Search results for: teaching learning model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 23161

Search results for: teaching learning model

16381 People Who Live in Poverty Usually Do So Due to Circumstances Far Beyond Their Control: A Multiple Case Study on Poverty Simulation Events

Authors: Tracy Smith-Carrier

Abstract:

Burgeoning research extols the benefits of innovative experiential learning activities to increase participants’ engagement, enhance their individual learning, and bridge the gap between theory and practice. This presentation discusses findings from a multiple case study on poverty simulation events conducted with two samples: undergraduate students and community participants. After exploring the nascent research on the benefits and limitations of poverty simulation activities, the study explores whether participating in a poverty simulation resulted in changes to participants’ beliefs about the causes and effects of poverty, as well as shifts in their attitudes and actions toward people experiencing poverty. For the purposes of triangulation, quantitative and qualitative data from a variety of sources were analyzed: participant feedback surveys, qualitative responses, and pre, post, and follow-up questionnaires. Findings show statistically significant results (p<.05) from both samples on cumulative scores of the modified Attitudes Toward Poverty Scale, indicating an improvement in participants’ attitudes toward poverty. Although generally positive about their experiences, participating in the simulation did not appear to have prompted participants to take specific actions to reduce poverty. Conclusions drawn from the research study suggest that poverty simulation planners should be wary of adopting scenarios that emphasize, or fail to adequately contextualize, behaviours or responses that might perpetuate individual explanations of poverty. Moreover, organizers must carefully consider how to ensure participants in their audience currently experiencing low-income do not become emotionally distressed, triggered or further marginalized in the process. While overall participants were positive about their experiences in the simulation, the events did not appear to have prompted them to action. Moving beyond the goal of increasing participants’ understandings of poverty, interventions that foster greater engagement in poverty issues over the long-term are necessary.

Keywords: empathy, experiential learning, poverty awareness, poverty simulation

Procedia PDF Downloads 267
16380 The Patterns Designation by the Inspiration from Flower at Suan Sunandha Palace

Authors: Nawaporn Srisarankullawong

Abstract:

This research is about the creating the design by the inspiration of the flowers, which were once planted in Suan Sunandha Palace. The researcher have conducted the research regarding the history of Suan Sunandha Palace and the flowers which have been planted in the palace’s garden, in order to use this research to create the new designs in the future. The objective are as follows; 1. To study the shape and the pattern of the flowers in Suan Sunandha Palace, in order to select a few of them as the model to create the new design. 2. In order to create the flower design from the flowers in Suan Sunandha Palace by using the current photograph of the flowers which were once used to be planted inside the palace and using adobe Illustrator and Adobe Photoshop programs to create the patterns and the model. The result of the research: From the research, the researcher had selected three types of flowers to crate the pattern model; they are Allamanda, Orchids and Flamingo Plant. The details of the flowers had been reduced in order to show the simplicity and create the pattern model to use them for models, so three flowers had created three pattern models and they had been developed into six patterns, using universal artist techniques, so the pattern created are modern and they can be used for further decoration.

Keywords: patterns design, Suan Sunandha Palace, pattern of the flowers, visual arts and design

Procedia PDF Downloads 374
16379 Study on Flexible Diaphragm In-Plane Model of Irregular Multi-Storey Industrial Plant

Authors: Cheng-Hao Jiang, Mu-Xuan Tao

Abstract:

The rigid diaphragm model may cause errors in the calculation of internal forces due to neglecting the in-plane deformation of the diaphragm. This paper thus studies the effects of different diaphragm in-plane models (including in-plane rigid model and in-plane flexible model) on the seismic performance of structures. Taking an actual industrial plant as an example, the seismic performance of the structure is predicted using different floor diaphragm models, and the analysis errors caused by different diaphragm in-plane models including deformation error and internal force error are calculated. Furthermore, the influence of the aspect ratio on the analysis errors is investigated. Finally, the code rationality is evaluated by assessing the analysis errors of the structure models whose floors were determined as rigid according to the code’s criterion. It is found that different floor models may cause great differences in the distribution of structural internal forces, and the current code may underestimate the influence of the floor in-plane effect.

Keywords: industrial plant, diaphragm, calculating error, code rationality

Procedia PDF Downloads 140
16378 Use of Social Networks and Mobile Technologies in Education

Authors: Václav Maněna, Roman Dostál, Štěpán Hubálovský

Abstract:

Social networks play an important role in the lives of children and young people. Along with the high penetration of mobile technologies such as smartphones and tablets among the younger generation, there is an increasing use of social networks already in elementary school. The paper presents the results of research, which was realized at schools in the Hradec Králové region. In this research, the authors focused on issues related to communications on social networks for children, teenagers and young people in the Czech Republic. This research was conducted at selected elementary, secondary and high schools using anonymous questionnaires. The results are evaluated and compared with the results of the research, which has been realized in 2008. The authors focused on the possibilities of using social networks in education. The paper presents the possibility of using the most popular social networks in education, with emphasis on increasing motivation for learning. The paper presents comparative analysis of social networks, with regard to the possibility of using in education as well.

Keywords: social networks, motivation, e-learning, mobile technology

Procedia PDF Downloads 313
16377 Using Jumping Particle Swarm Optimization for Optimal Operation of Pump in Water Distribution Networks

Authors: R. Rajabpour, N. Talebbeydokhti, M. H. Ahmadi

Abstract:

Carefully scheduling the operations of pumps can be resulted to significant energy savings. Schedules can be defined either implicit, in terms of other elements of the network such as tank levels, or explicit by specifying the time during which each pump is on/off. In this study, two new explicit representations based on time-controlled triggers were analyzed, where the maximum number of pump switches was established beforehand, and the schedule may contain fewer switches than the maximum. The optimal operation of pumping stations was determined using a Jumping Particle Swarm Optimization (JPSO) algorithm to achieve the minimum energy cost. The model integrates JPSO optimizer and EPANET hydraulic network solver. The optimal pump operation schedule of VanZyl water distribution system was determined using the proposed model and compared with those from Genetic and Ant Colony algorithms. The results indicate that the proposed model utilizing the JPSP algorithm outperformed the others and is a versatile management model for the operation of real-world water distribution system.

Keywords: JPSO, operation, optimization, water distribution system

Procedia PDF Downloads 245
16376 Computational Fluid Dynamics of a Bubbling Fluidized Bed in Wood Pellets

Authors: Opeyemi Fadipe, Seong Lee, Guangming Chen, Steve Efe

Abstract:

In comparison to conventional combustion technologies, fluidized bed combustion has several advantages, such as superior heat transfer characteristics due to homogeneous particle mixing, lower temperature needs, nearly isothermal process conditions, and the ability to operate continuously. Computational fluid dynamics (CFD) can help anticipate the intricate combustion process and the hydrodynamics of a fluidized bed thoroughly by using CFD techniques. Bubbling Fluidized bed was model using the Eulerian-Eulerian model, including the kinetic theory of the flow. The model was validated by comparing it with other simulation of the fluidized bed. The effects of operational gas velocity, volume fraction, and feed rate were also investigated numerically. A higher gas velocity and feed rate cause an increase in fluidization of the bed.

Keywords: fluidized bed, operational gas velocity, volume fraction, computational fluid dynamics

Procedia PDF Downloads 83
16375 The Effect of Connections Form on Seismic Behavior of Portal Frames

Authors: Kiavash Heidarzadeh

Abstract:

The seismic behavior of portal frames is mainly based on the shape of their joints. In these structures, vertical and inclined connections are the two general forms of connections. The shapes of connections can make differences in seismic responses of portal frames. Hence, in this paper, for the first step, the non-linear performance of portal frames with vertical and inclined connections has been investigated by monotonic analysis. Also, the effect of section sizes is considered in this analysis. For comparison, hysteresis curves have been evaluated for two model frames with different forms of connections. Each model has three various sizes of the column and beam. Other geometrical parameters have been considered constant. In the second step, for every model, an appropriate size of sections has been selected from the previous step. Next, the seismic behavior of each model has been analyzed by the time history method under three near-fault earthquake records. Finite element ABAQUS software is used for simulation and analysis of samples. Outputs show that connections form can impact on reaction forces of portal frames under earthquake loads. Also, it is understood that the load capacity in frames with vertical connections is more than the frames with inclined connections.

Keywords: inclined connections, monotonic, portal frames, seismic behavior, time history, vertical connections

Procedia PDF Downloads 223
16374 Vulnerability of Groundwater to Pollution in Akwa Ibom State, Southern Nigeria, using the DRASTIC Model and Geographic Information System (GIS)

Authors: Aniedi A. Udo, Magnus U. Igboekwe, Rasaaq Bello, Francis D. Eyenaka, Michael C. Ohakwere-Eze

Abstract:

Groundwater vulnerability to pollution was assessed in Akwa Ibom State, Southern Nigeria, with the aim of locating areas with high potentials for resource contamination, especially due to anthropogenic influence. The electrical resistivity method was utilized in the collection of the initial field data. Additional data input, which included depth to static water level, drilled well log data, aquifer recharge data, percentage slope, as well as soil information, were sourced from secondary sources. The initial field data were interpreted both manually and with computer modeling to provide information on the geoelectric properties of the subsurface. Interpreted results together with the secondary data were used to develop the DRASTIC thematic maps. A vulnerability assessment was performed using the DRASTIC model in a GIS environment and areas with high vulnerability which needed immediate attention was clearly mapped out and presented using an aquifer vulnerability map. The model was subjected to validation and the rate of validity was 73% within the area of study.

Keywords: groundwater, vulnerability, DRASTIC model, pollution

Procedia PDF Downloads 207
16373 Machine Learning Techniques for COVID-19 Detection: A Comparative Analysis

Authors: Abeer A. Aljohani

Abstract:

COVID-19 virus spread has been one of the extreme pandemics across the globe. It is also referred to as coronavirus, which is a contagious disease that continuously mutates into numerous variants. Currently, the B.1.1.529 variant labeled as omicron is detected in South Africa. The huge spread of COVID-19 disease has affected several lives and has surged exceptional pressure on the healthcare systems worldwide. Also, everyday life and the global economy have been at stake. This research aims to predict COVID-19 disease in its initial stage to reduce the death count. Machine learning (ML) is nowadays used in almost every area. Numerous COVID-19 cases have produced a huge burden on the hospitals as well as health workers. To reduce this burden, this paper predicts COVID-19 disease is based on the symptoms and medical history of the patient. This research presents a unique architecture for COVID-19 detection using ML techniques integrated with feature dimensionality reduction. This paper uses a standard UCI dataset for predicting COVID-19 disease. This dataset comprises symptoms of 5434 patients. This paper also compares several supervised ML techniques to the presented architecture. The architecture has also utilized 10-fold cross validation process for generalization and the principal component analysis (PCA) technique for feature reduction. Standard parameters are used to evaluate the proposed architecture including F1-Score, precision, accuracy, recall, receiver operating characteristic (ROC), and area under curve (AUC). The results depict that decision tree, random forest, and neural networks outperform all other state-of-the-art ML techniques. This achieved result can help effectively in identifying COVID-19 infection cases.

Keywords: supervised machine learning, COVID-19 prediction, healthcare analytics, random forest, neural network

Procedia PDF Downloads 92
16372 Applying Epistemology to Artificial Intelligence in the Social Arena: Exploring Fundamental Considerations

Authors: Gianni Jacucci

Abstract:

Epistemology traditionally finds its place within human research philosophies and methodologies. Artificial intelligence methods pose challenges, particularly given the unresolved relationship between AI and pivotal concepts in social arenas such as hermeneutics and accountability. We begin by examining the essential criteria governing scientific rigor in the human sciences. We revisit the three foundational philosophies underpinning qualitative research methods: empiricism, hermeneutics, and phenomenology. We elucidate the distinct attributes, merits, and vulnerabilities inherent in the methodologies they inspire. The integration of AI, e.g., deep learning algorithms, sparks an interest in evaluating these criteria against the diverse forms of AI architectures. For instance, Interpreted AI could be viewed as a hermeneutic approach, relying on a priori interpretations, while straight AI may be perceived as a descriptive phenomenological approach, processing original and uncontaminated data. This paper serves as groundwork for such explorations, offering preliminary reflections to lay the foundation and outline the initial landscape.

Keywords: artificial intelligence, deep learning, epistemology, qualitative research, methodology, hermeneutics, accountability

Procedia PDF Downloads 38
16371 Modeling of Production Lines Systems with Layout Constraints

Authors: Sadegh Abebi

Abstract:

There are problems with estimating time of product process of products, especially when there is variable serving time, like control stage. These problems will cause overestimation of process time. Layout constraints, reworking constraints and inflexible product schedule in multi product lines, needs a precise planning to reduce volume in particular situation of line stock. In this article, by analyzing real queue systems with layout constraints and by using concepts and principles of Markov chain in queue theory, a hybrid model has been presented. This model can be a base to assess queue systems with probable parameters of service. Here by presenting a case study, the proposed model will be described. so, production lines of a home application manufacturer will be analyzed.

Keywords: Queuing theory, Markov Chain, layout, line balance

Procedia PDF Downloads 625
16370 Multisignature Schemes for Reinforcing Trust in Cloud Software-As-A-Service Services

Authors: Mustapha Hedabou, Ali Azougaghe, Ahmed Bentajer, Hicham Boukhris, Mourad Eddiwani, Zakaria Igarramen

Abstract:

Software-as-a-service (SaaS) is emerging as a dominant approach to delivering software. It encompasses a range of business, technical opportunities, issue, and challenges. Trustiness in the cloud services regarding the security and the privacy of the delivered data is the most critical issue with the SaaS model. In this paper, we survey the security concerns related to the SaaS model, and we propose the design of a trusted SaaS model that gives users more confidence into SaaS services by leveraging a trust in a neutral source code certifying authority. The proposed design is based on the use of the multisignature mechanism for signing the source code of the application service. In our model, the cloud provider acts as a root of trust by ensuring the integrity of the application service when it was running on its platform. The proposed design prevents insider attacks from tampering with application service before and after it was launched in a cloud provider platform.

Keywords: cloud computing, SaaS Platform, TPM, trustiness, code source certification, multi-signature schemes

Procedia PDF Downloads 275
16369 Emotional Intelligence and Age in Open Distance Learning

Authors: Naila Naseer

Abstract:

Emotional Intelligence (EI) concept is not new yet unique and interesting. EI is a person’s ability to be aware of his/her own emotions and to manage, handle and communicate emotions with others effectively. The present study was conducted to assess the relationship between emotional intelligence and age of graduate level students at Allama Iqbal Open University (AIOU). Population consisted of Allama Iqbal Open University students (B.Ed 3rd Semester, Autumn 2007) from Rawalpindi and Islamabad regions. Total number of sample consisted of 469 participants was randomly drawn out by using table of random numbers. Bar-On EQ-i was administered on the participants through personal contact. The instrument was also validated through pilot study on a random sample of 50 participants (B.Ed students Spring 2006), who had completed their B.Ed degree successfully. Data was analyzed and tabulated in percentages, frequencies, mean, standard deviation, correlation, and scatter gram in SPSS (version 16.0 for windows). The results revealed that students with higher age group had scored low on the scale (Bar-On EQ-i). Moreover, the students in low age groups exhibited higher levels of EI as compared with old age students.

Keywords: emotional intelligence, age level, learning, emotion-related feelings

Procedia PDF Downloads 332
16368 New Advanced Medical Software Technology Challenges and Evolution of the Regulatory Framework in Expert Software, Artificial Intelligence, and Machine Learning

Authors: Umamaheswari Shanmugam, Silvia Ronchi, Radu Vornicu

Abstract:

Software, artificial intelligence, and machine learning can improve healthcare through innovative and advanced technologies that are able to use the large amount and variety of data generated during healthcare services every day. As we read the news, over 500 machine learning or other artificial intelligence medical devices have now received FDA clearance or approval, the first ones even preceding the year 2000. One of the big advantages of these new technologies is the ability to get experience and knowledge from real-world use and to continuously improve their performance. Healthcare systems and institutions can have a great benefit because the use of advanced technologies improves the same time efficiency and efficacy of healthcare. Software-defined as a medical device, is stand-alone software that is intended to be used for patients for one or more of these specific medical intended uses: - diagnosis, prevention, monitoring, prediction, prognosis, treatment or alleviation of a disease, any other health conditions, replacing or modifying any part of a physiological or pathological process–manage the received information from in vitro specimens derived from the human samples (body) and without principal main action of its principal intended use by pharmacological, immunological or metabolic definition. Software qualified as medical devices must comply with the general safety and performance requirements applicable to medical devices. These requirements are necessary to ensure high performance and quality and also to protect patients’ safety. The evolution and the continuous improvement of software used in healthcare must take into consideration the increase in regulatory requirements, which are becoming more complex in each market. The gap between these advanced technologies and the new regulations is the biggest challenge for medical device manufacturers. Regulatory requirements can be considered a market barrier, as they can delay or obstacle the device approval, but they are necessary to ensure performance, quality, and safety, and at the same time, they can be a business opportunity if the manufacturer is able to define in advance the appropriate regulatory strategy. The abstract will provide an overview of the current regulatory framework, the evolution of the international requirements, and the standards applicable to medical device software in the potential market all over the world.

Keywords: artificial intelligence, machine learning, SaMD, regulatory, clinical evaluation, classification, international requirements, MDR, 510k, PMA, IMDRF, cyber security, health care systems.

Procedia PDF Downloads 89
16367 A Comparative Study on the Dimensional Error of 3D CAD Model and SLS RP Model for Reconstruction of Cranial Defect

Authors: L. Siva Rama Krishna, Sriram Venkatesh, M. Sastish Kumar, M. Uma Maheswara Chary

Abstract:

Rapid Prototyping (RP) is a technology that produces models and prototype parts from 3D CAD model data, CT/MRI scan data, and model data created from 3D object digitizing systems. There are several RP process like Stereolithography (SLA), Solid Ground Curing (SGC), Selective Laser Sintering (SLS), Fused Deposition Modelling (FDM), 3D Printing (3DP) among them SLS and FDM RP processes are used to fabricate pattern of custom cranial implant. RP technology is useful in engineering and biomedical application. This is helpful in engineering for product design, tooling and manufacture etc. RP biomedical applications are design and development of medical devices, instruments, prosthetics and implantation; it is also helpful in planning complex surgical operation. The traditional approach limits the full appreciation of various bony structure movements and therefore the custom implants produced are difficult to measure the anatomy of parts and analyse the changes in facial appearances accurately. Cranioplasty surgery is a surgical correction of a defect in cranial bone by implanting a metal or plastic replacement to restore the missing part. This paper aims to do a comparative study on the dimensional error of CAD and SLS RP Models for reconstruction of cranial defect by comparing the virtual CAD with the physical RP model of a cranial defect.

Keywords: rapid prototyping, selective laser sintering, cranial defect, dimensional error

Procedia PDF Downloads 325
16366 A Pattern Recognition Neural Network Model for Detection and Classification of SQL Injection Attacks

Authors: Naghmeh Moradpoor Sheykhkanloo

Abstract:

Structured Query Language Injection (SQLI) attack is a code injection technique in which malicious SQL statements are inserted into a given SQL database by simply using a web browser. Losing data, disclosing confidential information or even changing the value of data are the severe damages that SQLI attack can cause on a given database. SQLI attack has also been rated as the number-one attack among top ten web application threats on Open Web Application Security Project (OWASP). OWASP is an open community dedicated to enabling organisations to consider, develop, obtain, function, and preserve applications that can be trusted. In this paper, we propose an effective pattern recognition neural network model for detection and classification of SQLI attacks. The proposed model is built from three main elements of: a Uniform Resource Locator (URL) generator in order to generate thousands of malicious and benign URLs, a URL classifier in order to: 1) classify each generated URL to either a benign URL or a malicious URL and 2) classify the malicious URLs into different SQLI attack categories, and an NN model in order to: 1) detect either a given URL is a malicious URL or a benign URL and 2) identify the type of SQLI attack for each malicious URL. The model is first trained and then evaluated by employing thousands of benign and malicious URLs. The results of the experiments are presented in order to demonstrate the effectiveness of the proposed approach.

Keywords: neural networks, pattern recognition, SQL injection attacks, SQL injection attack classification, SQL injection attack detection

Procedia PDF Downloads 469
16365 A Neural Network Based Clustering Approach for Imputing Multivariate Values in Big Data

Authors: S. Nickolas, Shobha K.

Abstract:

The treatment of incomplete data is an important step in the data pre-processing. Missing values creates a noisy environment in all applications and it is an unavoidable problem in big data management and analysis. Numerous techniques likes discarding rows with missing values, mean imputation, expectation maximization, neural networks with evolutionary algorithms or optimized techniques and hot deck imputation have been introduced by researchers for handling missing data. Among these, imputation techniques plays a positive role in filling missing values when it is necessary to use all records in the data and not to discard records with missing values. In this paper we propose a novel artificial neural network based clustering algorithm, Adaptive Resonance Theory-2(ART2) for imputation of missing values in mixed attribute data sets. The process of ART2 can recognize learned models fast and be adapted to new objects rapidly. It carries out model-based clustering by using competitive learning and self-steady mechanism in dynamic environment without supervision. The proposed approach not only imputes the missing values but also provides information about handling the outliers.

Keywords: ART2, data imputation, clustering, missing data, neural network, pre-processing

Procedia PDF Downloads 274
16364 CFD Study on the Effect of Primary Air on Combustion of Simulated MSW Process in the Fixed Bed

Authors: Rui Sun, Tamer M. Ismail, Xiaohan Ren, M. Abd El-Salam

Abstract:

Incineration of municipal solid waste (MSW) is one of the key scopes in the global clean energy strategy. A computational fluid dynamics (CFD) model was established. In order to reveal these features of the combustion process in a fixed porous bed of MSW. Transporting equations and process rate equations of the waste bed were modeled and set up to describe the incineration process, according to the local thermal conditions and waste property characters. Gas phase turbulence was modeled using k-ε turbulent model and the particle phase was modeled using the kinetic theory of granular flow. The heterogeneous reaction rates were determined using Arrhenius eddy dissipation and the Arrhenius-diffusion reaction rates. The effects of primary air flow rate and temperature in the burning process of simulated MSW are investigated experimentally and numerically. The simulation results in bed are accordant with experimental data well. The model provides detailed information on burning processes in the fixed bed, which is otherwise very difficult to obtain by conventional experimental techniques.

Keywords: computational fluid dynamics (CFD) model, waste incineration, municipal solid waste (MSW), fixed bed, primary air

Procedia PDF Downloads 402
16363 Developing Cucurbitacin a Minimum Inhibition Concentration of Meloidogyne Incognita Using a Computer-Based Model

Authors: Zakheleni P. Dube, Phatu W. Mashela

Abstract:

Minimum inhibition concentration (MIC) is the lowest concentration of a chemical that brings about significant inhibition of target organism. The conventional method for establishing the MIC for phytonematicides is tedious. The objective of this study was to use the Curve-fitting Allelochemical Response Data (CARD) to determine the MIC for pure cucurbitacin A on Meloidogyne incognita second-stage juveniles (J2) hatch, immobility and mortality. Meloidogyne incognita eggs and freshly hatched J2 were separately exposed to a series of pure cucurbitacin A concentrations of 0.00, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00, 2.25 and 2.50 μg.mL⁻¹for 12, 24, 48 and 72 h in an incubator set at 25 ± 2°C. Meloidogyne incognita J2 hatch, immobility and mortality counts were determined using a stereomicroscope and the significant means were subjected to the CARD model. The model exhibited density-dependent growth (DDG) patterns of J2 hatch, immobility and mortality to increasing concentrations of cucurbitacin A. The average MIC for cucurbitacin A on M. incognita J2 hatch, immobility and mortality were 2.2, 0.58 and 0.63 µg.mL⁻¹, respectively. Meloidogyne incognita J2 hatch had the highest average MIC value followed by mortality and immobility had the least. In conclusion, the CARD model was able to generate MIC for cucurbitacin A, hence it could serve as a valuable tool in the chemical-nematode bioassay studies.

Keywords: inhibition concentration, phytonematicide, sensitivity index, threshold stimulation, triterpenoids.

Procedia PDF Downloads 190
16362 Simulation of Corn Yield in Carmen, North Cotabato, Philippines Using Aquacrop Model

Authors: Marilyn S. Painagan

Abstract:

This general objective of the study was to apply the AquaCrop model to the conditions in the municipality of Carmen, North Cotabato in terms of predicting corn yields in this area and determine the influence of rainfall and soil depth on simulated yield. The study revealed wide disparity in monthly yields as a consequence of similarly varying monthly rainfall magnitudes. It also found out that simulated yield varies with the depth of soil, which in this case was clay loam, the predominant soil in the study area. The model was found to be easy to use even with limited data and shows a vast potential for various farming and policy applications, such as formulation of a cropping calendar.

Keywords: aquacrop, evapotranspiration, crop modelling, crop simulation

Procedia PDF Downloads 252
16361 Urban Energy Demand Modelling: Spatial Analysis Approach

Authors: Hung-Chu Chen, Han Qi, Bauke de Vries

Abstract:

Energy consumption in the urban environment has attracted numerous researches in recent decades. However, it is comparatively rare to find literary works which investigated 3D spatial analysis of urban energy demand modelling. In order to analyze the spatial correlation between urban morphology and energy demand comprehensively, this paper investigates their relation by using the spatial regression tool. In addition, the spatial regression tool which is applied in this paper is ordinary least squares regression (OLS) and geographically weighted regression (GWR) model. Normalized Difference Built-up Index (NDBI), Normalized Difference Vegetation Index (NDVI), and building volume are explainers of urban morphology, which act as independent variables of Energy-land use (E-L) model. NDBI and NDVI are used as the index to describe five types of land use: urban area (U), open space (O), artificial green area (G), natural green area (V), and water body (W). Accordingly, annual electricity, gas demand and energy demand are dependent variables of the E-L model. Based on the analytical result of E-L model relation, it revealed that energy demand and urban morphology are closely connected and the possible causes and practical use are discussed. Besides, the spatial analysis methods of OLS and GWR are compared.

Keywords: energy demand model, geographically weighted regression, normalized difference built-up index, normalized difference vegetation index, spatial statistics

Procedia PDF Downloads 148
16360 Virtual Academy Next: Addressing Transition Challenges Through a Gamified Virtual Transition Program for Students with Disabilities

Authors: Jennifer Gallup, Joel Bocanegra, Greg Callan, Abigail Vaughn

Abstract:

Students with disabilities (SWD) engaged in a distance summer program delivered over multiple virtual mediums that used gaming principles to teach and practice self-regulated learning (SRL) through the process of exploring possible jobs. Gaming quests were developed to explore jobs and teach transition skills. Students completed specially designed quests that taught and reinforced SRL and problem-solving through individual, group, and teacher-led experiences. SRL skills learned were reinforced through guided job explorations over the context of MinecraftEDU, zoom with experts in the career, collaborations with a team over Marco Polo, and Zoom. The quests were developed and laid out on an accessible web page, with active learning opportunities and feedback conducted within multiple virtual mediums including MinecraftEDU. Gaming mediums actively engage players in role-playing, problem-solving, critical thinking, and collaboration. Gaming has been used as a medium for education since the inception of formal education. Games, and specifically board games, are pre-historic, meaning we had board games before we had written language. Today, games are widely used in education, often as a reinforcer for behavior or for rewards for work completion. Games are not often used as a direct method of instruction and assessment; however, the inclusion of games as an assessment tool and as a form of instruction increases student engagement and participation. Games naturally include collaboration, problem-solving, and communication. Therefore, our summer program was developed using gaming principles and MinecraftEDU. This manuscript describes a virtual learning summer program called Virtual Academy New and Exciting Transitions (VAN) that was redesigned from a face-to-face setting to a completely online setting with a focus on SWD aged 14-21. The focus of VAN was to address transition planning needs such as problem-solving skills, self-regulation, interviewing, job exploration, and communication for transition-aged youth diagnosed with various disabilities (e.g., learning disabilities, attention-deficit hyperactivity disorder, intellectual disability, down syndrome, autism spectrum disorder).

Keywords: autism, disabilities, transition, summer program, gaming, simulations

Procedia PDF Downloads 75
16359 A Model of Foam Density Prediction for Expanded Perlite Composites

Authors: M. Arifuzzaman, H. S. Kim

Abstract:

Multiple sets of variables associated with expanded perlite particle consolidation in foam manufacturing were analyzed to develop a model for predicting perlite foam density. The consolidation of perlite particles based on the flotation method and compaction involves numerous variables leading to the final perlite foam density. The variables include binder content, compaction ratio, perlite particle size, various perlite particle densities and porosities, and various volumes of perlite at different stages of process. The developed model was found to be useful not only for prediction of foam density but also for optimization between compaction ratio and binder content to achieve a desired density. Experimental verification was conducted using a range of foam densities (0.15–0.5 g/cm3) produced with a range of compaction ratios (1.5-3.5), a range of sodium silicate contents (0.05–0.35 g/ml) in dilution, a range of expanded perlite particle sizes (1-4 mm), and various perlite densities (such as skeletal, material, bulk, and envelope densities). A close agreement between predictions and experimental results was found.

Keywords: expanded perlite, flotation method, foam density, model, prediction, sodium silicate

Procedia PDF Downloads 408
16358 Elastic and Plastic Collision Comparison Using Finite Element Method

Authors: Gustavo Rodrigues, Hans Weber, Larissa Driemeier

Abstract:

The prevision of post-impact conditions and the behavior of the bodies during the impact have been object of several collision models. The formulation from Hertz’s theory is generally used dated from the 19th century. These models consider the repulsive force as proportional to the deformation of the bodies under contact and may consider it proportional to the rate of deformation. The objective of the present work is to analyze the behavior of the bodies during impact using the Finite Element Method (FEM) with elastic and plastic material models. The main parameters to evaluate are, the contact force, the time of contact and the deformation of the bodies. An advantage of using the FEM approach is the possibility to apply a plastic deformation to the model according to the material definition: there will be used Johnson–Cook plasticity model whose parameters are obtained through empirical tests of real materials. This model allows analyzing the permanent deformation caused by impact, phenomenon observed in real world depending on the forces applied to the body. These results are compared between them and with the model-based Hertz theory.

Keywords: collision, impact models, finite element method, Hertz Theory

Procedia PDF Downloads 175
16357 A Hybrid Traffic Model for Smoothing Traffic Near Merges

Authors: Shiri Elisheva Decktor, Sharon Hornstein

Abstract:

Highway merges and unmarked junctions are key components in any urban road network, which can act as bottlenecks and create traffic disruption. Inefficient highway merges may trigger traffic instabilities such as stop-and-go waves, pose safety conditions and lead to longer journey times. These phenomena occur spontaneously if the average vehicle density exceeds a certain critical value. This study focuses on modeling the traffic using a microscopic traffic flow model. A hybrid traffic model, which combines human-driven and controlled vehicles is assumed. The controlled vehicles obey different driving policies when approaching the merge, or in the vicinity of other vehicles. We developed a co-simulation model in SUMO (Simulation of Urban Mobility), in which the human-driven cars are modeled using the IDM model, and the controlled cars are modeled using a dedicated controller. The scenario chosen for this study is a closed track with one merge and one exit, which could be later implemented using a scaled infrastructure on our lab setup. This will enable us to benchmark the results of this study obtained in simulation, to comparable results in similar conditions in the lab. The metrics chosen for the comparison of the performance of our algorithm on the overall traffic conditions include the average speed, wait time near the merge, and throughput after the merge, measured under different travel demand conditions (low, medium, and heavy traffic).

Keywords: highway merges, traffic modeling, SUMO, driving policy

Procedia PDF Downloads 106
16356 Construction of a Dynamic Migration Model of Extracellular Fluid in Brain for Future Integrated Control of Brain State

Authors: Tomohiko Utsuki, Kyoka Sato

Abstract:

In emergency medicine, it is recognized that brain resuscitation is very important for the reduction of mortality rate and neurological sequelae. Especially, the control of brain temperature (BT), intracranial pressure (ICP), and cerebral blood flow (CBF) are most required for stabilizing brain’s physiological state in the treatment for such as brain injury, stroke, and encephalopathy. However, the manual control of BT, ICP, and CBF frequently requires the decision and operation of medical staff, relevant to medication and the setting of therapeutic apparatus. Thus, the integration and the automation of the control of those is very effective for not only improving therapeutic effect but also reducing staff burden and medical cost. For realizing such integration and automation, a mathematical model of brain physiological state is necessary as the controlled object in simulations, because the performance test of a prototype of the control system using patients is not ethically allowed. A model of cerebral blood circulation has already been constructed, which is the most basic part of brain physiological state. Also, a migration model of extracellular fluid in brain has been constructed, however the condition that the total volume of intracranial cavity is almost changeless due to the hardness of cranial bone has not been considered in that model. Therefore, in this research, the dynamic migration model of extracellular fluid in brain was constructed on the consideration of the changelessness of intracranial cavity’s total volume. This model is connectable to the cerebral blood circulation model. The constructed model consists of fourteen compartments, twelve of which corresponds to perfused area of bilateral anterior, middle and posterior cerebral arteries, the others corresponds to cerebral ventricles and subarachnoid space. This model enable to calculate the migration of tissue fluid from capillaries to gray matter and white matter, the flow of tissue fluid between compartments, the production and absorption of cerebrospinal fluid at choroid plexus and arachnoid granulation, and the production of metabolic water. Further, the volume, the colloid concentration, and the tissue pressure of/in each compartment are also calculable by solving 40-dimensional non-linear simultaneous differential equations. In this research, the obtained model was analyzed for its validation under the four condition of a normal adult, an adult with higher cerebral capillary pressure, an adult with lower cerebral capillary pressure, and an adult with lower colloid concentration in cerebral capillary. In the result, calculated fluid flow, tissue volume, colloid concentration, and tissue pressure were all converged to suitable value for the set condition within 60 minutes at a maximum. Also, because these results were not conflict with prior knowledge, it is certain that the model can enough represent physiological state of brain under such limited conditions at least. One of next challenges is to integrate this model and the already constructed cerebral blood circulation model. This modification enable to simulate CBF and ICP more precisely due to calculating the effect of blood pressure change to extracellular fluid migration and that of ICP change to CBF.

Keywords: dynamic model, cerebral extracellular migration, brain resuscitation, automatic control

Procedia PDF Downloads 156
16355 A Fuzzy Linear Regression Model Based on Dissemblance Index

Authors: Shih-Pin Chen, Shih-Syuan You

Abstract:

Fuzzy regression models are useful for investigating the relationship between explanatory variables and responses in fuzzy environments. To overcome the deficiencies of previous models and increase the explanatory power of fuzzy data, the graded mean integration (GMI) representation is applied to determine representative crisp regression coefficients. A fuzzy regression model is constructed based on the modified dissemblance index (MDI), which can precisely measure the actual total error. Compared with previous studies based on the proposed MDI and distance criterion, the results from commonly used test examples show that the proposed fuzzy linear regression model has higher explanatory power and forecasting accuracy.

Keywords: dissemblance index, fuzzy linear regression, graded mean integration, mathematical programming

Procedia PDF Downloads 439
16354 Mathematical Model of Corporate Bond Portfolio and Effective Border Preview

Authors: Sergey Podluzhnyy

Abstract:

One of the most important tasks of investment and pension fund management is building decision support system which helps to make right decision on corporate bond portfolio formation. Today there are several basic methods of bond portfolio management. They are duration management, immunization and convexity management. Identified methods have serious disadvantage: they do not take into account credit risk or insolvency risk of issuer. So, identified methods can be applied only for management and evaluation of high-quality sovereign bonds. Applying article proposes mathematical model for building an optimal in case of risk and yield corporate bond portfolio. Proposed model takes into account the default probability in formula of assessment of bonds which results to more correct evaluation of bonds prices. Moreover, applied model provides tools for visualization of the efficient frontier of corporate bonds portfolio taking into account the exposure to credit risk, which will increase the quality of the investment decisions of portfolio managers.

Keywords: corporate bond portfolio, default probability, effective boundary, portfolio optimization task

Procedia PDF Downloads 318
16353 Human Brain Organoids-on-a-Chip Systems to Model Neuroinflammation

Authors: Feng Guo

Abstract:

Human brain organoids, 3D brain tissue cultures derived from human pluripotent stem cells, hold promising potential in modeling neuroinflammation for a variety of neurological diseases. However, challenges remain in generating standardized human brain organoids that can recapitulate key physiological features of a human brain. Here, this study presents a series of organoids-on-a-chip systems to generate better human brain organoids and model neuroinflammation. By employing 3D printing and microfluidic 3D cell culture technologies, the study’s systems enable the reliable, scalable, and reproducible generation of human brain organoids. Compared with conventional protocols, this study’s method increased neural progenitor proliferation and reduced heterogeneity of human brain organoids. As a proof-of-concept application, the study applied this method to model substance use disorders.

Keywords: human brain organoids, microfluidics, organ-on-a-chip, neuroinflammation

Procedia PDF Downloads 202
16352 Computer-Based Model for Design Selection of Lightning Arrester for 132/33kV Substation

Authors: Uma U. Uma, Uzoechi Laz

Abstract:

Protection of equipment insulation against lightning over voltages and selection of lightning arrester that will discharge at lower voltage level than the voltage required to breakdown the electrical equipment insulation is examined. The objectives of this paper are to design a computer based model using standard equations for the selection of appropriate lightning arrester with the lowest rated surge arrester that will provide adequate protection of equipment insulation and equally have a satisfactory service life when connected to a specified line voltage in power system network. The effectiveness and non-effectiveness of the earthing system of substation determine arrester properties. MATLAB program with GUI (graphic user interphase) its subprogram is used in the development of the model for the determination of required parameters like voltage rating, impulse spark over voltage, power frequency spark over voltage, discharge current, current rating and protection level of lightning arrester of a specified voltage level of a particular line.

Keywords: lightning arrester, GUIs, MatLab program, computer based model

Procedia PDF Downloads 418