Search results for: chemical shift in L emission lines
1328 Ferrites of the MeFe2O4 System (Me – Zn, Cu, Cd) and Their Two Faces
Authors: B. S. Boyanov, A. B. Peltekov, K. I. Ivanov
Abstract:
The ferrites of Zn, Cd, Cu, and mixed ferrites with NiO, MnO, MgO, CoO, ZnO, BaO combine the properties of dielectrics, semiconductors, ferro-magnets, catalysts, etc. The ferrites are used in an impressive range of applications due to their remarkable properties. A specific disadvantage of ferrites is that they are undesirably obtained in a lot of processes connected with metal production. They are very stable and poorly soluble compounds. The obtained ZnFe2O4 in zinc production connecting about 15% of the total zinc remains practically insoluble in dilute solutions of sulfuric acid. This decreases the degree of recovery of zinc and necessitates to further process the zinc-containing cake. In this context, the ferrites; ZnFe2O4, CdFe2O4, and CuFe2O4 are synthesized in laboratory conditions using ceramic technology. Their homogeneity and structure are proven by X-Ray diffraction analysis and Mössbauer spectroscopy. The synthesized ferrites are subjected to strong acid and high temperature leaching with solutions of H2SO4, HCl, and HNO3 (7, 10 and 15 %). The results indicate that the highest degree of leaching of Zn, Cd, and Cu from the ferrites is achieved by use of HCl. The resulting values for the degree of leaching of metals using H2SO4 are lower, but still remain significantly higher for all of the experimental conditions compared to the values obtained using HNO3. Five zinc sulfide concentrates are characterized for iron content by chemical analysis, Web-based Information System, and iron phases by Mössbauer spectroscopy. The charging was optimized using the criterion of minimal amount of zinc ferrite produced when roasting the concentrates in a fluidized bed. The results obtained are interpreted in terms of the hydrometallurgical zinc production and maximum recovery of zinc, copper and cadmium from initial zinc sulfide concentrates after their roasting.Keywords: hydrometallurgy, inorganic acids, solubility, zinc ferrite
Procedia PDF Downloads 4361327 Risk Assessment of Contamination by Heavy Metals in Sarcheshmeh Copper Complex of Iran Using Topsis Method
Authors: Hossein Hassani, Ali Rezaei
Abstract:
In recent years, the study of soil contamination problems surrounding mines and smelting plants has attracted some serious attention of the environmental experts. These elements due to the non- chemical disintegration and nature are counted as environmental stable and durable contaminants. Variability of these contaminants in the soil and the time and financial limitation for the favorable environmental application, in order to reduce the risk of their irreparable negative consequences on environment, caused to apply the favorable grading of these contaminant for the further success of the risk management processes. In this study, we use the contaminants factor risk indices, average concentration, enrichment factor and geoaccumulation indices for evaluating the metal contaminant of including Pb, Ni, Se, Mo and Zn in the soil of Sarcheshmeh copper mine area. For this purpose, 120 surface soil samples up to the depth of 30 cm have been provided from the study area. And the metals have been analyzed using ICP-MS method. Comparison of the heavy and potentially toxic elements concentration in the soil samples with the world average value of the uncontaminated soil and shale average indicates that the value of Zn, Pb, Ni, Se and Mo is higher than the world average value and only the Ni element shows the lower value than the shale average. Expert opinions on the relative importance of each indicators were used to assign a final weighting of the metals and the heavy metals were ranked using the TOPSIS approach. This allows us to carry out efficient environmental proceedings, leading to the reduction of environmental ricks form the contaminants. According to the results, Ni, Pb, Mo, Zn, and Se have the highest rate of risk contamination in the soil samples of the study area.Keywords: contamination coefficient, geoaccumulation factor, TOPSIS techniques, Sarcheshmeh copper complex
Procedia PDF Downloads 2741326 Modelling and Simulating CO2 Electro-Reduction to Formic Acid Using Microfluidic Electrolytic Cells: The Influence of Bi-Sn Catalyst and 1-Ethyl-3-Methyl Imidazolium Tetra-Fluoroborate Electrolyte on Cell Performance
Authors: Akan C. Offong, E. J. Anthony, Vasilije Manovic
Abstract:
A modified steady-state numerical model is developed for the electrochemical reduction of CO2 to formic acid. The numerical model achieves a CD (current density) (~60 mA/cm2), FE-faradaic efficiency (~98%) and conversion (~80%) for CO2 electro-reduction to formic acid in a microfluidic cell. The model integrates charge and species transport, mass conservation, and momentum with electrochemistry. Specifically, the influences of Bi-Sn based nanoparticle catalyst (on the cathode surface) at different mole fractions and 1-ethyl-3-methyl imidazolium tetra-fluoroborate ([EMIM][BF4]) electrolyte, on CD, FE and CO2 conversion to formic acid is studied. The reaction is carried out at a constant concentration of electrolyte (85% v/v., [EMIM][BF4]). Based on the mass transfer characteristics analysis (concentration contours), mole ratio 0.5:0.5 Bi-Sn catalyst displays the highest CO2 mole consumption in the cathode gas channel. After validating with experimental data (polarisation curves) from literature, extensive simulations reveal performance measure: CD, FE and CO2 conversion. Increasing the negative cathode potential increases the current densities for both formic acid and H2 formations. However, H2 formations are minimal as a result of insufficient hydrogen ions in the ionic liquid electrolyte. Moreover, the limited hydrogen ions have a negative effect on formic acid CD. As CO2 flow rate increases, CD, FE and CO2 conversion increases.Keywords: carbon dioxide, electro-chemical reduction, ionic liquids, microfluidics, modelling
Procedia PDF Downloads 1461325 Microstructure Evolution and Pre-transformation Microstructure Reconstruction in Ti-6Al-4V Alloy
Authors: Shreyash Hadke, Manendra Singh Parihar, Rajesh Khatirkar
Abstract:
In the present investigation, the variation in the microstructure with the changes in the heat treatment conditions i.e. temperature and time was observed. Ti-6Al-4V alloy was subject to solution annealing treatments in β (1066C) and α+β phase (930C and 850C) followed by quenching, air cooling and furnace cooling to room temperature respectively. The effect of solution annealing and cooling on the microstructure was studied by using optical microscopy (OM), scanning electron microscopy (SEM), electron backscattered diffraction (EBSD) and x-ray diffraction (XRD). The chemical composition of the β phase for different conditions was determined with the help of energy dispersive spectrometer (EDS) attached to SEM. Furnace cooling resulted in the development of coarser structure (α+β), while air cooling resulted in much finer structure with widmanstatten morphology of α at the grain boundaries. Quenching from solution annealing temperature formed α’ martensite, their proportion being dependent on the temperature in β phase field. It is well known that the transformation of β to α follows Burger orientation relationship (OR). In order to reconstruct the microstructure of parent β phase, a MATLAB code was written using neighbor-to-neighbor, triplet method and Tari’s method. The code was tested on the annealed samples (1066C solution annealing temperature followed by furnace cooling to room temperature). The parent phase data thus generated was then plotted using the TSL-OIM software. The reconstruction results of the above methods were compared and analyzed. The Tari’s approach (clustering approach) gave better results compared to neighbor-to-neighbor and triplet method but the time taken by the triplet method was least compared to the other two methods.Keywords: Ti-6Al-4V alloy, microstructure, electron backscattered diffraction, parent phase reconstruction
Procedia PDF Downloads 4461324 Invisible to Invaluable - How Social Media is Helping Tackle Stigma and Discrimination Against Informal Waste Pickers of Bengaluru
Authors: Varinder Kaur Gambhir, Neema Gupta, Sonal Tickoo Chaudhuri
Abstract:
Bengaluru, a rapidly growing metropolis in India, with a population of 12.5 million citizens, generates 5,757 metric tonnes of solid waste per day. Despite their invaluable contribution to waste management, society and the economy, waste pickers face significant stigma, suspicion and contempt and are left with a sense of shame about their work. In this context, BBC Media Action was funded by the H&M Foundation to develop a 3-year multi-phase social media campaign to shift perceptions of waste picking and informal waste pickers amongst the Bengaluru population. Research has been used to inform project strategy and adaptation, at all stages. Formative research to inform campaign strategy used mixed methods– 14 focused group discussions followed by 406 online surveys – to explore people’s knowledge of, and attitudes towards waste pickers, and identify potential barriers and motivators to changing perceptions. Use of qualitative techniques like metaphor maps (using bank of pictures rather than direct questions to understand mindsets) helped establish the invisibility of informal waste pickers, and the quantitative research enabled audience segmentation based on attitudes towards informal waste pickers. To pretest the campaign idea, eight I-GDs (individual interaction followed by group discussions) were conducted to allow interviewees to first freely express their feelings individually, before discussing in a group. Robert Plucthik’s ‘wheel of emotions’ was used to understand audience’s emotional response to the content. A robust monitoring and evaluation is being conducted (baseline and first phase of monitoring already completed) using a rotating longitudinal panel of 1,800 social media users (exposed and unexposed to the campaign), recruited face to face and representative of the social media universe of Bengaluru city. In addition, qualitative in-depth interviews are being conducted after each phase to better understand change drivers. The research methodology and ethical protocols for impact evaluation have been independently reviewed by an Institutional Review Board. Formative research revealed that while waste on the streets is visible and is of concern to the public, informal waste pickers are virtually ‘invisible’, for most people in Bengaluru Pretesting research revealed that the creative outputs evoked emotions like acceptance and gratitude towards waste-pickers, suggesting that the content had the potential to encourage attitudinal change. After the first phase of campaign, social media analytics show that #Invaluables content reached at least 2.6 million unique people (21% of the Bengaluru population) through Facebook and Instagram. Further, impact monitoring results show significant improvements in spontaneous awareness of different segments of informal waste pickers ( such as sorters at scrap shops or dry waste collection centres -from 10% at baseline to 16% amongst exposed and no change amongst unexposed), recognition that informal waste pickers help the environment (71% at baseline to 77% among exposed and no change among unexposed) and greater discussion about informal waste pickers among those exposed (60%) as against not exposed (49%). Using the insights from this research, the planned social media intervention is designed to increase the visibility of and appreciation for the work of waste pickers in Bengaluru, supporting a more inclusive society.Keywords: awareness, discussion, discrimination, informal waste pickers, invisibility, social media campaign, waste management
Procedia PDF Downloads 1071323 Inactivation and Stress Response of Salmonella enterica Serotype Typhimurium lt21 upon Cold Gas-Phase Plasma Treatment
Authors: Zoran Herceg, Tomislava Vukušić, Anet Režek Jambrak, Višnja Stulić
Abstract:
Today one of the greatest challenges are directed to the safety of food supply. If food pathogens are ingested they can cause human illnesses. Because of that new technologies that are effective in microbial reduction are developing to be used in food industries. One of such technology is cold gas phase plasma. Salmonella enterica was studied as one of the pathogenes that can be found in food. The aim of this work was to examine the inactivation rate and stress response of plasma treated cells of Salmonella enterica inoculated in apple juice. After the treatment cellular leakage, phenotypic changes in plasma treated cells-biofilm formation and degree of recovery were conducted. Sample volume was inoculated with 5 mL of pure culture of Salmonella enterica and 15 mL of apple juice. Statgraphics Centurion software (StatPoint Technologies, Inc., VA, USA) was used for experimental design and statistical analyses. Treatment time (1, 3, 5 min) and gas flow (40, 60, 80 L/min) were changed. Complete inactivation and 0 % of recovery after the 48 h was observed at these experimental treatments: 3 min; 40 L/min, 3 min; 80 L/min, 5 min; 40 L/min. Biofilm reduction was observed at all treated samples. Also, there was an increase in cellular leakage with a longer plasma treatment. Although there were a significant reduction and 0 % of recovery after the plasma treatments further investigation of the method is needed to clarify whether there are sensorial, physical and chemical changes in juices after the plasma treatment. Acknowledgments: The authors would like to acknowledge the support by Croatian Science Foundation and research project 'Application of electrical discharge plasma for the preservation of liquid foods'.Keywords: salmonella enterica serotype typhimurium lt21, gas-phase plasma treatment, inactivation, stress response
Procedia PDF Downloads 3141322 Electrochemical Modification of Boron Doped Carbon Nanowall Electrodes for Biosensing Purposes
Authors: M. Kowalski, M. Brodowski, K. Dziabowska, E. Czaczyk, W. Bialobrzeska, N. Malinowska, S. Zoledowska, R. Bogdanowicz, D. Nidzworski
Abstract:
Boron-doped-carbon nanowall (BCNW) electrodes are recently in much interest among scientists. BCNWs are good candidates for biosensor purposes as they possess interesting electrochemical characteristics like a wide potential range and the low difference between redox peaks. Moreover, from technical parameters, they are mechanically resistant and very tough. The production process of the microwave plasma-enhanced chemical vapor deposition (MPECVD) allows boron to build into the structure of the diamond being formed. The effect is the formation of flat, long structures with sharp ends. The potential of these electrodes was checked in the biosensing field. The procedure of simple carbon electrodes modification by antibodies was adopted to BCNW for specific antigen recognition. Surface protein D deriving from H. influenzae pathogenic bacteria was chosen as a target analyte. The electrode was first modified with the aminobenzoic acid diazonium salt by electrografting (electrochemical reduction), next anti-protein D antibodies were linked via 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS) chemistry, and free sites were blocked by BSA. Cyclic voltammetry measurements confirmed the proper electrode modification. Electrochemical impedance spectroscopy records indicated protein detection. The sensor was proven to detect protein D in femtograms. This work was supported by the National Centre for Research and Development (NCBR) TECHMATSTRATEG 1/347324/12/NCBR/ 2017.Keywords: anti-protein D antibodies, boron-doped carbon nanowall, impedance spectroscopy, Haemophilus influenzae.
Procedia PDF Downloads 1731321 A Comparative Study: Influences of Polymerization Temperature on Phosphoric Acid Doped Polybenzimidazole Membranes
Authors: Cagla Gul Guldiken, Levent Akyalcin, Hasan Ferdi Gercel
Abstract:
Fuel cells are electrochemical devices which convert the chemical energy of hydrogen into the electricity. Among the types of fuel cells, polymer electrolyte membrane fuel cells (PEMFCs) are attracting considerable attention as non-polluting power generators with high energy conversion efficiencies in mobile applications. Polymer electrolyte membrane (PEM) is one of the essential components of PEMFCs. Perfluorosulfonic acid based membranes known as Nafion® is widely used as PEMs. Nafion® membranes water dependent proton conductivity which limits the operating temperature below 100ᵒC. At higher temperatures, proton conductivity and mechanical stability of these membranes decrease because of dehydration. Polybenzimidazole (PBI), which has good anhydrous proton conductivity after doped with acids, as well as excellent thermal stability, shows great potential in the application of high temperature PEMFCs. In the present study, PBI polymers were synthesized by solution polycondensation at 190 and 210ᵒC. The synthesized polymers were characterized by FTIR, 1H NMR, and TGA. Phosphoric acid doped PBI membranes were prepared and tested in a PEMFC. The influences of reaction temperature on structural properties of synthesized polymers were investigated. Mechanical properties, acid-doping level, proton conductivity, and fuel cell performances of prepared phosphoric acid doped PBI membranes were evaluated. The maximum power density was found as 32.5 mW/cm² at 120ᵒC.Keywords: fuel cell, high temperature polymer electrolyte membrane, polybenzimidazole, proton exchange membrane fuel cell
Procedia PDF Downloads 1851320 Low Temperature Biological Treatment of Chemical Oxygen Demand for Agricultural Water Reuse Application Using Robust Biocatalysts
Authors: Vedansh Gupta, Allyson Lutz, Ameen Razavi, Fatemeh Shirazi
Abstract:
The agriculture industry is especially vulnerable to forecasted water shortages. In the fresh and fresh-cut produce sector, conventional flume-based washing with recirculation exhibits high water demand. This leads to a large water footprint and possible cross-contamination of pathogens. These can be alleviated through advanced water reuse processes, such as membrane technologies including reverse osmosis (RO). Water reuse technologies effectively remove dissolved constituents but can easily foul without pre-treatment. Biological treatment is effective for the removal of organic compounds responsible for fouling, but not at the low temperatures encountered at most produce processing facilities. This study showed that the Microvi MicroNiche Engineering (MNE) technology effectively removes organic compounds (> 80%) at low temperatures (6-8 °C) from wash water. The MNE technology uses synthetic microorganism-material composites with negligible solids production, making it advantageously situated as an effective bio-pretreatment for RO. A preliminary technoeconomic analysis showed 60-80% savings in operation and maintenance costs (OPEX) when using the Microvi MNE technology for organics removal. This study and the accompanying economic analysis indicated that the proposed technology process will substantially reduce the cost barrier for adopting water reuse practices, thereby contributing to increased food safety and furthering sustainable water reuse processes across the agricultural industry.Keywords: biological pre-treatment, innovative technology, vegetable processing, water reuse, agriculture, reverse osmosis, MNE biocatalysts
Procedia PDF Downloads 1291319 The Weavability of Waste Plants and Their Application in Fashion and Textile Design
Authors: Jichi Wu
Abstract:
The dwindling of resources requires a more sustainable design. New technology could bring new materials and processing techniques to the fashion industry and push it to a more sustainable future. Thus this paper explores cutting-edge researches on the life-cycle of closed-loop products and aims to find innovative ways to recycle and upcycle. For such a goal, the author investigated how low utilization plants and leftover fiber could be turned into ecological textiles in fashion. Through examining the physical and chemical properties (cellulose content/ fiber form) of ecological textiles to explore their wearability, this paper analyzed the prospect of bio-fabrics (weavable plants) in body-oriented fashion design and their potential in sustainable fashion and textile design. By extracting cellulose from 9 different types or sections of plants, the author intends to find an appropriate method (such as ion solution extraction) to mostly increase the weavability of plants, so raw materials could be more effectively changed into fabrics. All first-hand experiment data were carefully collected and then analyzed under the guidance of related theories. The result of the analysis was recorded in detail and presented in an understandable way. Various research methods are adopted through this project, including field trip and experiments to make comparisons and recycle materials. Cross-discipline cooperation is also conducted for related knowledge and theories. From this, experiment data will be collected, analyzed, and interpreted into a description and visualization results. Based on the above conclusions, it is possible to apply weavable plant fibres to develop new textile and fashion.Keywords: wearable bio-textile, sustainability, economy, ecology, technology, weavability, fashion design
Procedia PDF Downloads 1471318 Geochemical Evaluation of Metal Content and Fluorescent Characterization of Dissolved Organic Matter in Lake Sediments
Authors: Fani Sakellariadou, Danae Antivachis
Abstract:
Purpose of this paper is to evaluate the environmental status of a coastal Mediterranean lake, named Koumoundourou, located in the northeastern coast of Elefsis Bay, in the western region of Attiki in Greece, 15 km far from Athens. It is preserved from ancient times having an important archaeological interest. Koumoundourou lake is also considered as a valuable wetland accommodating an abundant flora and fauna, with a variety of bird species including a few world’s threatened ones. Furthermore, it is a heavily modified lake, affected by various anthropogenic pollutant sources which provide industrial, urban and agricultural contaminants. The adjacent oil refineries and the military depot are the major pollution providers furnishing with crude oil spills and leaks. Moreover, the lake accepts a quantity of groundwater leachates from the major landfill of Athens. The environmental status of the lake results from the intensive land uses combined with the permeable lithology of the surrounding area and the existence of karstic springs which discharge calcareous mountains. Sediment samples were collected along the shoreline of the lake using a Van Veen grab stainless steel sampler. They were studied for the determination of the total metal content and the metal fractionation in geochemical phases as well as the characterization of the dissolved organic matter (DOM). These constituents have a significant role in the ecological consideration of the lake. Metals may be responsible for harmful environmental impacts. The metal partitioning offers comprehensive information for the origin, mode of occurrence, biological and physicochemical availability, mobilization and transport of metals. Moreover, DOM has a multifunctional importance interacting with inorganic and organic contaminants leading to biogeochemical and ecological effects. The samples were digested using microwave heating with a suitable laboratory microwave unit. For the total metal content, the samples were treated with a mixture of strong acids. Then, a sequential extraction procedure was applied for the removal of exchangeable, carbonate hosted, reducible, organic/sulphides and residual fractions. Metal content was determined by an ICP-MS (Perkin Elmer, ICP MASS Spectrophotometer NexION 350D). Furthermore, the DOM was removed via a gentle extraction procedure and then it was characterized by fluorescence spectroscopy using a Perkin-Elmer LS 55 luminescence spectrophotometer equipped with the WinLab 4.00.02 software for data processing (Agilent, Cary Eclipse Fluorescence). Mono dimensional emission, excitation, synchronous-scan excitation and total luminescence spectra were recorded for the classification of chromophoric units present in the aqueous extracts. Total metal concentrations were determined and compared with those of the Elefsis gulf sediments. Element partitioning showed the anthropogenic sources and the contaminant bioavailability. All fluorescence spectra, as well as humification indices, were evaluated in detail to find out the nature and origin of DOM. All the results were compared and interpreted to evaluate the environmental quality of Koumoundourou lake and the need for environmental management and protection.Keywords: anthropogenic contaminant, dissolved organic matter, lake, metal, pollution
Procedia PDF Downloads 1571317 Polymer Nanocoatings With Enhanced Self-Cleaning and Icephobic Properties
Authors: Bartlomiej Przybyszewski, Rafal Kozera, Katarzyna Zolynska, Anna Boczkowska, Daria Pakula
Abstract:
The build-up and accumulation of dirt, ice, and snow on structural elements and vehicles is an unfavorable phenomenon, leading to economic losses and often also posing a threat to people. This problem occurs wherever the use of polymer coatings has become a standard, among others in photovoltaic farms, aviation, wind energy, and civil engineering. The accumulated pollution on the photovoltaic modules can reduce their efficiency by several percent, and snow stops power production. Accumulated ice on the blades of wind turbines or the wings of airplanes and drones disrupts the airflow by changing their shape, leading to increased drag and reduced efficiency. This results in costly maintenance and repairs. The goal of the work is to reduce or completely eliminate the accumulation of dirt, snow, and ice build-up on polymer coatings by achieving self-cleaning and icephobic properties. It is done by the use of a multi-step surface modification of the polymer nanocoatings. For this purpose, two methods of surface structuring and the preceding volumetric modification of the chemical composition with proprietary organosilicon compounds and/or mineral additives were used. To characterize the surface topography of the modified coatings, light profilometry was utilized. Measurements of the wettability parameters (static contact angle and contact angle hysteresis) on the investigated surfaces allowed to identify their wetting behavior and determine relation between hydrophobic and anti-icing properties. Ice adhesion strength was measured to assess coatings' anti-icing behavior.Keywords: anti-icing properties, self-cleaning, polymer coatings, icephobic coatings
Procedia PDF Downloads 1081316 The Agri-Environmental Instruments in Agricultural Policy to Reduce Nitrogen Pollution
Authors: Flavio Gazzani
Abstract:
Nitrogen is an important agricultural input that is critical for the production. However, the introduction of large amounts of nitrogen into the environment has a number of undesirable impacts such as: the loss of biodiversity, eutrophication of waters and soils, drinking water pollution, acidification, greenhouse gas emissions, human health risks. It is a challenge to sustain or increase food production and at the same time reduce losses of reactive nitrogen to the environment, but there are many potential benefits associated with improving nitrogen use efficiency. Reducing nutrient losses from agriculture is crucial to the successful implementation of agricultural policy. Traditional regulatory instruments applied to implement environmental policies to reduce environmental impacts from nitrogen fertilizers, despite some successes, failed to address many environmental challenges and imposed high costs on the society to achieve environmental quality objectives. As a result, economic instruments started to be recognized for their flexibility and cost-effectiveness. The objective of the research project is to analyze the potential for increased use of market-based instruments in nitrogen control policy. The report reviews existing knowledge, bringing different studies together to assess the global nitrogen situation and the most relevant environmental management policy that aims to reduce pollution in a sustainable way without affect negatively agriculture production and food price. This analysis provides some guidance on how different market based instruments might be orchestrated in an overall policy framework to the development and assessment of sustainable nitrogen management from the economics, environmental and food security point of view.Keywords: nitrogen emissions, chemical fertilizers, eutrophication, non-point of source pollution, dairy farm
Procedia PDF Downloads 3291315 Introducing Transport Engineering through Blended Learning Initiatives
Authors: Kasun P. Wijayaratna, Lauren Gardner, Taha Hossein Rashidi
Abstract:
Undergraduate students entering university across the last 2 to 3 years tend to be born during the middle years of the 1990s. This generation of students has been exposed to the internet and the desire and dependency on technology since childhood. Brains develop based on environmental influences and technology has wired this generation of student to be attuned to sophisticated complex visual imagery, indicating visual forms of learning may be more effective than the traditional lecture or discussion formats. Furthermore, post-millennials perspectives on career are not focused solely on stability and income but are strongly driven by interest, entrepreneurship and innovation. Accordingly, it is important for educators to acknowledge the generational shift and tailor the delivery of learning material to meet the expectations of the students and the needs of industry. In the context of transport engineering, effectively teaching undergraduate students the basic principles of transport planning, traffic engineering and highway design is fundamental to the progression of the profession from a practice and research perspective. Recent developments in technology have transformed the discipline as practitioners and researchers move away from the traditional “pen and paper” approach to methods involving the use of computer programs and simulation. Further, enhanced accessibility of technology for students has changed the way they understand and learn material being delivered at tertiary education institutions. As a consequence, blended learning approaches, which aim to integrate face to face teaching with flexible self-paced learning resources, have become prevalent to provide scalable education that satisfies the expectations of students. This research study involved the development of a series of ‘Blended Learning’ initiatives implemented within an introductory transport planning and geometric design course, CVEN2401: Sustainable Transport and Highway Engineering, taught at the University of New South Wales, Australia. CVEN2401 was modified by conducting interactive polling exercises during lectures, including weekly online quizzes, offering a series of supplementary learning videos, and implementing a realistic design project that students needed to complete using modelling software that is widely used in practice. These activities and resources were aimed to improve the learning environment for a large class size in excess of 450 students and to ensure that practical industry valued skills were introduced. The case study compared the 2016 and 2017 student cohorts based on their performance across assessment tasks as well as their reception to the material revealed through student feedback surveys. The initiatives were well received with a number of students commenting on the ability to complete self-paced learning and an appreciation of the exposure to a realistic design project. From an educator’s perspective, blending the course made it feasible to interact and engage with students. Personalised learning opportunities were made available whilst delivering a considerable volume of complex content essential for all undergraduate Civil and Environmental Engineering students. Overall, this case study highlights the value of blended learning initiatives, especially in the context of large class size university courses.Keywords: blended learning, highway design, teaching, transport planning
Procedia PDF Downloads 1491314 Estimation Model for Concrete Slump Recovery by Using Superplasticizer
Authors: Chaiyakrit Raoupatham, Ram Hari Dhakal, Chalermchai Wanichlamlert
Abstract:
This paper is aimed to introduce the solution of concrete slump recovery using chemical admixture type-F (superplasticizer, naphthalene base) to the practice, in order to solve unusable concrete problem due to concrete loss its slump, especially for those tropical countries that have faster slump loss rate. In the other hand, randomly adding superplasticizer into concrete can cause concrete to segregate. Therefore, this paper also develops the estimation model used to calculate amount of second dose of superplasticizer need for concrete slump recovery. Fresh properties of ordinary Portland cement concrete with volumetric ratio of paste to void between aggregate (paste content) of 1.1-1.3 with water-cement ratio zone of 0.30 to 0.67 and initial superplasticizer (naphthalene base) of 0.25%- 1.6% were tested for initial slump and slump loss for every 30 minutes for one and half hour by slump cone test. Those concretes with slump loss range from 10% to 90% were re-dosed and successfully recovered back to its initial slump. Slump after re-dosed was tested by slump cone test. From the result, it has been concluded that, slump loss was slower for those mix with high initial dose of superplasticizer due to addition of superplasticizer will disturb cement hydration. The required second dose of superplasticizer was affected by two major parameter, which were water-cement ratio and paste content, where lower water-cement ratio and paste content cause an increase in require second dose of superplasticizer. The amount of second dose of superplasticizer is higher as the solid content within the system is increase, solid can be either from cement particles or aggregate. The data was analyzed to form an equation use to estimate the amount of second dosage requirement of superplasticizer to recovery slump to its original.Keywords: estimation model, second superplasticizer dosage, slump loss, slump recovery
Procedia PDF Downloads 1991313 Particle Size Characteristics of Aerosol Jets Produced by a Low Powered E-Cigarette
Authors: Mohammad Shajid Rahman, Tarik Kaya, Edgar Matida
Abstract:
Electronic cigarettes, also known as e-cigarettes, may have become a tool to improve smoking cessation due to their ability to provide nicotine at a selected rate. Unlike traditional cigarettes, which produce toxic elements from tobacco combustion, e-cigarettes generate aerosols by heating a liquid solution (commonly a mixture of propylene glycol, vegetable glycerin, nicotine and some flavoring agents). However, caution still needs to be taken when using e-cigarettes due to the presence of addictive nicotine and some harmful substances produced from the heating process. Particle size distribution (PSD) and associated velocities generated by e-cigarettes have significant influence on aerosol deposition in different regions of human respiratory tracts. On another note, low actuation power is beneficial in aerosol generating devices since it exhibits a reduced emission of toxic chemicals. In case of e-cigarettes, lower heating powers can be considered as powers lower than 10 W compared to a wide range of powers (0.6 to 70.0 W) studied in literature. Due to the importance regarding inhalation risk reduction, deeper understanding of particle size characteristics of e-cigarettes demands thorough investigation. However, comprehensive study on PSD and velocities of e-cigarettes with a standard testing condition at relatively low heating powers is still lacking. The present study aims to measure particle number count and size distribution of undiluted aerosols of a latest fourth-generation e-cigarette at low powers, within 6.5 W using real-time particle counter (time-of-flight method). Also, temporal and spatial evolution of particle size and velocity distribution of aerosol jets are examined using phase Doppler anemometry (PDA) technique. To the authors’ best knowledge, application of PDA in e-cigarette aerosol measurement is rarely reported. In the present study, preliminary results about particle number count of undiluted aerosols measured by time-of-flight method depicted that an increase of heating power from 3.5 W to 6.5 W resulted in an enhanced asymmetricity in PSD, deviating from log-normal distribution. This can be considered as an artifact of rapid vaporization, condensation and coagulation processes on aerosols caused by higher heating power. A novel mathematical expression, combining exponential, Gaussian and polynomial (EGP) distributions, was proposed to describe asymmetric PSD successfully. The value of count median aerodynamic diameter and geometric standard deviation laid within a range of about 0.67 μm to 0.73 μm, and 1.32 to 1.43, respectively while the power varied from 3.5 W to 6.5 W. Laser Doppler velocimetry (LDV) and PDA measurement suggested a typical centerline streamwise mean velocity decay of aerosol jet along with a reduction of particle sizes. In the final submission, a thorough literature review, detailed description of experimental procedure and discussion of the results will be provided. Particle size and turbulent characteristics of aerosol jets will be further examined, analyzing arithmetic mean diameter, volumetric mean diameter, volume-based mean diameter, streamwise mean velocity and turbulence intensity. The present study has potential implications in PSD simulation and validation of aerosol dosimetry model, leading to improving related aerosol generating devices.Keywords: E-cigarette aerosol, laser doppler velocimetry, particle size distribution, particle velocity, phase Doppler anemometry
Procedia PDF Downloads 491312 Atom Probe Study of Early Stage of Precipitation on Binary Al-Li, Al-Cu Alloys and Ternary Al-Li-Cu Alloys
Authors: Muna Khushaim
Abstract:
Aluminum-based alloys play a key role in modern engineering, especially in the aerospace industry. Introduction of solute atoms such as Li and Cu is the main approach to improve the strength in age-hardenable Al alloys via the precipitation hardening phenomenon. Knowledge of the decomposition process of the microstructure during the precipitation reaction is particularly important for future technical developments. The objective of this study is to investigate the nano-scale chemical composition in the Al-Cu, Al-Li and Al-Li-Cu during the early stage of the precipitation sequence and to describe whether this compositional difference correlates with variations in the observed precipitation kinetics. Comparing the random binomial frequency distribution and the experimental frequency distribution of concentrations in atom probe tomography data was used to investigate the early stage of decomposition in the different binary and ternary alloys which were experienced different heat treatments. The results show that an Al-1.7 at.% Cu alloy requires a long ageing time of approximately 8 h at 160 °C to allow the diffusion of Cu atoms into Al matrix. For the Al-8.2 at.% Li alloy, a combination of both the natural ageing condition (48 h at room temperature) and a short artificial ageing condition (5 min at 160 °C) induces increasing on the number density of the Li clusters and hence increase number of precipitated δ' particles. Applying this combination of natural ageing and short artificial ageing conditions onto the ternary Al-4 at.% Li-1.7 at.% Cu alloy induces the formation of a Cu-rich phase. Increasing the Li content in the ternary alloy up to 8 at.% and increasing the ageing time to 30 min resulted in the precipitation processes ending with δ' particles. Thus, the results contribute to the understanding of Al-alloy design.Keywords: aluminum alloy, atom probe tomography, early stage, decomposition
Procedia PDF Downloads 3431311 Blood Lipid Management: Combined Treatment with Hydrotherapy and Ozone Bubbles Bursting in Water
Authors: M. M. Wickramasinghe
Abstract:
Cholesterol and triglycerides are lipids, mainly essential to maintain the cellular structure of the human body. Cholesterol is also important for hormone production, vitamin D production, proper digestion functions, and strengthening the immune system. Excess fats in the blood circulation, known as hyperlipidemia, become harmful leading to arterial clogging and causing atherosclerosis. Aim of this research is to develop a treatment protocol to efficiently break down and maintain circulatory lipids by improving blood circulation without strenuous physical exercises while immersed in a tub of water. To achieve the target of strong exercise effect, this method involves generating powerful ozone bubbles to spin, collide, and burst in the water. Powerful emission of air into water is capable of transferring locked energy of the water molecules and releasing energy. This method involves water and air-based impact generated by pumping ozone at the speed of 46 lts/sec with a concentration of 0.03-0.05 ppt according to safety standards of The Federal Institute for Drugs and Medical Devices, BfArM, Germany. The direct impact of ozone bubbles on the muscular system and skin becomes the main target and is capable of increasing the heart rate while immersed in water. A total time duration of 20 minutes is adequate to exert a strong exercise effect, improve blood circulation, and stimulate the nervous and endocrine systems. Unstable ozone breakdown into oxygen release onto the surface of the water giving additional benefits and supplying high-quality air rich in oxygen required to maintain efficient metabolic functions. The breathing technique was introduced to improve the efficiency of lung functions and benefit the air exchange mechanism. The temperature of the water is maintained at 39c to 40c to support arterial dilation and enzyme functions and efficiently improve blood circulation to the vital organs. The buoyancy of water and natural hydrostatic pressure release the tension of the body weight and relax the mind and body. Sufficient hydration (3lts of water per day) is an essential requirement to transport nutrients and remove waste byproducts to process through the liver, kidney, and skin. Proper nutritional intake is an added advantage to optimize the efficiency of this method which aids in a fast recovery process. Within 20-30 days of daily treatment, triglycerides, low-density lipoproteins (LDL), and total cholesterol reduction were observed in patients with abnormal levels of lipid profile. Borderline patients were cleared within 10–15 days of treatment. This is a highly efficient system that provides many benefits and is able to achieve a successful reduction of triglycerides, LDL, and total cholesterol within a short period of time. Supported by proper hydration and nutritional balance, this system of natural treatment maintains healthy levels of lipids in the blood and avoids the risk of cerebral stroke, high blood pressure, and heart attacks.Keywords: atherosclerosis, cholesterol, hydrotherapy, hyperlipidemia, lipid management, ozone therapy, triglycerides
Procedia PDF Downloads 911310 Hydro-Climatological, Geological, Hydrogeological and Geochemical Study of the Coastal Aquifer System of Chiba Watershed (Cape Bon Peninsula)
Authors: Khawla Askri, Mohamed Haythem Msaddek, AbdelAziz Sebei
Abstract:
Climate change combined with the increase in anthropogenic activities will affect coastal groundwater systems around the world and, more particularly, the Cap Bon region in the North East of Tunisia. This study aims to study the impact of climate change and human stress on the salinization and quantification of groundwater in the Wadi Chiba watershed. In this regard, a hydro-climatological study and a hydrogeological study were carried out based on the characterization of the aquifer system of the eastern coast at the level of the watershed of Wadi Chiba in order to seek to identify, first of all, the degradation of the state of the aquifer on the quantitative level by the study of the piezometric and its evolution over time. Secondly, we sought to identify the degradation of the state of the aquifer qualitatively by using the geochemical method, in particular the major elements, to assess the mineralization of the aquifer water and understand its hydrogeochemical functioning. The study of the Na + / Cl- and Ca2 + / Mg2 + chemical relationships confirmed the presence of a marine intrusion downstream of the Wadi Chiba watershed northeast of Cap-Bon accompanied by a piezometric depression. For this purpose, we proceeded to: 1) Mapping of both piezometric data and salinity. 2) The interpretation of the mapping results. 3)Identification of the origin of the localized deterioration in the quality of the aquifer water. Finally, the analysis of the results showed that the scarcity of water is already forcing human actions in the Chiba watershed due to the irrigation of agricultural lands and the overexploitation of the water table in the study area.Keywords: climate change, human activities, water table, Wadi Chiba watershed, piezometric depression, marine intrusion
Procedia PDF Downloads 921309 Deep-Learning Coupled with Pragmatic Categorization Method to Classify the Urban Environment of the Developing World
Authors: Qianwei Cheng, A. K. M. Mahbubur Rahman, Anis Sarker, Abu Bakar Siddik Nayem, Ovi Paul, Amin Ahsan Ali, M. Ashraful Amin, Ryosuke Shibasaki, Moinul Zaber
Abstract:
Thomas Friedman, in his famous book, argued that the world in this 21st century is flat and will continue to be flatter. This is attributed to rapid globalization and the interdependence of humanity that engendered tremendous in-flow of human migration towards the urban spaces. In order to keep the urban environment sustainable, policy makers need to plan based on extensive analysis of the urban environment. With the advent of high definition satellite images, high resolution data, computational methods such as deep neural network analysis, and hardware capable of high-speed analysis; urban planning is seeing a paradigm shift. Legacy data on urban environments are now being complemented with high-volume, high-frequency data. However, the first step of understanding urban space lies in useful categorization of the space that is usable for data collection, analysis, and visualization. In this paper, we propose a pragmatic categorization method that is readily usable for machine analysis and show applicability of the methodology on a developing world setting. Categorization to plan sustainable urban spaces should encompass the buildings and their surroundings. However, the state-of-the-art is mostly dominated by classification of building structures, building types, etc. and largely represents the developed world. Hence, these methods and models are not sufficient for developing countries such as Bangladesh, where the surrounding environment is crucial for the categorization. Moreover, these categorizations propose small-scale classifications, which give limited information, have poor scalability and are slow to compute in real time. Our proposed method is divided into two steps-categorization and automation. We categorize the urban area in terms of informal and formal spaces and take the surrounding environment into account. 50 km × 50 km Google Earth image of Dhaka, Bangladesh was visually annotated and categorized by an expert and consequently a map was drawn. The categorization is based broadly on two dimensions-the state of urbanization and the architectural form of urban environment. Consequently, the urban space is divided into four categories: 1) highly informal area; 2) moderately informal area; 3) moderately formal area; and 4) highly formal area. In total, sixteen sub-categories were identified. For semantic segmentation and automatic categorization, Google’s DeeplabV3+ model was used. The model uses Atrous convolution operation to analyze different layers of texture and shape. This allows us to enlarge the field of view of the filters to incorporate larger context. Image encompassing 70% of the urban space was used to train the model, and the remaining 30% was used for testing and validation. The model is able to segment with 75% accuracy and 60% Mean Intersection over Union (mIoU). In this paper, we propose a pragmatic categorization method that is readily applicable for automatic use in both developing and developed world context. The method can be augmented for real-time socio-economic comparative analysis among cities. It can be an essential tool for the policy makers to plan future sustainable urban spaces.Keywords: semantic segmentation, urban environment, deep learning, urban building, classification
Procedia PDF Downloads 1911308 Geostatistical Simulation of Carcinogenic Industrial Effluent on the Irrigated Soil and Groundwater, District Sheikhupura, Pakistan
Authors: Asma Shaheen, Javed Iqbal
Abstract:
The water resources are depleting due to an intrusion of industrial pollution. There are clusters of industries including leather tanning, textiles, batteries, and chemical causing contamination. These industries use bulk quantity of water and discharge it with toxic effluents. The penetration of heavy metals through irrigation from industrial effluent has toxic effect on soil and groundwater. There was strong positive significant correlation between all the heavy metals in three media of industrial effluent, soil and groundwater (P < 0.001). The metal to the metal association was supported by dendrograms using cluster analysis. The geospatial variability was assessed by using geographically weighted regression (GWR) and pollution model to identify the simulation of carcinogenic elements in soil and groundwater. The principal component analysis identified the metals source, 48.8% variation in factor 1 have significant loading for sodium (Na), calcium (Ca), magnesium (Mg), iron (Fe), chromium (Cr), nickel (Ni), lead (Pb) and zinc (Zn) of tannery effluent-based process. In soil and groundwater, the metals have significant loading in factor 1 representing more than half of the total variation with 51.3 % and 53.6 % respectively which showed that pollutants in soil and water were driven by industrial effluent. The cumulative eigen values for the three media were also found to be greater than 1 representing significant clustering of related heavy metals. The results showed that heavy metals from industrial processes are seeping up toxic trace metals in the soil and groundwater. The poisonous pollutants from heavy metals turned the fresh resources of groundwater into unusable water. The availability of fresh water for irrigation and domestic use is being alarming.Keywords: groundwater, geostatistical, heavy metals, industrial effluent
Procedia PDF Downloads 2291307 Internet of Assets: A Blockchain-Inspired Academic Program
Authors: Benjamin Arazi
Abstract:
Blockchain is the technology behind cryptocurrencies like Bitcoin. It revolutionizes the meaning of trust in the sense of offering total reliability without relying on any central entity that controls or supervises the system. The Wall Street Journal states: “Blockchain Marks the Next Step in the Internet’s Evolution”. Blockchain was listed as #1 in Linkedin – The Learning Blog “most in-demand hard skills needed in 2020”. As stated there: “Blockchain’s novel way to store, validate, authorize, and move data across the internet has evolved to securely store and send any digital asset”. GSMA, a leading Telco organization of mobile communications operators, declared that “Blockchain has the potential to be for value what the Internet has been for information”. Motivated by these seminal observations, this paper presents the foundations of a Blockchain-based “Internet of Assets” academic program that joins under one roof leading application areas that are characterized by the transfer of assets over communication lines. Two such areas, which are pillars of our economy, are Fintech – Financial Technology and mobile communications services. The next application in line is Healthcare. These challenges are met based on available extensive professional literature. Blockchain-based assets communication is based on extending the principle of Bitcoin, starting with the basic question: If digital money that travels across the universe can ‘prove its own validity’, can this principle be applied to digital content. A groundbreaking positive answer here led to the concept of “smart contract” and consequently to DLT - Distributed Ledger Technology, where the word ‘distributed’ relates to the non-existence of reliable central entities or trusted third parties. The terms Blockchain and DLT are frequently used interchangeably in various application areas. The World Bank Group compiled comprehensive reports, analyzing the contribution of DLT/Blockchain to Fintech. The European Central Bank and Bank of Japan are engaged in Project Stella, “Balancing confidentiality and auditability in a distributed ledger environment”. 130 DLT/Blockchain focused Fintech startups are now operating in Switzerland. Blockchain impact on mobile communications services is treated in detail by leading organizations. The TM Forum is a global industry association in the telecom industry, with over 850 member companies, mainly mobile operators, that generate US$2 trillion in revenue and serve five billion customers across 180 countries. From their perspective: “Blockchain is considered one of the digital economy’s most disruptive technologies”. Samples of Blockchain contributions to Fintech (taken from a World Bank document): Decentralization and disintermediation; Greater transparency and easier auditability; Automation & programmability; Immutability & verifiability; Gains in speed and efficiency; Cost reductions; Enhanced cyber security resilience. Samples of Blockchain contributions to the Telco industry. Establishing identity verification; Record of transactions for easy cost settlement; Automatic triggering of roaming contract which enables near-instantaneous charging and reduction in roaming fraud; Decentralized roaming agreements; Settling accounts per costs incurred in accordance with agreement tariffs. This clearly demonstrates an academic education structure where fundamental technologies are studied in classes together with these two application areas. Advanced courses, treating specific implementations then follow separately. All are under the roof of “Internet of Assets”.Keywords: blockchain, education, financial technology, mobile telecommunications services
Procedia PDF Downloads 1801306 Removal Capacity of Activated Carbon (AC) by Combining AC and Titanium Dioxide (TIO₂) in a Photocatalytically Regenerative Activated Carbon
Authors: Hanane Belayachi, Sarra Bourahla, Amel Belayachi, Fadela Nemchi, Mostefa Belhakem
Abstract:
The most used techniques to remove pollutants from wastewater are adsorption onto activated carbon (AC) and oxidation using a photocatalyst slurry. The aim of this work is to eliminate such drawbacks by combining AC and titanium dioxide (TiO₂) in a photocatalytically Regenerative Activated Carbon. Anatase titania was deposited on powder-activated carbon made from grape seeds by the impregnation method, and then the composite photocatalyst was employed for the removal of reactive black 5, which is an anionic azo dye, from water. The AGS/TiO₂ was characterized by BET, MEB, RDX and optical absorption spectroscopy. The BET surface area and the pore structure of composite photocatalysts (AGS/TiO₂) and activated grape seeds (AGS) were evaluated from nitrogen adsorption data at 77 K in relation to process conditions. Our results indicate that the photocatalytic activity of AGS/TiO₂ was much higher than single-phase titania. The adsorption equilibrium of reactive black 5 from aqueous solutions on the examined materials was investigated. Langmuir, Freundlich, and Redlich–Petersen models were fitted to experimental equilibrium data, and their goodness of fit is compared. The degradation kinetics fitted well to the Langmuir-Hinselwood pseudo first order rate low. The photocatalytic activity of AGS/TiO₂ was much higher than virgin TiO₂. Chemical oxygen demand (COD) removal was measured at regular intervals to quantify the mineralization of the dye. Above 96% mineralization was observed. These results suggest that UV-irradiated TiO₂ immobilized on activated carbon may be considered an adequate process for the treatment of diluted colored textile wastewater.Keywords: activated carbon, pollutant, catalysis, TiO₂
Procedia PDF Downloads 501305 Preparation of Ceramic Hollow Fiber Membranes for CO2 Capture
Authors: Kai-Wei Huang, Yi-Feng Lin
Abstract:
The purpose of this study is to have chemical resistance, high heat resistance and mechanical strength of ceramic hollow fiber membrane into a membrane contactor, and the combustion process is applied (Post-combustion capture) of the carbon dioxide absorption device. In this paper, we would investigate the effect of the ceramic membrane hydrophobicity to the flux of the carbon dioxide adsorption. To improve the applicability of the ceramic film. We use the dry-wet spinning method with the high temperature sintering process for preparing a ceramic hollow fiber membranes to increase the filling density per unit volume of the membrane. The PESf/Al2O3 ratio of 1:5 was prepared ceramic hollow fibers membrane precursors and investigate the relationship of the different sintering temperature to the membrane pore size and porosity. It can be found that the membrane via the sintering temperature of 1400 °C prepared with the highest porosity of 70%, while the membrane via the sintering temperature of 1600 °C prepared although has a minimum porosity of about 54%, but also has the smallest average pore size of about 0.2 μm. The hydrophilic ceramic hollow fiber membranes which after high-temperature sintering were changed into hydrophobic successfully via the 0.02M FAS modifier. The hydrophobic ceramic hollow fiber membranes with different sintering temperature, the membrane which was prepared via 1400 °C sintering has the highest carbon dioxide adsorption about 4.2 × 10-4 (mole/m2s). The membrane prepared via 1500 °C sintering has the carbon dioxide adsorption about 3.8 × 10-3 (mole/m2s),and the membrane prepared via 1600 °C sintering has the lowest carbon dioxide adsorption about 2.68 × 10-3 (mole/m2s).All of them have reusability and in long time operation, the membrane which was prepared via 1600 °C sintering has the smallest pores and also could operate for three days. After the test, the 1600 °C sintering ceramic hollow fiber membrane was most suitable for the factory.Keywords: carbon dioxide capture, membrane contactor, ceramic membrane, ceramic hollow fiber membrane
Procedia PDF Downloads 3501304 Impact of Water, Sanitation and Hygiene Interventions on Water Quality in Primary Schools of Pakistan
Authors: Jamil Ahmed, Li P. Wong, Yan P. Chua
Abstract:
The United Nation's sustainable development goals include the target to ensure access to water and sanitation for all; however, very few studies have assessed school-based drinking water in Pakistan. The purpose of this study was to characterize water quality in primary schools of Pakistan and to characterize how recent WASH interventions were associated with school water quality. We conducted a representative cross-sectional study of primary schools in the Sindh province of Pakistan. We used structured observations and structured interviews to ascertain the school’s WASH conditions. Our primary exposures of interest were the implementation of previous WASH interventions in the school and the water source type. Outcomes of interest included water quality (measured by various chemical and microbiological indicators) and water availability at the school’s primary drinking water source. We used log-binomial regression to characterize how WASH exposures were associated with water quality outcomes. We collected data from 256 schools. Groundwater was the primary drinking water source at most schools (87%). Water testing showed that 14% of the school’s water had arsenic above the WHO recommendations, and over 50% of the water samples exceeded recommendations for both lead and cadmium. A majority of the water sources (52%) had fecal coliform contamination. None of the schools had nitrate contamination (0%), and few had fluoride contamination (5%). Regression results indicated that having a recent WASH intervention at the school was not associated with either arsenic contamination (prevalence ratio=0.97; 95% CI: 0.46-2.1) or with fecal coliform contamination (PR=0.88; 95% CI: 0.67-1.17). Our assessment unveiled several water quality gaps that exist, including high heavy metal and fecal contamination. Our findings will help various stakeholders to take suitable action to improve water quality in Pakistani schools.Keywords: WASH interventions, water quality, primary school children, heavy metals
Procedia PDF Downloads 1411303 Histopathological and Biochemical Investigations of Protective Role of Honey in Rats with Experimental Aflatoxicosis
Authors: Turan Yaman, Zabit Yener, Ismail Celik
Abstract:
The aim of this study was to investigate the antioxidant properties and protective role of honey, considered a part of traditional medicine, against carcinogen chemical aflatoxin (AF) exposure in rats, which were evaluated by histopathological changes in liver and kidney, measuring level of serum marker enzymes [aspartate aminotransferase (AST), alanin aminotransferase (ALT), gamma glutamil transpeptidase (GGT)], antioxidant defense systems [Reduced glutathione (GSH), glutathione reductase (GR), superoxide dismutase (SOD), glutathione-S-transferase (GST) and catalase (CAT)], and lipid peroxidation content in liver, erythrocyte, brain, kidney, heart and lungs. For this purpose, a total of eighteen healthy Sprague-Dawley rats were randomly allocated into three experimental groups: A (Control), B (AF-treated) and C (AF+honey-treated). While rats in group A were fed with a diet without AF, B, and C groups received 25 µg of AF/rat/day, where C group additionally received 1 mL/kg of honey by gavage for 90 days. At the end of the 90-day experimental period, we found that the honey supplementation decreased the lipid peroxidation and the levels of enzyme associated with liver damage, increased enzymatic and non-enzymatic antioxidants in the AF+honey-treated rats. Hepatoprotective and nephroprotective effects of honey is further substantiated by showing almost normal histological architecture in AF+honey-treated group, compared to degenerative changes in the liver and kidney of AF-treated rats. Additionally, honey supplementation ameliorated antioxidant defense systems and lipid peroxidation content in other tissues of AF+honey-treated rats. In conclusion, the present study indicates that honey has a hepatoprotective and nephroprotective effect in rats with experimental aflatoxicosis due to its antioxidant activity.Keywords: aflatoxicosis, honey, histopathology, malondialdehyde, antioxidant, rat
Procedia PDF Downloads 3341302 Identification of Environmental Damage Due to Mining Area Bangka Islands in Indonesia
Authors: Aroma Elmina Martha
Abstract:
Environment affects the continuity of life and human well-being and the bodies of other living. Environmental quality is very closely related to the quality of life. Sustainability must be protected from damage due to the use of natural resources, such as tin mining in Bangka island. This research is a descriptive study, which identifies the environmental damage caused by mining land and sea in Bangka district. The approach used is juridical, social and economic. The study uses primary legal materials, secondary, and tertiary, equipped with field research. The analysis technique used is qualitative analysis. The impacts of mining on land among other physical and chemical damage, erosion and widening the depth of the river, a pool of micro-climate, the quality and feasibility, vegetation, wildlife and biodiversity, land values, social and economic. This mining causes damage to the soil structure, and puddles in the former digs which were not backfilled again. The impact of mining on the ocean such as changes in current surge, erosion and abrasion basic coastal waters, shoreline change, marine water quality changes, and changes in marine communities. The findings of the research show that tin mining in the sea also potentially have a significant impact on the life of the reef, populations of marine organisms. However, mining on land needs to consider the impact of the damage, so that the damage can be minimized. In the recovery process needs to be pursued by exploiting the rest of the pile of tin. Thus, mining activities should take into account the distance of beach sediment size, wave height, wave length, wave period, and the acceleration of gravity. The process of the tin washing should be done in a fairly safe area, thus avoiding damage to the coral reefs that will eventually reduce the population of marine life.Keywords: abration, environmental damage, mining, shoreline
Procedia PDF Downloads 3221301 Radiation Annealing of Radiation Embrittlement of the Reactor Pressure Vessel
Authors: E. A. Krasikov
Abstract:
Influence of neutron irradiation on RPV steel degradation are examined with reference to the possible reasons of the substantial experimental data scatter and furthermore – nonstandard (non-monotonous) and oscillatory embrittlement behavior. In our glance, this phenomenon may be explained by presence of the wavelike component in the embrittlement kinetics. We suppose that the main factor affecting steel anomalous embrittlement is fast neutron intensity (dose rate or flux), flux effect manifestation depends on state-of-the-art fluence level. At low fluencies, radiation degradation has to exceed normative value, then approaches to normative meaning and finally became sub normative. Data on radiation damage change including through the ex-service RPVs taking into account chemical factor, fast neutron fluence and neutron flux were obtained and analyzed. In our opinion, controversy in the estimation on neutron flux on radiation degradation impact may be explained by presence of the wavelike component in the embrittlement kinetics. Therefore, flux effect manifestation depends on fluence level. At low fluencies, radiation degradation has to exceed normative value, then approaches to normative meaning and finally became sub normative. Moreover as a hypothesis we suppose that at some stages of irradiation damaged metal have to be partially restored by irradiation i.e. neutron bombardment. Nascent during irradiation structure undergo occurring once or periodically transformation in a direction both degradation and recovery of the initial properties. According to our hypothesis, at some stage(s) of metal structure degradation neutron bombardment became recovering factor. As a result, oscillation arises that in turn leads to enhanced data scatter.Keywords: annealing, embrittlement, radiation, RPV steel
Procedia PDF Downloads 3411300 Thermoluminescence Characteristic of Nanocrystalline BaSO4 Doped with Europium
Authors: Kanika S. Raheja, A. Pandey, Shaila Bahl, Pratik Kumar, S. P. Lochab
Abstract:
The subject of undertaking for this paper is the study of BaSO4 nanophosphor doped with Europium in which mainly the concentration of the rare earth impurity Eu (0.05, 0.1, 0.2, 0.5, and 1 mol %) has been varied. A comparative study of the thermoluminescence(TL) properties of the given nanophosphor has also been done using a well-known standard dosimetry material i.e. TLD-100.Firstly, a number of samples were prepared successfully by the chemical co-precipitation method. The whole lot was then compared to a well established standard material (TLD-100) for its TL sensitivity property. BaSO4:Eu ( 0.2 mol%) showed the highest sensitivity out of the lot. It was also found that when compared to the standard TLD-100, BaSo4:Eu (0.2mol%) showed surprisingly high sensitivity for a large range of doses. The TL response curve for all prepared samples has also been studied over a wide range of doses i.e 10Gy to 2kGy for gamma radiation. Almost all the samples of BaSO4:Eu showed a remarkable linearity for a broad range of doses, which is a characteristic feature of a fine TL dosimeter. The graph remained linear even beyond 1kGy for gamma radiation. Thus, the given nanophosphor has been successfully optimised for the concentration of the dopant material to achieve its highest TL sensitivity. Further, the comparative study with the standard material revealed that the current optimised sample shows an astonishingly better TL sensitivity and a phenomenal linear response curve for an incredibly wide range of doses for gamma radiation (Co-60) as compared to the standard TLD-100, which makes the current optimised BaSo4:Eu quite promising as an efficient gamma radiation dosimeter. Lastly, the present phosphor has been optimised for its annealing temperature to acquire the best results while also studying its fading and reusability properties.Keywords: gamma radiation, nanoparticles, radiation dosimetry, thermoluminescence
Procedia PDF Downloads 4301299 Selectivity Mechanism of Cobalt Precipitation by an Imidazole Linker From an Old Battery Solution
Authors: Anna-Caroline Lavergne-Bril, Jean-François Colin, David Peralta, Pascale Maldivi
Abstract:
Cobalt is a critical material, widely used in Li-ion batteries. Due to the planned electrification of European vehicles, cobalt needs are expending – and resources are limited. To meet the needs in cobalt to come, it is necessary to develop new efficient ways to recycle cobalt. One of the biggest sources comes from old electrical vehicles batteries (batteries sold in 2019: 500 000 tons of waste to be). A closed loop process of cobalt recycling has been developed and this presentation aims to present the selectivity mechanism of cobalt over manganese and nickel in solution. Cobalt precipitation as a ZIF material (Zeolitic Imidazolate framework) from a starting solution composed of equimolar nickel, manganese and cobalt is studied. A 2-MeIm (2-methylimidazole) linker is introduced in a multimetallic Ni, Mn, Co solution and the resulting ZIF-67 is 100% pure Co among its metallic centers. Selectivity of Co over Ni is experimentally studied and DFT modelisation calculation are conducted to understand the geometry of ligand-metal-solvent complexes in solution. Selectivity of Co over Mn is experimentally studied, and DFT modelisation calcucation are conducted to understand the link between pKa of the ligand and precipitration of Mn impurities within the final material. Those calculation open the way to other ligand being used in the same process, with more efficiency. Experimental material are synthetized from bimetallic (Ni²⁺/Co²⁺, Mn²⁺/Co²⁺, Mn²⁺/Ni²⁺) solutions. Their crystallographic structure is analysed by XRD diffraction (Brüker AXS D8 diffractometer, Cu anticathode). Morphology is studied by scanning electron microscopy, using a LEO 1530 FE-SEM microscope. The chemical analysis is performed by using ICP-OES (Agilent Technologies 700 series ICP-OES). Modelisation calculation are DFT calculation (density functional theory), using B3LYP, conducted with Orca 4.2.Keywords: MOFs, ZIFs, recycling, closed-loop, cobalt, li-ion batteries
Procedia PDF Downloads 137