasing in prevalence, and affecting millions worldwide. Investigators have been trying from decades to articulate the burden of obesity and related risk factors. To answer this problem, we suggest a new therapeutic anti-obesity compounds from Garcinia xanthochymus fruit. However, there is little published scientific information on non-hydroxycitric acid Garcinia species. Our findings include biochemical characterization of the fruit; in vivo toxicity and bio-efficacy study of G. xanthochymus in high fat diet wistar rat model. We observed that Garcinia pericarp is a rich source of organic acids, polyphenols, mono- (40.63%) and poly-unsaturated fatty acids (16.45%; omega-3: 10.02%). Toxicological studies have showed that Garcinia is safe and had no observed adverse effect level up to 400 mg/kg/day. Body weight and food intake was significantly (P<0.05) reduced in oral gavage treated rats (sonicated Garcinia powder) in 13 weeks. Subcutaneous fat was significantly (P<0.05) reduced in Garcinia treated rats. Hepatocytes significantly (p<0.05) overexpressed sterol regulatory element binding protein 2, liver X receptor- α, liver X receptor- β, lipoprotein lipase and monoacylglycerol lipase. Fatty acid binding protein 1 and peroxisome proliferator activated receptor- α were down regulated as assessed by real time qPCR. Currently our research is focused on the adipocyte obesity related gene expressions, effect of Garcinia on 3T3-adipocyte cell lines and high fat diet induced mice model. This in vivo pre-clinical data suggests that G. xanthochymus may have clinical utility for the treatment of obesity. However, further studies are required to establish its potency.

Keywords: Garcinia xanthochymus, anti-obesity, high fat diet, real time qPCR

Procedia PDF Downloads 255
3268 Reconsidering Taylor’s Law with Chaotic Population Dynamical Systems

Authors: Yuzuru Mitsui, Takashi Ikegami

Abstract:

The exponents of Taylor’s law in deterministic chaotic systems are computed, and their meanings are intensively discussed. Taylor’s law is the scaling relationship between the mean and variance (in both space and time) of population abundance, and this law is known to hold in a variety of ecological time series. The exponents found in the temporal Taylor’s law are different from those of the spatial Taylor’s law. The temporal Taylor’s law is calculated on the time series from the same locations (or the same initial states) of different temporal phases. However, with the spatial Taylor’s law, the mean and variance are calculated from the same temporal phase sampled from different places. Most previous studies were done with stochastic models, but we computed the temporal and spatial Taylor’s law in deterministic systems. The temporal Taylor’s law evaluated using the same initial state, and the spatial Taylor’s law was evaluated using the ensemble average and variance. There were two main discoveries from this work. First, it is often stated that deterministic systems tend to have the value two for Taylor’s exponent. However, most of the calculated exponents here were not two. Second, we investigated the relationships between chaotic features measured by the Lyapunov exponent, the correlation dimension, and other indexes with Taylor’s exponents. No strong correlations were found; however, there is some relationship in the same model, but with different parameter values, and we will discuss the meaning of those results at the end of this paper.

Keywords: chaos, density effect, population dynamics, Taylor’s law

Procedia PDF Downloads 177
3267 Operating System Support for Mobile Device Thermal Management and Performance Optimization in Augmented Reality Applications

Authors: Yasith Mindula Saipath Wickramasinghe

Abstract:

Augmented reality applications require a high processing power to load, render and live stream high-definition AR models and virtual scenes; it also requires device sensors to work excessively to coordinate with internal hardware, OS and give the expected outcome in advance features like object detection, real time tracking, as well as voice and text recognition. Excessive thermal generation due to these advanced functionalities has become a major research problem as it is unbearable for smaller mobile devices to manage such heat increment and battery drainage as it causes physical harm to the devices in the long term. Therefore, effective thermal management is one of the major requirements in Augmented Reality application development. As this paper discusses major causes for this issue, it also provides possible solutions in the means of operating system adaptations as well as further research on best coding practises to optimize the application performance that reduces thermal excessive thermal generation.

Keywords: augmented reality, device thermal management, GPU, operating systems, device I/O, overheating

Procedia PDF Downloads 123
3266 A Pragmatic Approach of Memes Created in Relation to the COVID-19 Pandemic

Authors: Alexandra-Monica Toma

Abstract:

Internet memes are an element of computer mediated communication and an important part of online culture that combines text and image in order to generate meaning. This term coined by Richard Dawkings refers to more than a mere way to briefly communicate ideas or emotions, thus naming a complex and an intensely perpetuated phenomenon in the virtual environment. This paper approaches memes as a cultural artefact and a virtual trope that mirrors societal concerns and issues, and analyses the pragmatics of their use. Memes have to be analysed in series, usually relating to some image macros, which is proof of the interplay between imitation and creativity in the memes’ writing process. We believe that their potential to become viral relates to three key elements: adaptation to context, reference to a successful meme series, and humour (jokes, irony, sarcasm), with various pragmatic functions. The study also uses the concept of multimodality and stresses how the memes’ text interacts with the image, discussing three types of relations: symmetry, amplification, and contradiction. Moreover, the paper proves that memes could be employed as speech acts with illocutionary force, when the interaction between text and image is enriched through the connection to a specific situation. The features mentioned above are analysed in a corpus that consists of memes related to the COVID-19 pandemic. This corpus shows them to be highly adaptable to context, which helps build the feeling of connection and belonging in an otherwise tremendously fragmented world. Some of them are created based on well-known image macros, and their humour results from an intricate dialogue between texts and contexts. Memes created in relation to the COVID-19 pandemic can be considered speech acts and are often used as such, as proven in the paper. Consequently, this paper tackles the key features of memes, makes a thorough analysis of the memes sociocultural, linguistic, and situational context, and emphasizes their intertextuality, with special accent on their illocutionary potential.

Keywords: context, memes, multimodality, speech acts

Procedia PDF Downloads 206
3265 Inferring Human Mobility in India Using Machine Learning

Authors: Asra Yousuf, Ajaykumar Tannirkulum

Abstract:

Inferring rural-urban migration trends can help design effective policies that promote better urban planning and rural development. In this paper, we describe how machine learning algorithms can be applied to predict internal migration decisions of people. We consider data collected from household surveys in Tamil Nadu to train our model. To measure the performance of the model, we use data on past migration from National Sample Survey Organisation of India. The factors for training the model include socioeconomic characteristic of each individual like age, gender, place of residence, outstanding loans, strength of the household, etc. and his past migration history. We perform a comparative analysis of the performance of a number of machine learning algorithm to determine their prediction accuracy. Our results show that machine learning algorithms provide a stronger prediction accuracy as compared to statistical models. Our goal through this research is to propose the use of data science techniques in understanding human decisions and behaviour in developing countries.

Keywords: development, migration, internal migration, machine learning, prediction

Procedia PDF Downloads 274
3264 The Mother Tongue and Related Issues in Algeria

Authors: Farouk A.N. Bouhadiba

Abstract:

Based on Fishman’s Theoretical Paradigm (1991), we shall first discuss his three value positions for the case of the so called minority native languages in Algeria and how they may be included into a global language teaching program in Algeria. We shall then move on to his scale on language loss, language maintenance and language renewal with illustrating examples taken from the Algerian context. The second part of our talk relates to pedagogical issues on how to proceed for a smooth transition from mother tongue to school tongue, what methods or approaches suit best the teaching of mother tongue and school tongue (Immersion Programs, The Natural Approach, Applied Literacy Programs, The Berlitz Method, etc.). We shall end up our talk on how one may reshuffle the current issues on the “Arabic-only” movement and the abrupt transition from mother tongue to school tongue in use today by opting for teaching programs that involve pre-school language acquisition and in-school language acquisition grammars, and thus pave the way to effective language teaching programs and living curricula and pedagogies such as language nests, intergenerational continuity, communication and identity teaching programs, which result in better language teaching models that make language policies become a reality.

Keywords: native languages, language maintenance, mother tongue, school tongue, education, Algeria

Procedia PDF Downloads 39
3263 Investigating (Im)Politeness Strategies in Email Communication: The Case Algerian PhD Supervisees and Irish Supervisors

Authors: Zehor Ktitni

Abstract:

In pragmatics, politeness is regarded as a feature of paramount importance to successful interpersonal relationships. On the other hand, emails have recently become one of the indispensable means of communication in educational settings. This research puts email communication at the core of the study and analyses it from a politeness perspective. More specifically, it endeavours to look closely at how the concept of (im)politeness is reflected through students’ emails. To this end, a corpus of Algerian supervisees’ email threads, exchanged with their Irish supervisors, was compiled. Leech’s model of politeness (2014) was selected as the main theoretical framework of this study, in addition to making reference to Brown and Levinson’s model (1987) as it is one of the most influential models in the area of pragmatic politeness. Further, some follow-up interviews are to be conducted with Algerian students to reinforce the results derived from the corpus. Initial findings suggest that Algerian Ph.D. students’ emails tend to include more politeness markers than impoliteness ones, they heavily make use of academic titles when addressing their supervisors (Dr. or Prof.), and they rely on hedging devices in order to sound polite.

Keywords: politeness, email communication, corpus pragmatics, Algerian PhD supervisees, Irish supervisors

Procedia PDF Downloads 76
3262 The Use of Hec Ras One-Dimensional Model and Geophysics for the Determination of Flood Zones

Authors: Ayoub El Bourtali, Abdessamed Najine, Amrou Moussa Benmoussa

Abstract:

It is becoming more and more necessary to manage flood risk, and it must include all stakeholders and all possible means available. The goal of this work is to map the vulnerability of the Oued Derna-region Tagzirt flood zone in the semi-arid region. This is about implementing predictive models and flood control. This allows for the development of flood risk prevention plans. In this study, A resistivity survey was conducted over the area to locate and evaluate soil characteristics in order to calculate discharges and prevent flooding for the study area. The development of a one-dimensional (1D) hydrodynamic model of the Derna River was carried out in HEC-RAS 5.0.4 using a combination of survey data and spatially extracted cross-sections and recorded river flows. The study area was hit by several extreme floods, causing a lot of property loss and loss of life. This research focuses on the most recent flood events, based on the collected data, the water level, river flow and river cross-section were analyzed. A set of flood levels were obtained as the outputs of the hydraulic model and the accuracy of the simulated flood levels and velocity.

Keywords: derna river, 1D hydrodynamic model, flood modelling, HEC-RAS 5.0.4

Procedia PDF Downloads 320
3261 Allura Red, Sunset Yellow and Amaranth Azo Dyes for Corrosion Inhibition of Mild Steel in 0.5 H₂SO₄ Solutions

Authors: Ashish Kumar Singh, Preeti Tiwari, Shubham Srivastava, Rajiv Prakash, Herman Terryn, Gopal Ji

Abstract:

Corrosion inhibition potential of azo dyes namely Allura red (AR), Sunset Yellow (SY) and Amaranth (AN) have been investigated in 0.5 M H2SO4 solutions by electrochemical impedance spectroscopy (EIS), Tafel polarization curves, linear polarization curves, open circuit potential (ocp) curves, UV-Visible spectroscopy, Fourier Transform Infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) techniques. Amaranth dye is found to provide highest corrosion inhibition (90 %) against mild steel corrosion in sulfuric acid solutions among all the tested dyes; while SY and AR dye shows 80% and 78% corrosion inhibition efficiency respectively. The electrochemical measurements and surface morphology analysis reveal that molecular adsorption of dyes at metal acid interface is accountable for inhibition of mild steel corrosion in H2SO4 solutions. The adsorption behavior of dyes has been investigated by various isotherms models, which verifies that it is in accordance with Langmuir isotherm.

Keywords: mild steel, Azo dye, EIS, Langmuir isotherm

Procedia PDF Downloads 385
3260 On Demand Transport: Feasibility Study - Local Needs and Capabilities within the Oran Wilaya

Authors: Nadjet Brahmia

Abstract:

The evolution of urban forms, the new aspects of mobility, the ways of life and economic models make public transport conventional collective low-performing on the majority of largest Algerian cities, particularly in the west of Algeria. On the other side, the information and communication technologies (ICT) open new eventualities to develop a new mode of transport which brings together both the tenders offered by the public service collective and those of the particular vehicle, suitable for urban requirements, social and environmental. Like the concrete examples made in the international countries in terms of on-demand transport systems (ODT) more particularly in the developed countries, this article has for objective the opportunity analysis to establish a service of ODT at the level of a few towns of Oran Wilaya, such a service will be subsequently spread on the totality of the Wilaya if not on the whole of Algeria. In this context, we show the different existing means of transport in the current network whose aim to illustrate the points of insufficiency accented in the present transport system, then we discuss the solutions that may exhibit a service of ODT to the problem studied all around the transport sector, to carry at the end to highlight the capabilities of ODT replying to the transformation of mobilities, this in the light of well-defined cases.

Keywords: mobility, on-demand transport, public transport collective, transport system

Procedia PDF Downloads 362
3259 Risk Assessment and Management Using Machine Learning Models

Authors: Lagnajeet Mohanty, Mohnish Mishra, Pratham Tapdiya, Himanshu Sekhar Nayak, Swetapadma Singh

Abstract:

In the era of global interconnectedness, effective risk assessment and management are critical for organizational resilience. This review explores the integration of machine learning (ML) into risk processes, examining its transformative potential and the challenges it presents. The literature reveals ML's success in sectors like consumer credit, demonstrating enhanced predictive accuracy, adaptability, and potential cost savings. However, ethical considerations, interpretability issues, and the demand for skilled practitioners pose limitations. Looking forward, the study identifies future research scopes, including refining ethical frameworks, advancing interpretability techniques, and fostering interdisciplinary collaborations. The synthesis of limitations and future directions highlights the dynamic landscape of ML in risk management, urging stakeholders to navigate challenges innovatively. This abstract encapsulates the evolving discourse on ML's role in shaping proactive and effective risk management strategies in our interconnected and unpredictable global landscape.

Keywords: machine learning, risk assessment, ethical considerations, financial inclusion

Procedia PDF Downloads 78
3258 Asymmetric Information and Composition of Capital Inflows: Stock Market Microstructure Analysis of Asia Pacific Countries

Authors: Farid Habibi Tanha, Hawati Janor, Mojtaba Jahanbazi

Abstract:

The purpose of this study is to examine the effect of asymmetric information on the composition of capital inflows. This study uses the stock market microstructure to capture the asymmetric information. Such an approach allows one to capture the level and extent of the asymmetric information from a firm’s perspective. This study focuses on the two-dimensional measure of the market microstructure in capturing asymmetric information. The composition of capital inflows is measured by running six models simultaneously. By employing the panel data technique, the main finding of this research shows an increase in the asymmetric information of the stock market, in any of the two dimensions of width and depth. This leads to the reduction of foreign investments in both forms of foreign portfolio investment (FPI) and foreign direct investment (FDI), while the reduction in FPI is higher than that of the FDI. The significant effect of asymmetric information on capital inflows implicitly suggests for policymakers to control the changes of foreign capital inflows through transparency in the level of the market.

Keywords: capital flows composition, asymmetric information, stock market microstructure, foreign portfolio investment, foreign direct investment

Procedia PDF Downloads 366
3257 Integrated Vegetable Production Planning Considering Crop Rotation Rules Using a Mathematical Mixed Integer Programming Model

Authors: Mohammadali Abedini Sanigy, Jiangang Fei

Abstract:

In this paper, a mathematical optimization model was developed to maximize the profit in a vegetable production planning problem. It serves as a decision support system that assists farmers in land allocation to crops and harvest scheduling decisions. The developed model can handle different rotation rules in two consecutive cycles of production, which is a common practice in organic production system. Moreover, different production methods of the same crop were considered in the model formulation. The main strength of the model is that it is not restricted to predetermined production periods, which makes the planning more flexible. The model is classified as a mixed integer programming (MIP) model and formulated in PYOMO -a Python package to formulate optimization models- and solved via Gurobi and CPLEX optimizer packages. The model was tested with secondary data from 'Australian vegetable growing farms', and the results were obtained and discussed with the computational test runs. The results show that the model can successfully provide reliable solutions for real size problems.

Keywords: crop rotation, harvesting, mathematical model formulation, vegetable production

Procedia PDF Downloads 193
3256 The Ability of Forecasting the Term Structure of Interest Rates Based on Nelson-Siegel and Svensson Model

Authors: Tea Poklepović, Zdravka Aljinović, Branka Marasović

Abstract:

Due to the importance of yield curve and its estimation it is inevitable to have valid methods for yield curve forecasting in cases when there are scarce issues of securities and/or week trade on a secondary market. Therefore in this paper, after the estimation of weekly yield curves on Croatian financial market from October 2011 to August 2012 using Nelson-Siegel and Svensson models, yield curves are forecasted using Vector auto-regressive model and Neural networks. In general, it can be concluded that both forecasting methods have good prediction abilities where forecasting of yield curves based on Nelson Siegel estimation model give better results in sense of lower Mean Squared Error than forecasting based on Svensson model Also, in this case Neural networks provide slightly better results. Finally, it can be concluded that most appropriate way of yield curve prediction is neural networks using Nelson-Siegel estimation of yield curves.

Keywords: Nelson-Siegel Model, neural networks, Svensson Model, vector autoregressive model, yield curve

Procedia PDF Downloads 340
3255 Effective Teaching Pyramid and Its Impact on Enhancing the Participation of Students in Swimming Classes

Authors: Salam M. H. Kareem

Abstract:

Instructional or teaching procedures and their proper sequence are essential for high-quality learning outcomes. These actions are the path that the teacher takes during the learning process after setting the learning objectives. Teachers and specialists in the education field should include teaching procedures with putting in place an effective mechanism for the procedure’s implementation to achieve a logical sequence with the desired output of overall education process. Determining the sequence of these actions may be a strategic process outlined by a strategic educational plan or drawn by teachers with a high level of experience, enabling them to determine those logical procedures. While specific actions may be necessary for a specific form, many Physical Education (PE) teachers can work out on various sports disciplines. This study was conducted to investigate the impact of using the teaching sequence of the teaching pyramid in raising the level of enjoyment in swimming classes. Four months later of teaching swimming skills to the control and experimental groups of the study, we figured that using the tools shown in the teaching pyramid with the experimental group led to statistically significant differences in the positive tendencies of students to participate in the swimming classes by using the traditional procedures of teaching and using of successive procedures in the teaching pyramid, and in favor of the teaching pyramid, The students are influenced by enhancing their tendency to participate in swimming classes when the teaching procedures followed are sensitive to individual differences and are based on the element of pleasure in learning, and less positive levels of the tendency of students when using traditional teaching procedures, by getting the level of skills' requirements higher and more difficult to perform. The level of positive tendencies of students when using successive procedures in the teaching pyramid was increased, by getting the level of skills' requirements higher and more difficult to perform, because of the high level of motivation and the desire to challenge the self-provided by the teaching pyramid.

Keywords: physical education, swimming classes, teaching process, teaching pyramid

Procedia PDF Downloads 149
3254 A Correlation Between Perceived Usage of Project Management Methodologies and Project Success in Horizon 2020 Projects

Authors: Aurelio Palacardo, Giulio Mangano, Alberto De Marco

Abstract:

Nowadays, the global economic framework is extremely competitive, and it consequently requires an efficient deployment of the resources provided by EU. In this context, Project management practices are intended to be one of the levers for increasing such an efficiency. The objective of this work is to explore the usage of Project Management methodologies and good practices in the European-wide research program “Horizon2020” and establish whether their maturity might impact the project's success. This allows to identify strengths in terms of application of PM methodologies and good practices and, in turn, to provide feedback and opportunities for improvements to be implemented in future programs. In order to achieve this objective, the present research makes use of a survey-based data retrieval and correlation analysis to investigate the level of perceived PM maturity in H2020 projects and the correlation of maturity with project success. The results show the Project Managers involved in H2020 to hold a high level of PM maturity, confirming PM standards, which are imposed by the EU commission as a binding process, are effectively enforced.

Keywords: project management, project management maturity, maturity models, project success

Procedia PDF Downloads 170
3253 Insights into the Assessment of Intercultural Competence of Female University Students in the KSA

Authors: Agnes Havril

Abstract:

The aim of this paper is to introduce some partial findings of an ongoing research project which is investigating the improvement of intercultural competence of Saudi female university students in English as a Second Language academic environment at the multicultural Jazan University. Since previous research results support the idea that this university generation has the desire to become interculturally or globally competent university students, the present-day investigation is focusing on the assessment of Saudi-specific cultural terms and intercultural competence components in comparison with the Anglo-Saxon oriented western perspective of intercultural competence theories and models. On this stage of the research quantitative research methodology is applied and a survey is being conducted among the female university students in different academic specializations. This paper discusses some empirical data with the aim of identifying and evaluating certain supplementary aspects of intercultural dimensions and components of the intercultural competence construct. The research results also highlight several gender issues in the gender separated higher education in the Kingdom of Saudi Arabia.

Keywords: gender separation, globally competent university student, intercultural competence, intercultural competence construct, higher education

Procedia PDF Downloads 341
3252 Regulation and Transparency: The Case of Corporate Governance Disclosure on the Internet in the United Arab Emirates

Authors: Peter Oyelere, Fernando Zanella

Abstract:

Corporate governance is one of the most discussed and researched issues in recent times in countries around the world, with different countries developing and adopting different governance structures, models and mechanisms. While the Codes of corporate governance have been weaved into the regulatory fabrics of most countries, it is equally critically important that their mechanisms, procedures and practices be transparent, and be transparently communicated to all stakeholders. The Internet can be a very useful and cost-effective tool for the timely and voluntary communication of corporate governance matters to stakeholders. The current paper details the results of an investigation on the extent of which companies listed in the UAE are using the Internet for communicating corporate governance issues, matters and procedures. We surveyed the websites of companies listed on the two UAE Stock Exchanges – the Abu Dhabi Stock Exchange (ADX) and the Dubai Financial Market (DFM) – to find out their level and nature of usage of the Internet for corporate governance disclosures. Regulatory and policy implications of the results of our investigation, as well as other areas for further studies, are also presented in the paper.

Keywords: corporate governance, internet financial reporting, regulation, transparency, United Arab Emirates

Procedia PDF Downloads 371
3251 KTiPO4F: The Negative Electrode Material for Potassium Batteries

Authors: Vahid Ramezankhani, Keith J. Stevenson, Stanislav. S. Fedotov

Abstract:

Lithium-ion batteries (LIBs) play a pivotal role in achieving the key objective “zero-carbon emission” as countries agreed to reach a 1.5ᵒC global warming target according to the Paris agreement. Nowadays, due to the tremendous mobile and stationary consumption of small/large-format LIBs, the demand and consequently the price for such energy storage devices have been raised. The aforementioned challenges originate from the shrinkage of the major applied critical materials in these batteries, such as cobalt (Co), nickel (Ni), Lithium (Li), graphite (G), and manganese (Mn). Therefore, it is imperative to consider alternative elements to address issues corresponding to the limitation of resources around the globe. Potassium (K) is considered an effective alternative to Li since K is a more abundant element, has a higher operating potential, a faster diffusion rate, and the lowest stokes radius in comparison to the closest neighbors in the periodic table (Li and Na). Among all reported materials for metal-ion batteries, some of them possess the general formula AMXO4L [A = Li, Na, K; M = Fe, Ti, V; X = P, S, Si; L= O, F, OH] is of potential to be applied both as anode and cathode and enable researchers to investigate them in the full symmetric battery format. KTiPO4F (KTP structural material) has been previously reported by our group as a promising cathode with decent electronic properties. Herein, we report a synthesis, crystal structure characterization, morphology, as well as K-ion storage properties of KTiPO4F. Our investigation reveals that KTiPO4F delivers discharge capacity > 150 mAh/g at 26.6 mA/g (C/5 current rate) in the potential window of 0.001-3 V. Surprisingly, the cycling performance of C-KTiPO4F//K cell is stable for 1000 cycles at 130 mA/g (C current rate), presenting capacity > 130 mAh/g. More interestingly, we achieved to assemble full symmetric batteries where carbon-coated KTiPO4F serves as both negative and positive electrodes, delivering >70 mAh/g in the potential range of 0.001-4.2V.

Keywords: anode material, potassium battery, chemical characterization, electrochemical properties

Procedia PDF Downloads 233
3250 Developing a Machine Learning-based Cost Prediction Model for Construction Projects using Particle Swarm Optimization

Authors: Soheila Sadeghi

Abstract:

Accurate cost prediction is essential for effective project management and decision-making in the construction industry. This study aims to develop a cost prediction model for construction projects using Machine Learning techniques and Particle Swarm Optimization (PSO). The research utilizes a comprehensive dataset containing project cost estimates, actual costs, resource details, and project performance metrics from a road reconstruction project. The methodology involves data preprocessing, feature selection, and the development of an Artificial Neural Network (ANN) model optimized using PSO. The study investigates the impact of various input features, including cost estimates, resource allocation, and project progress, on the accuracy of cost predictions. The performance of the optimized ANN model is evaluated using metrics such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and R-squared. The results demonstrate the effectiveness of the proposed approach in predicting project costs, outperforming traditional benchmark models. The feature selection process identifies the most influential variables contributing to cost variations, providing valuable insights for project managers. However, this study has several limitations. Firstly, the model's performance may be influenced by the quality and quantity of the dataset used. A larger and more diverse dataset covering different types of construction projects would enhance the model's generalizability. Secondly, the study focuses on a specific optimization technique (PSO) and a single Machine Learning algorithm (ANN). Exploring other optimization methods and comparing the performance of various ML algorithms could provide a more comprehensive understanding of the cost prediction problem. Future research should focus on several key areas. Firstly, expanding the dataset to include a wider range of construction projects, such as residential buildings, commercial complexes, and infrastructure projects, would improve the model's applicability. Secondly, investigating the integration of additional data sources, such as economic indicators, weather data, and supplier information, could enhance the predictive power of the model. Thirdly, exploring the potential of ensemble learning techniques, which combine multiple ML algorithms, may further improve cost prediction accuracy. Additionally, developing user-friendly interfaces and tools to facilitate the adoption of the proposed cost prediction model in real-world construction projects would be a valuable contribution to the industry. The findings of this study have significant implications for construction project management, enabling proactive cost estimation, resource allocation, budget planning, and risk assessment, ultimately leading to improved project performance and cost control. This research contributes to the advancement of cost prediction techniques in the construction industry and highlights the potential of Machine Learning and PSO in addressing this critical challenge. However, further research is needed to address the limitations and explore the identified future research directions to fully realize the potential of ML-based cost prediction models in the construction domain.

Keywords: cost prediction, construction projects, machine learning, artificial neural networks, particle swarm optimization, project management, feature selection, road reconstruction

Procedia PDF Downloads 65
3249 Analysis of Human Mental and Behavioral Models for Development of an Electroencephalography-Based Human Performance Management System

Authors: John Gaber, Youssef Ahmed, Hossam A. Gabbar, Jing Ren

Abstract:

Accidents at Nuclear Power Plants (NPPs) occur due to various factors, notable among them being poor safety management and poor safety culture. During abnormal situations, the likelihood of human error is many-fold higher due to the higher cognitive workload. The most common cause of human error and high cognitive workload is mental fatigue. Electroencephalography (EEG) is a method of gathering the electromagnetic waves emitted by a human brain. We propose a safety system by monitoring brainwaves for signs of mental fatigue using an EEG system. This requires an analysis of the mental model of the NPP operator, changes in brain wave power in response to certain stimuli, and the risk factors on mental fatigue and attention that NPP operators face when performing their tasks. We analyzed these factors and developed an EEG-based monitoring system, which aims to alert NPP operators when levels of mental fatigue and attention hinders their ability to maintain safety.

Keywords: brain imaging, EEG, power plant operator, psychology

Procedia PDF Downloads 108