Search results for: hybrid forecasting models
1798 An Integrated Approach for Optimal Selection of Machining Parameters in Laser Micro-Machining Process
Authors: A. Gopala Krishna, M. Lakshmi Chaitanya, V. Kalyana Manohar
Abstract:
In the existent analysis, laser micro machining (LMM) of Silicon carbide (SiCp) reinforced Aluminum 7075 Metal Matrix Composite (Al7075/SiCp MMC) was studied. While machining, Because of the intense heat generated, A layer gets formed on the work piece surface which is called recast layer and this layer is detrimental to the surface quality of the component. The recast layer needs to be as small as possible for precise applications. Therefore, The height of recast layer and the depth of groove which are conflicting in nature were considered as the significant manufacturing criteria, Which determines the pursuit of a machining process obtained in LMM of Al7075/10%SiCp composite. The present work formulates the depth of groove and height of recast layer in relation to the machining parameters using the Response Surface Methodology (RSM) and correspondingly, The formulated mathematical models were put to use for optimization. Since the effect of machining parameters on the depth of groove and height of recast layer was contradictory, The problem was explicated as a multi objective optimization problem. Moreover, An evolutionary Non-dominated sorting genetic algorithm (NSGA-II) was employed to optimize the model established by RSM. Subsequently this algorithm was also adapted to achieve the Pareto optimal set of solutions that provide a detailed illustration for making the optimal solutions. Eventually experiments were conducted to affirm the results obtained from RSM and NSGA-II.Keywords: Laser Micro Machining (LMM), depth of groove, Height of recast layer, Response Surface Methodology (RSM), non-dominated sorting genetic algorithm
Procedia PDF Downloads 3451797 The Effect of Accounting Conservatism on Cost of Capital: A Quantile Regression Approach for MENA Countries
Authors: Maha Zouaoui Khalifa, Hakim Ben Othman, Hussaney Khaled
Abstract:
Prior empirical studies have investigated the economic consequences of accounting conservatism by examining its impact on the cost of equity capital (COEC). However, findings are not conclusive. We assume that inconsistent results of such association may be attributed to the regression models used in data analysis. To address this issue, we re-examine the effect of different dimension of accounting conservatism: unconditional conservatism (U_CONS) and conditional conservatism (C_CONS) on the COEC for a sample of listed firms from Middle Eastern and North Africa (MENA) countries, applying quantile regression (QR) approach developed by Koenker and Basset (1978). While classical ordinary least square (OLS) method is widely used in empirical accounting research, however it may produce inefficient and bias estimates in the case of departures from normality or long tail error distribution. QR method is more powerful than OLS to handle this kind of problem. It allows the coefficient on the independent variables to shift across the distribution of the dependent variable whereas OLS method only estimates the conditional mean effects of a response variable. We find as predicted that U_CONS has a significant positive effect on the COEC however, C_CONS has a negative impact. Findings suggest also that the effect of the two dimensions of accounting conservatism differs considerably across COEC quantiles. Comparing results from QR method with those of OLS, this study throws more lights on the association between accounting conservatism and COEC.Keywords: unconditional conservatism, conditional conservatism, cost of equity capital, OLS, quantile regression, emerging markets, MENA countries
Procedia PDF Downloads 3561796 Modeling Palm Oil Quality During the Ripening Process of Fresh Fruits
Authors: Afshin Keshvadi, Johari Endan, Haniff Harun, Desa Ahmad, Farah Saleena
Abstract:
Experiments were conducted to develop a model for analyzing the ripening process of oil palm fresh fruits in relation to oil yield and oil quality of palm oil produced. This research was carried out on 8-year-old Tenera (Dura × Pisifera) palms planted in 2003 at the Malaysian Palm Oil Board Research Station. Fresh fruit bunches were harvested from designated palms during January till May of 2010. The bunches were divided into three regions (top, middle and bottom), and fruits from the outer and inner layers were randomly sampled for analysis at 8, 12, 16 and 20 weeks after anthesis to establish relationships between maturity and oil development in the mesocarp and kernel. Computations on data related to ripening time, oil content and oil quality were performed using several computer software programs (MSTAT-C, SAS and Microsoft Excel). Nine nonlinear mathematical models were utilized using MATLAB software to fit the data collected. The results showed mean mesocarp oil percent increased from 1.24 % at 8 weeks after anthesis to 29.6 % at 20 weeks after anthesis. Fruits from the top part of the bunch had the highest mesocarp oil content of 10.09 %. The lowest kernel oil percent of 0.03 % was recorded at 12 weeks after anthesis. Palmitic acid and oleic acid comprised of more than 73 % of total mesocarp fatty acids at 8 weeks after anthesis, and increased to more than 80 % at fruit maturity at 20 weeks. The Logistic model with the highest R2 and the lowest root mean square error was found to be the best fit model.Keywords: oil palm, oil yield, ripening process, anthesis, fatty acids, modeling
Procedia PDF Downloads 3131795 A Study on the Impact of Perceived Benefits and Switching Costs of Consumers When Shifting from Brick and Mortar Store to Online Shopping of Apparels
Authors: Havisha Banda
Abstract:
Recent advancements in technology have facilitated commerce around the globe. The online medium of commerce has provided and will continue to provide great opportunities for consumers and businesses. Advancements in technology enable apparel stores, for instance, to improve their online services by using personalized virtual models allowing consumers to visualize the product on the model to determine correct sizing and fit. In addition to many advantages in online shopping the consumers will also have to undergo many types of switching costs in this process of buying apparel online. This study is to identify such switching costs and switching benefits from traditional shopping to online shopping and to understand what the consumers value the most. The scope of this study is to understand the types of switching costs and the factors that actually allow the consumers to shift from brick and mortar to online shopping and also to understand why a certain set of customers consider to purchase offline. Hence this study helps to understand the perceived cost and perceived benefit relation that the consumer draws in purchasing the garments online. This will help the upcoming e-commerce sites and brick and mortar store to understand the various factors and formulate new policies and implement strategies in their own ways to attract the customers and to retain them. A sample of 35 is considered for the process of laddered interviews. In the era of e-commerce there are people who feel comfortable to shop in a retail store rather than online purchase. Few respondents who shop online do not prefer to shop apparel online. Few respondents said that they shop online only for apparels. Most of the variables match in terms of switching costs and also in regard to benefits.Keywords: e-commerce, switching costs, switching benefits, apparel shopping
Procedia PDF Downloads 3181794 Analyzing Changes in Runoff Patterns Due to Urbanization Using SWAT Models
Authors: Asawari Ajay Avhad
Abstract:
The Soil and Water Assessment Tool (SWAT) is a hydrological model designed to predict the complex interactions within natural and human-altered watersheds. This research applies the SWAT model to the Ulhas River basin, a small watershed undergoing urbanization and characterized by bowl-like topography. Three simulation scenarios (LC17, LC22, and LC27) are investigated, each representing different land use and land cover (LULC) configurations, to assess the impact of urbanization on runoff. The LULC for the year 2027 is generated using the MOLUSCE Plugin of QGIS, incorporating various spatial factors such as DEM, Distance from Road, Distance from River, Slope, and distance from settlements. Future climate data is simulated within the SWAT model using historical data spanning 30 years. A susceptibility map for runoff across the basin is created, classifying runoff into five susceptibility levels ranging from very low to very high. Sub-basins corresponding to major urban settlements are identified as highly susceptible to runoff. With consideration of future climate projections, a slight increase in runoff is forecasted. The reliability of the methodology was validated through the identification of sub-basins known for experiencing severe flood events, which were determined to be highly susceptible to runoff. The susceptibility map successfully pinpointed these sub-basins with a track record of extreme flood occurrences, thus reinforcing the credibility of the assessment methodology. This study suggests that the methodology employed could serve as a valuable tool in flood management planning.Keywords: future land use impact, flood management, run off prediction, ArcSWAT
Procedia PDF Downloads 471793 The Impact of Hospital Strikes on Patient Care: Evidence from 135 Strikes in the Portuguese National Health System
Authors: Eduardo Costa
Abstract:
Hospital strikes in the Portuguese National Health Service (NHS) are becoming increasingly frequent, raising concerns in what respects patient safety. In fact, data shows that mortality rates for patients admitted during strikes are up to 30% higher than for patients admitted in other days. This paper analyses the effects of hospital strikes on patients’ outcomes. Specifically, it analyzes the impact of different strikes (physicians, nurses and other health professionals), on in-hospital mortality rates, readmission rates and length of stay. The paper uses patient-level data containing all NHS hospital admissions in mainland Portugal from 2012 to 2017, together with a comprehensive strike dataset comprising over 250 strike days (19 physicians-strike days, 150 nurses-strike days and 50 other health professionals-strike days) from 135 different strikes. The paper uses a linear probability model and controls for hospital and regional characteristics, time trends, and changes in patients’ composition and diagnoses. Preliminary results suggest a 6-7% increase in in-hospital mortality rates for patients exposed to physicians’ strikes. The effect is smaller for patients exposed to nurses’ strikes (2-5%). Patients exposed to nurses strikes during their stay have, on average, higher 30-days urgent readmission rates (4%). Length of stay also seems to increase for patients exposed to any strike. Results – conditional on further testing, namely on non-linear models - suggest that hospital operations and service levels are partially disrupted during strikes.Keywords: health sector strikes, in-hospital mortality rate, length of stay, readmission rate
Procedia PDF Downloads 1351792 Identification Algorithm of Critical Interface, Modelling Perils on Critical Infrastructure Subjects
Authors: Jiří. J. Urbánek, Hana Malachová, Josef Krahulec, Jitka Johanidisová
Abstract:
The paper deals with crisis situations investigation and modelling within the organizations of critical infrastructure. Every crisis situation has an origin in the emergency event occurrence in the organizations of energetic critical infrastructure especially. Here, the emergency events can be both the expected events, then crisis scenarios can be pre-prepared by pertinent organizational crisis management authorities towards their coping or the unexpected event (Black Swan effect) – without pre-prepared scenario, but it needs operational coping of crisis situations as well. The forms, characteristics, behaviour and utilization of crisis scenarios have various qualities, depending on real critical infrastructure organization prevention and training processes. An aim is always better organizational security and continuity obtainment. This paper objective is to find and investigate critical/ crisis zones and functions in critical situations models of critical infrastructure organization. The DYVELOP (Dynamic Vector Logistics of Processes) method is able to identify problematic critical zones and functions, displaying critical interfaces among actors of crisis situations on the DYVELOP maps named Blazons. Firstly, for realization of this ability is necessary to derive and create identification algorithm of critical interfaces. The locations of critical interfaces are the flags of crisis situation in real organization of critical infrastructure. Conclusive, the model of critical interface will be displayed at real organization of Czech energetic crisis infrastructure subject in Black Out peril environment. The Blazons need live power Point presentation for better comprehension of this paper mission.Keywords: algorithm, crisis, DYVELOP, infrastructure
Procedia PDF Downloads 4091791 Effect of Climate Change on Groundwater Recharge in a Sub-Humid Sub-Tropical Region of Eastern India
Authors: Suraj Jena, Rabindra Kumar Panda
Abstract:
The study region of the reported study was in Eastern India, having a sub-humid sub-tropical climate and sandy loam soil. The rainfall in this region has wide temporal and spatial variation. Due to lack of adequate surface water to meet the irrigation and household demands, groundwater is being over exploited in that region leading to continuous depletion of groundwater level. Therefore, there is an obvious urgency in reversing the depleting groundwater level through induced recharge, which becomes more critical under the climate change scenarios. The major goal of the reported study was to investigate the effects of climate change on groundwater recharge and subsequent adaptation strategies. Groundwater recharge was modelled using HELP3, a quasi-two-dimensional, deterministic, water-routing model along with global climate models (GCMs) and three global warming scenarios, to examine the changes in groundwater recharge rates for a 2030 climate under a variety of soil and vegetation covers. The relationship between the changing mean annual recharge and mean annual rainfall was evaluated for every combination of soil and vegetation using sensitivity analysis. The relationship was found to be statistically significant (p<0.05) with a coefficient of determination of 0.81. Vegetation dynamics and water-use affected by the increase in potential evapotranspiration for large climate variability scenario led to significant decrease in recharge from 49–658 mm to 18–179 mm respectively. Therefore, appropriate conjunctive use, irrigation schedule and enhanced recharge practices under the climate variability and land use/land cover change scenarios impacting the groundwater recharge needs to be understood properly for groundwater sustainability.Keywords: Groundwater recharge, climate variability, Land use/cover, GCM
Procedia PDF Downloads 2831790 The Metabolite Profiling of Fulvestrant-3 Boronic Acid under Biological Oxidation
Authors: Changde Zhang, Qiang Zhang, Shilong Zheng, Jiawang Liu, Shanchun Guo, Qiu Zhong, Guangdi Wang
Abstract:
Fulvestrant was approved by FDA to treat breast cancer as a selective estrogen receptor downregulator (SERD) with intramuscular injection administration. ZB716, a fulvestarnt-3 boronic acid, is an SERD with comparable anticancer effect to fulvestrant, but could produce good pharmacokinetic properties under oral administration with mice or rat models. To understand why ZB716 produced much better oral bioavailability, it was proposed that the boronic acid blocked the phase II direct biotransformation with the hydroxyl group on the 3 position of the aromatic ring on fulvestrant. In this study, ZB716 or fulvestrant was incubated with human liver microsome and oxidation cofactor NADPH in vitro. Their metabolites after oxidation were profiled with the Q-Exactive, a high-resolution mass spectrometer. The result showed that ZB716 blocked the forming of hydroxyl groups on its benzene ring except for the oxidation of C-B bond forming fulvestrant in its metabolites, and the concentration of fulvestrant with one more hydroxyl group found in the metabolites from incubation with fulvestrant was about 34 fold high as that formed from incubation with ZB716. Compared to fulvestrant, ZB716 is expected to be much difficult to be further bio-transformed into more hydrophilic compounds, to be difficult excreted out of blood system, and to have longer residence time in blood, which can lead to higher oral bioavailability. This study provided evidence to explain the high bioavailability of ZB716 after oral administration from the perspective of its difficulty of oxidation, a phase I biotransformation, on positions on its aromatic ring.Keywords: biotransformation, fulvestrant, metabolite profiling, ZB716
Procedia PDF Downloads 2591789 Data Augmentation for Early-Stage Lung Nodules Using Deep Image Prior and Pix2pix
Authors: Qasim Munye, Juned Islam, Haseeb Qureshi, Syed Jung
Abstract:
Lung nodules are commonly identified in computed tomography (CT) scans by experienced radiologists at a relatively late stage. Early diagnosis can greatly increase survival. We propose using a pix2pix conditional generative adversarial network to generate realistic images simulating early-stage lung nodule growth. We have applied deep images prior to 2341 slices from 895 computed tomography (CT) scans from the Lung Image Database Consortium (LIDC) dataset to generate pseudo-healthy medical images. From these images, 819 were chosen to train a pix2pix network. We observed that for most of the images, the pix2pix network was able to generate images where the nodule increased in size and intensity across epochs. To evaluate the images, 400 generated images were chosen at random and shown to a medical student beside their corresponding original image. Of these 400 generated images, 384 were defined as satisfactory - meaning they resembled a nodule and were visually similar to the corresponding image. We believe that this generated dataset could be used as training data for neural networks to detect lung nodules at an early stage or to improve the accuracy of such networks. This is particularly significant as datasets containing the growth of early-stage nodules are scarce. This project shows that the combination of deep image prior and generative models could potentially open the door to creating larger datasets than currently possible and has the potential to increase the accuracy of medical classification tasks.Keywords: medical technology, artificial intelligence, radiology, lung cancer
Procedia PDF Downloads 691788 The Effect of Socio-Affective Variables in the Relationship between Organizational Trust and Employee Turnover Intention
Authors: Paula A. Cruise, Carvell McLeary
Abstract:
Employee turnover leads to lowered productivity, decreased morale and work quality, and psychological effects associated with employee separation and replacement. Yet, it remains unknown why talented employees willingly withdraw from organizations. This uncertainty is worsened as studies; a) priorities organizational over individual predictors resulting in restriction in range in turnover measurement; b) focus on actual rather than intended turnover thereby limiting conceptual understanding of the turnover construct and its relationship with other variables and; c) produce inconsistent findings across cultures, contexts and industries despite a clear need for a unified perspective. The current study addressed these gaps by adopting the theory of planned behavior (TPB) framework to examine socio-cognitive factors in organizational trust and individual turnover intentions among bankers and energy employees in Jamaica. In a comparative study of n=369 [nbank= 264; male=57 (22.73%); nenergy =105; male =45 (42.86)], it was hypothesized that organizational trust was a predictor of employee turnover intention, and the effect of individual, group, cognitive and socio-affective variables varied across industry. Findings from structural equation modelling confirmed the hypothesis, with a model of both cognitive and socio-affective variables being a better fit [CMIN (χ2) = 800.067, df = 364, p ≤ .000; CFI = 0.950; RMSEA = 0.057 with 90% C.I. (0.052 - 0.062); PCLOSE = 0.016; PNFI = 0.818 in predicting turnover intention. The findings are discussed in relation to socio-cognitive components of trust models and predicting negative employee behaviors across cultures and industries.Keywords: context-specific organizational trust, cross-cultural psychology, theory of planned behavior, employee turnover intention
Procedia PDF Downloads 2481787 To Smile or Not to Smile: How Engendered Facial Cues affect Hiring Decisions
Authors: Sabrina S. W. Chan, Emily Schwartzman, Nicholas O. Rule
Abstract:
Past literature showed mixed findings on how smiling affects a person’s chance of getting hired. On one hand, smiling suggests enthusiasm, cooperativeness, and enthusiasm, which can elicit positive impressions. On the other hand, smiling can suggest weaker professionalism or a filler to hide nervousness, which can lower a candidate’s perceived competence. Emotion expressions can also be perceived differently depending on the person’s gender and can activate certain gender stereotypes. Women especially face a double bind with respect to hiring decisions and smiling. Because women are socially expected to smile more, those who do not smile will be considered stereotype incongruent. This becomes a noisy signal to employers and may lower their chance of being hired. However, women’s smiling as a formality may also be an obstacle. They are more likely to put on fake smiles; but if they do, they are also likely to be perceived as inauthentic and over-expressive. This paper sought to investigate how smiling affects hiring decisions, and whether this relationship is moderated by gender. In Study 1, participants were shown a series of smiling and emotionally neutral face images, incorporated into fabricated LinkedIn profiles. Participants were asked to rate how hireable they thought that candidate was. Results showed that participants rated smiling candidates as more hireable than nonsmiling candidates, and that there was no difference in gender. Moreover, individuals who did not study business were more biased in their perceptions than those who did. Since results showed a trending favoritism over female targets, in suspect of desirability bias, a second study was conducted to collect implicit measures behind the decision-making process. In Study 2, a mouse-tracking design was adopted to explore whether participants’ implicit attitudes were different from their explicit responses on hiring. Participants asked to respond whether they would offer an interview to a candidate. Findings from Study 1 was replicated in that smiling candidates received more offers than neutral-faced candidates. Results also showed that female candidates received significantly more offers than male candidates but was associated with higher attractiveness ratings. There were no significant findings in reaction time or change of decisions. However, stronger hesitation was detected for responses made towards neutral targets when participants perceived the given position as masculine, implying a conscious attempt of making situational judgments (e.g., considering candidate’s personality and job fit) to override automatic processing (evaluations based on attractiveness). Future studies would look at how these findings differ for positions which are stereotypically masculine (e.g., surgeons) and stereotypically feminine (e.g., kindergarten teachers). Current findings have strong implications for developing bias-free hiring policies in workplace, especially for organizations who maintain online/hybrid working arrangements in the post-pandemic era. This also bridges the literature gap between face perception and gender discrimination, highlighting how engendered facial cues can affect individual’s career development and organization’s success in diversity and inclusion.Keywords: engendered facial cues, face perception, gender stereotypes, hiring decisions, smiling, workplace discrimination
Procedia PDF Downloads 1331786 Effect of Atrial Flutter on Alcoholic Cardiomyopathy
Authors: Ibrahim Ahmed, Richard Amoateng, Akhil Jain, Mohamed Ahmed
Abstract:
Alcoholic cardiomyopathy (ACM) is a type of acquired cardiomyopathy caused by chronic alcohol consumption. Frequently ACM is associated with arrhythmias such as atrial flutter. Our aim was to characterize the patient demographics and investigate the effect of atrial flutter (AF) on ACM. This was a retrospective cohort study using the Nationwide Inpatient Sample database to identify admissions in adults with principal and secondary diagnoses of alcoholic cardiomyopathy and atrial flutter from 2019. Multivariate linear and logistic regression models were adjusted for age, gender, race, household income, insurance status, Elixhauser comorbidity score, hospital location, bed size, and teaching status. The primary outcome was all-cause mortality, and secondary outcomes were the length of stay (LOS) and total charge in USD. There was a total of 21,855 admissions with alcoholic cardiomyopathy, of which 1,635 had atrial flutter (AF-ACM). Compared to Non-AF-ACM cohort, AF-ACM cohort had fewer females (4.89% vs 14.54%, p<0.001), were older (58.66 vs 56.13 years, p<0.001), fewer Native Americans (0.61% vs2.67%, p<0.01), had fewer smaller (19.27% vs 22.45%, p<0.01) & medium-sized hospitals (23.24% vs28.98%, p<0.01), but more large-sized hospitals (57.49% vs 48.57%, p<0.01), more Medicare (40.37% vs 34.08%, p<0.05) and fewer Medicaid insured (23.55% vs 33.70%, p=<0.001), fewer hypertension (10.7% vs 15.01%, p<0.05), and more obesity (24.77% vs 16.35%, p<0.001). Compared to Non-AF-ACM cohort, there was no difference in AF-ACM cohort mortality rate (6.13% vs 4.20%, p=0.0998), unadjusted mortality OR 1.49 (95% CI 0.92-2.40, p=0.102), adjusted mortality OR 1.36 (95% CI 0.83-2.24, p=0.221), but there was a difference in LOS 1.23 days (95% CI 0.34-2.13, p<0.01), total charge $28,860.30 (95% CI 11,883.96-45,836.60, p<0.01). In patients admitted with ACM, the presence of AF was not associated with a higher all-cause mortality rate or odds of all-cause mortality; however, it was associated with 1.23 days increase in LOS and a $28,860.30 increase in total hospitalization charge. Native Americans, older age and obesity were risk factors for the presence of AF in ACM.Keywords: alcoholic cardiomyopathy, atrial flutter, cardiomyopathy, arrhythmia
Procedia PDF Downloads 1121785 An Image Processing Scheme for Skin Fungal Disease Identification
Authors: A. A. M. A. S. S. Perera, L. A. Ranasinghe, T. K. H. Nimeshika, D. M. Dhanushka Dissanayake, Namalie Walgampaya
Abstract:
Nowadays, skin fungal diseases are mostly found in people of tropical countries like Sri Lanka. A skin fungal disease is a particular kind of illness caused by fungus. These diseases have various dangerous effects on the skin and keep on spreading over time. It becomes important to identify these diseases at their initial stage to control it from spreading. This paper presents an automated skin fungal disease identification system implemented to speed up the diagnosis process by identifying skin fungal infections in digital images. An image of the diseased skin lesion is acquired and a comprehensive computer vision and image processing scheme is used to process the image for the disease identification. This includes colour analysis using RGB and HSV colour models, texture classification using Grey Level Run Length Matrix, Grey Level Co-Occurrence Matrix and Local Binary Pattern, Object detection, Shape Identification and many more. This paper presents the approach and its outcome for identification of four most common skin fungal infections, namely, Tinea Corporis, Sporotrichosis, Malassezia and Onychomycosis. The main intention of this research is to provide an automated skin fungal disease identification system that increase the diagnostic quality, shorten the time-to-diagnosis and improve the efficiency of detection and successful treatment for skin fungal diseases.Keywords: Circularity Index, Grey Level Run Length Matrix, Grey Level Co-Occurrence Matrix, Local Binary Pattern, Object detection, Ring Detection, Shape Identification
Procedia PDF Downloads 2321784 Interaction Between Gut Microorganisms and Endocrine Disruptors - Effects on Hyperglycaemia
Authors: Karthika Durairaj, Buvaneswari G., Gowdham M., Gilles M., Velmurugan G.
Abstract:
Background: Hyperglycaemia is the primary cause of metabolic illness. Recently, researchers focused on the possibility that chemical exposure could promote metabolic disease. Hyperglycaemia causes a variety of metabolic diseases dependent on its etiologic conditions. According to animal and population-based research, individual chemical exposure causes health problems through alteration of endocrine function with the influence of microbial influence. We were intrigued by the function of gut microbiota variation in high fat and chemically induced hyperglycaemia. Methodology: C57/Bl6 mice were subjected to two different treatments to generate the etiologic-based diabetes model: I – a high-fat diet with a 45 kcal diet, and II - endocrine disrupting chemicals (EDCs) cocktail. The mice were monitored periodically for changes in body weight and fasting glucose. After 120 days of the experiment, blood anthropometry, faecal metagenomics and metabolomics were performed and analyzed through statistical analysis using one-way ANOVA and student’s t-test. Results: After 120 days of exposure, we found hyperglycaemic changes in both experimental models. The treatment groups also differed in terms of plasma lipid levels, creatinine, and hepatic markers. To determine the influence on glucose metabolism, microbial profiling and metabolite levels were significantly different between groups. The gene expression studies associated with glucose metabolism vary between hosts and their treatments. Conclusion: This research will result in the identification of biomarkers and molecular targets for better diabetes control and treatment.Keywords: hyperglycaemia, endocrine-disrupting chemicals, gut microbiota, host metabolism
Procedia PDF Downloads 421783 Advancements in Laser Welding Process: A Comprehensive Model for Predictive Geometrical, Metallurgical, and Mechanical Characteristics
Authors: Seyedeh Fatemeh Nabavi, Hamid Dalir, Anooshiravan Farshidianfar
Abstract:
Laser welding is pivotal in modern manufacturing, offering unmatched precision, speed, and efficiency. Its versatility in minimizing heat-affected zones, seamlessly joining dissimilar materials, and working with various metals makes it indispensable for crafting intricate automotive components. Integration into automated systems ensures consistent delivery of high-quality welds, thereby enhancing overall production efficiency. Noteworthy are the safety benefits of laser welding, including reduced fumes and consumable materials, which align with industry standards and environmental sustainability goals. As the automotive sector increasingly demands advanced materials and stringent safety and quality standards, laser welding emerges as a cornerstone technology. A comprehensive model encompassing thermal dynamic and characteristics models accurately predicts geometrical, metallurgical, and mechanical aspects of the laser beam welding process. Notably, Model 2 showcases exceptional accuracy, achieving remarkably low error rates in predicting primary and secondary dendrite arm spacing (PDAS and SDAS). These findings underscore the model's reliability and effectiveness, providing invaluable insights and predictive capabilities crucial for optimizing welding processes and ensuring superior productivity, efficiency, and quality in the automotive industry.Keywords: laser welding process, geometrical characteristics, mechanical characteristics, metallurgical characteristics, comprehensive model, thermal dynamic
Procedia PDF Downloads 491782 The Effect of Fibre Orientation on the Mechanical Behaviour of Skeletal Muscle: A Finite Element Study
Authors: Christobel Gondwe, Yongtao Lu, Claudia Mazzà, Xinshan Li
Abstract:
Skeletal muscle plays an important role in the human body system and function by generating voluntary forces and facilitating body motion. However, The mechanical properties and behaviour of skeletal muscle are still not comprehensively known yet. As such, various robust engineering techniques have been applied to better elucidate the mechanical behaviour of skeletal muscle. It is considered that muscle mechanics are highly governed by the architecture of the fibre orientations. Therefore, the aim of this study was to investigate the effect of different fibre orientations on the mechanical behaviour of skeletal muscle.In this study, a continuum mechanics approach–finite element (FE) analysis was applied to the left bicep femoris long head to determine the contractile mechanism of the muscle using Hill’s three-element model. The geometry of the muscle was segmented from the magnetic resonance images. The muscle was modelled as a quasi-incompressible hyperelastic (Mooney-Rivlin) material. Two types of fibre orientations were implemented: one with the idealised fibre arrangement, i.e. parallel single-direction fibres going from the muscle origin to insertion sites, and the other with curved fibre arrangement which is aligned with the muscle shape.The second fibre arrangement was implemented through the finite element method; non-uniform rational B-spline (FEM-NURBs) technique by means of user material (UMAT) subroutines. The stress-strain behaviour of the muscle was investigated under idealised exercise conditions, and will be further analysed under physiological conditions. The results of the two different FE models have been outputted and qualitatively compared.Keywords: FEM-NURBS, finite element analysis, Mooney-Rivlin hyperelastic, muscle architecture
Procedia PDF Downloads 4791781 DLtrace: Toward Understanding and Testing Deep Learning Information Flow in Deep Learning-Based Android Apps
Authors: Jie Zhang, Qianyu Guo, Tieyi Zhang, Zhiyong Feng, Xiaohong Li
Abstract:
With the widespread popularity of mobile devices and the development of artificial intelligence (AI), deep learning (DL) has been extensively applied in Android apps. Compared with traditional Android apps (traditional apps), deep learning based Android apps (DL-based apps) need to use more third-party application programming interfaces (APIs) to complete complex DL inference tasks. However, existing methods (e.g., FlowDroid) for detecting sensitive information leakage in Android apps cannot be directly used to detect DL-based apps as they are difficult to detect third-party APIs. To solve this problem, we design DLtrace; a new static information flow analysis tool that can effectively recognize third-party APIs. With our proposed trace and detection algorithms, DLtrace can also efficiently detect privacy leaks caused by sensitive APIs in DL-based apps. Moreover, using DLtrace, we summarize the non-sequential characteristics of DL inference tasks in DL-based apps and the specific functionalities provided by DL models for such apps. We propose two formal definitions to deal with the common polymorphism and anonymous inner-class problems in the Android static analyzer. We conducted an empirical assessment with DLtrace on 208 popular DL-based apps in the wild and found that 26.0% of the apps suffered from sensitive information leakage. Furthermore, DLtrace has a more robust performance than FlowDroid in detecting and identifying third-party APIs. The experimental results demonstrate that DLtrace expands FlowDroid in understanding DL-based apps and detecting security issues therein.Keywords: mobile computing, deep learning apps, sensitive information, static analysis
Procedia PDF Downloads 1791780 Improving Preconception Health and Lifestyle Behaviours through Digital Health Intervention: The OptimalMe Program
Authors: Bonnie R. Brammall, Rhonda M. Garad, Helena J. Teede, Cheryce L. Harrison
Abstract:
Introduction: Reproductive aged women are at high-risk for accelerated weight gain and obesity development, with pregnancy recognised as a critical contributory life phase. Healthy lifestyle interventions during the preconception and antenatal period improve maternal and infant health outcomes. Yet, interventions from preconception through to postpartum and translation and implementation into real-world healthcare settings remain limited. OptimalMe is a randomised, hybrid implementation effectiveness study of evidence-based healthy lifestyle intervention. Here, we report engagement, acceptability of the intervention during preconception, and self-reported behaviour change outcomes as a result of the preconception phase of the intervention. Methods: Reproductive aged women who upgraded their private health insurance to include pregnancy and birth cover, signalling a pregnancy intention, were invited to participate. Women received access to an online portal with preconception health and lifestyle modules, goal-setting and behaviour change tools, monthly SMS messages, and two coaching sessions (randomised to video or phone) prior to pregnancy. Results: Overall n=527 expressed interest in participating. Of these, n=33 did not meet inclusion criteria, n=8 were not contactable for eligibility screening, and n=177 failed to engage after the screening, leaving n=309 who were enrolled in OptimalMe and randomised to intervention delivery method. Engagement with coaching sessions dropped by 25% for session two, with no difference between intervention groups. Women had a mean (SD) age of 31.7 (4.3) years and, at baseline, a self-reported mean BMI of 25.7 (6.1) kg/m², with 55.8% (n=172) of a healthy BMI. Behaviour was sub-optimal with infrequent self-weighing (38.1%), alcohol consumption prevalent (57.1%), sub-optimal pre-pregnancy supplementation (61.5%), and incomplete medical screening. Post-intervention 73.2% of women reported engagement with a GP for preconception care and improved lifestyle behaviour (85.5%), since starting OptimalMe. Direct pre-and-post comparison of individual participant data showed that of 322 points of potential change (up-to-date cervical screening, elimination of high-risk behaviours [alcohol, drugs, smoking], uptake of preconception supplements and improved weighing habits) 158 (49.1%) points of change were achieved. Health coaching sessions were found to improve accountability and confidence, yet further personalisation and support were desired. Engagement with video and phone sessions was comparable, having similar impacts on behaviour change, and both methods were well accepted and increased women's accountability. Conclusion: A low-intensity digital health and lifestyle program with embedded health coaching can improve the uptake of preconception care and lead to self-reported behaviour change. This is the first program of its kind to reach an otherwise healthy population of women planning a pregnancy. Women who were otherwise healthy showed divergence from preconception health and lifestyle objectives and benefited from the intervention. OptimalMe shows promising results for population-based behaviour change interventions that can improve preconception lifestyle habits and increase engagement with clinical health care for pregnancy preparation.Keywords: preconception, pregnancy, preventative health, weight gain prevention, self-management, behaviour change, digital health, telehealth, intervention, women's health
Procedia PDF Downloads 911779 A Modular and Reusable Bond Graph Model of Epithelial Transport in the Proximal Convoluted Tubule
Authors: Leyla Noroozbabaee, David Nickerson
Abstract:
We introduce a modular, consistent, reusable bond graph model of the renal nephron’s proximal convoluted tubule (PCT), which can reproduce biological behaviour. In this work, we focus on ion and volume transport in the proximal convoluted tubule of the renal nephron. Modelling complex systems requires complex modelling problems to be broken down into manageable pieces. This can be enabled by developing models of subsystems that are subsequently coupled hierarchically. Because they are based on a graph structure. In the current work, we define two modular subsystems: the resistive module representing the membrane and the capacitive module representing solution compartments. Each module is analyzed based on thermodynamic processes, and all the subsystems are reintegrated into circuit theory in network thermodynamics. The epithelial transport system we introduce in the current study consists of five transport membranes and four solution compartments. Coupled dissipations in the system occur in the membrane subsystems and coupled free-energy increasing, or decreasing processes appear in solution compartment subsystems. These structural subsystems also consist of elementary thermodynamic processes: dissipations, free-energy change, and power conversions. We provide free and open access to the Python implementation to ensure our model is accessible, enabling the reader to explore the model through setting their simulations and reproducibility tests.Keywords: Bond Graph, Epithelial Transport, Water Transport, Mathematical Modeling
Procedia PDF Downloads 871778 Non−zero θ_13 and δ_CP phase with A_4 Flavor Symmetry and Deviations to Tri−Bi−Maximal mixing via Z_2 × Z_2 invariant perturbations in the Neutrino sector.
Authors: Gayatri Ghosh
Abstract:
In this work, a flavour theory of a neutrino mass model based on A_4 symmetry is considered to explain the phenomenology of neutrino mixing. The spontaneous symmetry breaking of A_4 symmetry in this model leads to tribimaximal mixing in the neutrino sector at a leading order. We consider the effect of Z_2 × Z_2 invariant perturbations in neutrino sector and find the allowed region of correction terms in the perturbation matrix that is consistent with 3σ ranges of the experimental values of the mixing angles. We study the entanglement of this formalism on the other phenomenological observables, such as δ_CP phase, the neutrino oscillation probability P(νµ → νe), the effective Majorana mass |mee| and |meff νe |. A Z_2 × Z_2 invariant perturbations in this model is introduced in the neutrino sector which leads to testable predictions of θ_13 and CP violation. By changing the magnitudes of perturbations in neutrino sector, one can generate viable values of δ_CP and neutrino oscillation parameters. Next we investigate the feasibility of charged lepton flavour violation in type-I seesaw models with leptonic flavour symmetries at high energy that leads to tribimaximal neutrino mixing. We consider an effective theory with an A_4 × Z_2 × Z_2 symmetry, which after spontaneous symmetry breaking at high scale which is much higher than the electroweak scale leads to charged lepton flavour violation processes once the heavy Majorana neutrino mass degeneracy is lifted either by renormalization group effects or by a soft breaking of the A_4 symmetry. In this context the implications for charged lepton flavour violation processes like µ → eγ, τ → eγ, τ → µγ are discussed.Keywords: Z2 × Z2 invariant perturbations, CLFV, delta CP phase, tribimaximal neutrino mixing
Procedia PDF Downloads 791777 Experimental Correlation for Erythrocyte Aggregation Rate in Population Balance Modeling
Authors: Erfan Niazi, Marianne Fenech
Abstract:
Red Blood Cells (RBCs) or erythrocytes tend to form chain-like aggregates under low shear rate called rouleaux. This is a reversible process and rouleaux disaggregate in high shear rates. Therefore, RBCs aggregation occurs in the microcirculation where low shear rates are present but does not occur under normal physiological conditions in large arteries. Numerical modeling of RBCs interactions is fundamental in analytical models of a blood flow in microcirculation. Population Balance Modeling (PBM) is particularly useful for studying problems where particles agglomerate and break in a two phase flow systems to find flow characteristics. In this method, the elementary particles lose their individual identity due to continuous destructions and recreations by break-up and agglomeration. The aim of this study is to find RBCs aggregation in a dynamic situation. Simplified PBM was used previously to find the aggregation rate on a static observation of the RBCs aggregation in a drop of blood under the microscope. To find aggregation rate in a dynamic situation we propose an experimental set up testing RBCs sedimentation. In this test, RBCs interact and aggregate to form rouleaux. In this configuration, disaggregation can be neglected due to low shear stress. A high-speed camera is used to acquire video-microscopic pictures of the process. The sizes of the aggregates and velocity of sedimentation are extracted using an image processing techniques. Based on the data collection from 5 healthy human blood samples, the aggregation rate was estimated as 2.7x103(±0.3 x103) 1/s.Keywords: red blood cell, rouleaux, microfluidics, image processing, population balance modeling
Procedia PDF Downloads 3551776 Photoelastic Analysis and Finite Elements Analysis of a Stress Field Developed in a Double Edge Notched Specimen
Authors: A. Bilek, M. Beldi, T. Cherfi, S. Djebali, S. Larbi
Abstract:
Finite elements analysis and photoelasticity are used to determine the stress field developed in a double edge notched specimen loaded in tension. The specimen is cut in a birefringent plate. Experimental isochromatic fringes are obtained with circularly polarized light on the analyzer of a regular polariscope. The fringes represent the loci of points of equal maximum shear stress. In order to obtain the stress values corresponding to the fringe orders recorded in the notched specimen, particularly in the neighborhood of the notches, a calibrating disc made of the same material is loaded in compression along its diameter in order to determine the photoelastic fringe value. This fringe value is also used in the finite elements solution in order to obtain the simulated photoelastic fringes, the isochromatics as well as the isoclinics. A color scale is used by the software to represent the simulated fringes on the whole model. The stress concentration factor can be readily obtained at the notches. Good agreements are obtained between the experimental and the simulated fringe patterns and between the graphs of the shear stress particularly in the neighborhood of the notches. The purpose in this paper is to show that one can obtain rapidly and accurately, by the finite element analysis, the isochromatic and the isoclinic fringe patterns in a stressed model as the experimental procedure can be time consuming. Stress fields can therefore be analyzed in three dimensional models as long as the meshing and the limit conditions are properly set in the program.Keywords: isochromatic fringe, isoclinic fringe, photoelasticity, stress concentration factor
Procedia PDF Downloads 2291775 Learning Dynamic Representations of Nodes in Temporally Variant Graphs
Authors: Sandra Mitrovic, Gaurav Singh
Abstract:
In many industries, including telecommunications, churn prediction has been a topic of active research. A lot of attention has been drawn on devising the most informative features, and this area of research has gained even more focus with spread of (social) network analytics. The call detail records (CDRs) have been used to construct customer networks and extract potentially useful features. However, to the best of our knowledge, no studies including network features have yet proposed a generic way of representing network information. Instead, ad-hoc and dataset dependent solutions have been suggested. In this work, we build upon a recently presented method (node2vec) to obtain representations for nodes in observed network. The proposed approach is generic and applicable to any network and domain. Unlike node2vec, which assumes a static network, we consider a dynamic and time-evolving network. To account for this, we propose an approach that constructs the feature representation of each node by generating its node2vec representations at different timestamps, concatenating them and finally compressing using an auto-encoder-like method in order to retain reasonably long and informative feature vectors. We test the proposed method on churn prediction task in telco domain. To predict churners at timestamp ts+1, we construct training and testing datasets consisting of feature vectors from time intervals [t1, ts-1] and [t2, ts] respectively, and use traditional supervised classification models like SVM and Logistic Regression. Observed results show the effectiveness of proposed approach as compared to ad-hoc feature selection based approaches and static node2vec.Keywords: churn prediction, dynamic networks, node2vec, auto-encoders
Procedia PDF Downloads 3151774 Neurosciences in Entrepreneurship: The Multitasking Case in Favor of Social Entrepreneurship Innovation
Authors: Berger Aida
Abstract:
Social entrepreneurship has emerged as an active area of practice and research within the last three decades and has called for a focus on Social Entrepreneurship innovation. Areas such as academics, practitioners , institutions or governments have placed Social Entrepreneurship on the priority list of reflexion and action. It has been accepted that Social entrepreneurship (SE) shares large similarities with its parent, Traditional Entrepreneurship (TE). SE has grown over the past ten years exploring entrepreneurial cognition and the analysis of the ways of thinking of entrepreneurs. The research community believes that value exists in grounding entrepreneurship in neuroscience and notes that SE, like Traditional Entrepreneurship, needs to undergo efforts in clarification, definition and differentiation. Moreover, gaps in SE research call for integrative multistage and multilevel framework for further research. The cognitive processes underpinning entrepreneurial action are similar for SE and TE even if Social Entrepreneurship orientation shows an increased empathy value. Theoretically, there is a need to develop sound models of how to process functions and how to work more effectively as entrepreneurs and research on efficiency improvement calls for the analysis of the most common practices in entrepreneurship. Multitasking has been recognized as a daily and unavoidable habit of entrepreneurs. Hence, we believe in the need of analyzing the multiple task phenomena as a methodology for skill acquisition. We will conduct our paper including Social Entrepreneurship within the wider spectrum of Traditional Entrepreneurship, for the purpose of simplifying the neuroscientific lecture of the entrepreneurial cognition. A question to be inquired is to know if there is a way of developing multitasking habits in order to improve entrepreneurial skills such as speed of information processing , creativity and adaptability . Nevertheless, the direct link between the neuroscientific approach to multitasking and entrepreneurship effectiveness is yet to be uncovered. That is why an extensive Literature Review on Multitasking is a propos.Keywords: cognitive, entrepreneurial, empathy, multitasking
Procedia PDF Downloads 1721773 Inferring the Ecological Quality of Seagrass Beds from Using Composition and Configuration Indices
Authors: Fabrice Houngnandan, Celia Fery, Thomas Bockel, Julie Deter
Abstract:
Getting water cleaner and stopping global biodiversity loss requires indices to measure changes and evaluate the achievement of objectives. The endemic and protected seagrass species Posidonia oceanica is a biological indicator used to monitor the ecological quality of marine Mediterranean waters. One ecosystem index (EBQI), two biotic indices (PREI, Bipo), and several landscape indices, which measure the composition and configuration of the P. oceanica seagrass at the population scale have been developed. While the formers are measured at monitoring sites, the landscape indices can be calculated for the entire seabed covered by this ecosystem. This present work aims to search on the link between these indices and the best scale to be used in order to maximize this link. We used data collected between 2014 to 2019 along the French Mediterranean coastline to calculate EBQI, PREI, and Bipo at 100 sites. From the P. oceanica seagrass distribution map, configuration and composition indices around these different sites in 6 different grid sizes (100 m x 100 to 1000 m x 1000 m) were determined. Correlation analyses were first used to find out the grid size presenting the strongest and most significant link between the different types of indices. Finally, several models were compared basis on various metrics to identify the one that best explains the nature of the link between these indices. Our results showed a strong and significant link between biotic indices and the best correlations between biotic and landscape indices within the 600 m x 600 m grid cells. These results showed that the use of landscape indices is possible to monitor the health of seagrass beds at a large scale.Keywords: ecological indicators, decline, conservation, submerged aquatic vegetation
Procedia PDF Downloads 1311772 A Fuzzy Hybrıd Decısıon Support System for Naval Base Place Selectıon in a Foreıgn Country
Authors: Latif Yanar, Muharrem Kaçan
Abstract:
In this study, an Analytic Hierarchy Process and Analytic Network Process Decision Support System (DSS) model for determination of a navy base place in another country is proposed together with a decision support software (DESTEC 1.0) developed using C Sharp programming language. The proposed software also has the ability of performing the fuzzy models (Fuzzy AHP and Fuzzy ANP) of the proposed DSS to cope with the ambiguous and linguistic nature of the model. The AHP and ANP model, for a decision support for selecting the best place among the alternatives, including the criteria and alternatives, is developed and solved by the experts from Turkish Navy and Turkish academicians related to international relations branches of the universities in Turkey. Also, the questionnaires used for weighting of the criteria and the alternatives are filled by these experts.Some of our alternatives are: economic and political stability of the third country, the effect of another super power in that country, historical relations, security in that country, social facilities in the city in which the base will be built, the transportation security and difficulty from a main city that have an airport to the city will have the base etc. Over 20 criteria like these are determined which are categorized in social, political, economic and military aspects. As a result all the criteria and three alternatives are evaluated by different people who have background and experience to weight the criteria and alternatives as it must be in AHP and ANP evaluation system. The alternatives got their degrees all between 0 – 1 and the total is 1. At the end the DSS advices one of the alternatives as the best one to the decision maker according to the developed model and the evaluations of the experts.Keywords: analytic hierarchical process, analytic network process, fuzzy logic, naval base place selection, multiple criteria decision making
Procedia PDF Downloads 3911771 Effect of Surface Treatments on the Cohesive Response of Nylon 6/silica Interfaces
Authors: S. Arabnejad, D. W. C. Cheong, H. Chaobin, V. P. W. Shim
Abstract:
Debonding is the one of the fundamental damage mechanisms in particle field composites. This phenomenon gains more importance in nano composites because of the extensive interfacial region present in these materials. Understanding the debonding mechanism accurately, can help in understanding and predicting the response of nano composites as the interface deteriorates. The small length scale of the phenomenon makes the experimental characterization complicated and the results of it, far from real physical behavior. In this study the damage process in nylon-6/silica interface is examined through Molecular Dynamics (MD) modeling and simulations. The silica has been modeled with three forms of surfaces – without any surface treatment, with the surface treatment of 3-aminopropyltriethoxysilane (APTES) and with Hexamethyldisilazane (HMDZ) surface treatment. The APTES surface modification used to create functional groups on the silica surface, reacts and form covalent bonds with nylon 6 chains while the HMDZ surface treatment only interacts with both particle and polymer by non-bond interaction. The MD model in this study uses a PCFF force field. The atomic model is generated in a periodic box with a layer of vacuum on top of the polymer layer. This layer of vacuum is large enough that assures us from not having any interaction between particle and substrate after debonding. Results show that each of these three models show a different traction separation behavior. However, all of them show an almost bilinear traction separation behavior. The study also reveals a strong correlation between the length of APTES surface treatment and the cohesive strength of the interface.Keywords: debonding, surface treatment, cohesive response, separation behaviour
Procedia PDF Downloads 4601770 Bracing Applications for Improving the Earthquake Performance of Reinforced Concrete Structures
Authors: Diyar Yousif Ali
Abstract:
Braced frames, besides other structural systems, such as shear walls or moment resisting frames, have been a valuable and effective technique to increase structures against seismic loads. In wind or seismic excitations, diagonal members react as truss web elements which would afford tension or compression stresses. This study proposes to consider the effect of bracing diagonal configuration on values of base shear and displacement of building. Two models were created, and nonlinear pushover analysis was implemented. Results show that bracing members enhance the lateral load performance of the Concentric Braced Frame (CBF) considerably. The purpose of this article is to study the nonlinear response of reinforced concrete structures which contain hollow pipe steel braces as the major structural elements against earthquake loads. A five-storey reinforced concrete structure was selected in this study; two different reinforced concrete frames were considered. The first system was an un-braced frame, while the last one was a braced frame with diagonal bracing. Analytical modelings of the bare frame and braced frame were realized by means of SAP 2000. The performances of all structures were evaluated using nonlinear static analyses. From these analyses, the base shear and displacements were compared. Results are plotted in diagrams and discussed extensively, and the results of the analyses showed that the braced frame was seemed to capable of more lateral load carrying and had a high value for stiffness and lower roof displacement in comparison with the bare frame.Keywords: reinforced concrete structures, pushover analysis, base shear, steel bracing
Procedia PDF Downloads 901769 A Bayesian Parameter Identification Method for Thermorheological Complex Materials
Authors: Michael Anton Kraus, Miriam Schuster, Geralt Siebert, Jens Schneider
Abstract:
Polymers increasingly gained interest in construction materials over the last years in civil engineering applications. As polymeric materials typically show time- and temperature dependent material behavior, which is accounted for in the context of the theory of linear viscoelasticity. Within the context of this paper, the authors show, that some polymeric interlayers for laminated glass can not be considered as thermorheologically simple as they do not follow a simple TTSP, thus a methodology of identifying the thermorheologically complex constitutive bahavioir is needed. ‘Dynamical-Mechanical-Thermal-Analysis’ (DMTA) in tensile and shear mode as well as ‘Differential Scanning Caliometry’ (DSC) tests are carried out on the interlayer material ‘Ethylene-vinyl acetate’ (EVA). A navoel Bayesian framework for the Master Curving Process as well as the detection and parameter identification of the TTSPs along with their associated Prony-series is derived and applied to the EVA material data. To our best knowledge, this is the first time, an uncertainty quantification of the Prony-series in a Bayesian context is shown. Within this paper, we could successfully apply the derived Bayesian methodology to the EVA material data to gather meaningful Master Curves and TTSPs. Uncertainties occurring in this process can be well quantified. We found, that EVA needs two TTSPs with two associated Generalized Maxwell Models. As the methodology is kept general, the derived framework could be also applied to other thermorheologically complex polymers for parameter identification purposes.Keywords: bayesian parameter identification, generalized Maxwell model, linear viscoelasticity, thermorheological complex
Procedia PDF Downloads 263