Search results for: post classification change detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15617

Search results for: post classification change detection

9047 Level up Entrepreneurial Behaviors: A Case Study on the Use of Gamification to Encourage Entrepreneurial Acting and Thinking

Authors: Lena Murawski

Abstract:

Currently, researchers and experts from the business world recognize entrepreneurial behaviors as a decisive factor for economic success, allowing firms to adapt to changing internal and external needs. The purpose of this study is to explore how gamification can enhance entrepreneurial behaviors, reporting on a gamification project in a new venture operating in the IT sector in Germany. This article is based on data gathered from observations of pre‐ and post‐implementation in the case company. Results have indicated that the use of gamification encourages entrepreneurial behaviors, especially relating to seeking ways on how to integrate new employees, improve teamwork and communication, and to adapt existing processes to increase productivity. The interdisciplinary dialogue furthers our understanding of factors that foster entrepreneurial behaviors. The matter is of practical relevance, guiding practitioners on how to exploit the potentials of gamification to exhibit an entrepreneurial orientation in organizations.

Keywords: case study, entrepreneurial behaviors, gamification, new venture

Procedia PDF Downloads 167
9046 Long Short-Term Memory Based Model for Modeling Nicotine Consumption Using an Electronic Cigarette and Internet of Things Devices

Authors: Hamdi Amroun, Yacine Benziani, Mehdi Ammi

Abstract:

In this paper, we want to determine whether the accurate prediction of nicotine concentration can be obtained by using a network of smart objects and an e-cigarette. The approach consists of, first, the recognition of factors influencing smoking cessation such as physical activity recognition and participant’s behaviors (using both smartphone and smartwatch), then the prediction of the configuration of the e-cigarette (in terms of nicotine concentration, power, and resistance of e-cigarette). The study uses a network of commonly connected objects; a smartwatch, a smartphone, and an e-cigarette transported by the participants during an uncontrolled experiment. The data obtained from sensors carried in the three devices were trained by a Long short-term memory algorithm (LSTM). Results show that our LSTM-based model allows predicting the configuration of the e-cigarette in terms of nicotine concentration, power, and resistance with a root mean square error percentage of 12.9%, 9.15%, and 11.84%, respectively. This study can help to better control consumption of nicotine and offer an intelligent configuration of the e-cigarette to users.

Keywords: Iot, activity recognition, automatic classification, unconstrained environment

Procedia PDF Downloads 227
9045 Impact of Ethiopia's Productive Safety Net Program on Household Dietary Diversity and Child Nutrition in Rural Ethiopia

Authors: Tagel Gebrehiwot, Carolina Castilla

Abstract:

Food insecurity and child malnutrition are among the most critical issues in Ethiopia. Accordingly, different reform programs have been carried to improve household food security. The Food Security Program (FSP) (among others) was introduced to combat the persistent food insecurity problem in the country. The FSP combines a safety net component called the Productive Safety Net Program (PSNP) started in 2005. The goal of PSNP is to offer multi-annual transfers, such as food, cash or a combination of both to chronically food insecure households to break the cycle of food aid. Food or cash transfers are the main elements of PSNP. The case for cash transfers builds on the Sen’s analysis of ‘entitlement to food’, where he argues that restoring access to food by improving demand is a more effective and sustainable response to food insecurity than food aid. Cash-based schemes offer a greater choice of use of the transfer and can allow a greater diversity of food choice. It has been proven that dietary diversity is positively associated with the key pillars of food security. Thus, dietary diversity is considered as a measure of household’s capacity to access a variety of food groups. Studies of dietary diversity among Ethiopian rural households are somewhat rare and there is still a dearth of evidence on the impact of PSNP on household dietary diversity. In this paper, we examine the impact of the Ethiopia’s PSNP on household dietary diversity and child nutrition using panel household surveys. We employed different methodologies for identification. We exploit the exogenous increase in kebeles’ PSNP budget to identify the effect of the change in the amount of money households received in transfers between 2012 and 2014 on the change in dietary diversity. We use three different approaches to identify this effect: two-stage least squares, reduced form IV, and generalized propensity score matching using a continuous treatment. The results indicate the increase in PSNP transfers between 2012 and 2014 had no effect on household dietary diversity. Estimates for different household dietary indicators reveal that the effect of the change in the cash transfer received by the household is statistically and economically insignificant. This finding is robust to different identification strategies and the inclusion of control variables that determine eligibility to become a PSNP beneficiary. To identify the effect of PSNP participation on children height-for-age and stunting we use a difference-in-difference approach. We use children between 2 and 5 in 2012 as a baseline because by then they have achieved long-term failure to grow. The treatment group comprises children ages 2 to 5 in 2014 in PSNP participant households. While changes in height-for-age take time, two years of additional transfers among children who were not born or under the age of 2-3 in 2012 have the potential to make a considerable impact on reducing the prevalence of stunting. The results indicate that participation in PSNP had no effect on child nutrition measured as height-for-age or probability of beings stunted, suggesting that PSNP should be designed in a more nutrition-sensitive way.

Keywords: continuous treatment, dietary diversity, impact, nutrition security

Procedia PDF Downloads 341
9044 The Social Aspects of Mental Illness among Orthodox Christians of the Tigrinya Ethnic Group in Eritrea

Authors: Erimias Firre

Abstract:

This study is situated within the religio-cultural milieu of Coptic Orthodox Christians of the Tigrinya ethnic group in Eritrea. With this ethnic group being conservative and traditionally bound, extended family structures dissected along various clans and expansive community networks are the distinguishing mark of its members. Notably, Coptic Tigrinya constitutes the largest percentage of all Christian denominations in Eritrea. As religious, cultural beliefs, rituals and teachings permeate in all aspects of social life, a distinct worldview and traditionalized health and illness conceptualization are common. Accordingly, this study argues that religio-culturally bound illness ideologies immensely determine the perception, help seeking behavior and healing preference of Coptic Tigrinya in Eritrea. The study bears significance in the sense that it bridges an important knowledge gap, given that it is ethno-linguistically (within the Tigrinya ethnic group), spatially (central region of Eritrea) and religiously (Coptic Christianity) specific. The conceptual framework guiding this research centered on the social determinants of mental health, and explores through the lens of critical theory how existing systems generate social vulnerability and structural inequality, providing a platform to reveal how the psychosocial model has the capacity to emancipate and empower those with mental disorders to live productive and meaningful lives. A case study approach was employed to explore the interrelationship between religio-cultural beliefs and practices and perception of common mental disorders of depression, anxiety, bipolar affective, schizophrenia and post-traumatic stress disorders and the impact of these perceptions on people with those mental disorders. Purposive sampling was used to recruit 41 participants representing seven diverse cohorts; people with common mental disorders, family caregivers, general community members, ex-fighters , priests, staff at St. Mary’s and Biet-Mekae Community Health Center; resulting in rich data for thematic analysis. Findings highlighted current religio-cultural perceptions, causes and treatment of mental disorders among Coptic Tigrinya result in widespread labelling, stigma and discrimination, both of those with mental disorders and their families. Traditional healing sources are almost exclusively tried, sometimes for many years, before families and sufferers seek formal medical assessment and treatment, resulting difficult to treat illness chronicity. Service gaps in the formal medical system result in the inability to meet the principles enshrined in the WHO Mental Health Action Plan 2013-2020 to which the Eritrean Government is a signatory. However, the study found that across all participant cohorts, there was a desire for change that will create a culture whereby those with mental disorders will have restored hope, connectedness, healing and self-determination.

Keywords: Coptic Tigrinya, mental disorders, psychosocial model social integration and recovery, traditional healing

Procedia PDF Downloads 189
9043 Forensic Speaker Verification in Noisy Environmental by Enhancing the Speech Signal Using ICA Approach

Authors: Ahmed Kamil Hasan Al-Ali, Bouchra Senadji, Ganesh Naik

Abstract:

We propose a system to real environmental noise and channel mismatch for forensic speaker verification systems. This method is based on suppressing various types of real environmental noise by using independent component analysis (ICA) algorithm. The enhanced speech signal is applied to mel frequency cepstral coefficients (MFCC) or MFCC feature warping to extract the essential characteristics of the speech signal. Channel effects are reduced using an intermediate vector (i-vector) and probabilistic linear discriminant analysis (PLDA) approach for classification. The proposed algorithm is evaluated by using an Australian forensic voice comparison database, combined with car, street and home noises from QUT-NOISE at a signal to noise ratio (SNR) ranging from -10 dB to 10 dB. Experimental results indicate that the MFCC feature warping-ICA achieves a reduction in equal error rate about (48.22%, 44.66%, and 50.07%) over using MFCC feature warping when the test speech signals are corrupted with random sessions of street, car, and home noises at -10 dB SNR.

Keywords: noisy forensic speaker verification, ICA algorithm, MFCC, MFCC feature warping

Procedia PDF Downloads 409
9042 Nonstationary Waves Excited by the Rigid Cylinder in Elastic Medium

Authors: Tukeaban Hasanova, Jamila Imamalieva

Abstract:

By the operational method, the problem on two-dimensional wave propagation in elastic medium excited by the round cylinder is solved. An analytical solution responding to instantaneous application of speed to the inclusion at its subsequent change is constructed. The two-dimensional problem on wave propagation in an elastic medium is considered.

Keywords: cylinder, inclusion, wave, elastic medium, speed

Procedia PDF Downloads 168
9041 Data Mining Approach for Commercial Data Classification and Migration in Hybrid Storage Systems

Authors: Mais Haj Qasem, Maen M. Al Assaf, Ali Rodan

Abstract:

Parallel hybrid storage systems consist of a hierarchy of different storage devices that vary in terms of data reading speed performance. As we ascend in the hierarchy, data reading speed becomes faster. Thus, migrating the application’ important data that will be accessed in the near future to the uppermost level will reduce the application I/O waiting time; hence, reducing its execution elapsed time. In this research, we implement trace-driven two-levels parallel hybrid storage system prototype that consists of HDDs and SSDs. The prototype uses data mining techniques to classify application’ data in order to determine its near future data accesses in parallel with the its on-demand request. The important data (i.e. the data that the application will access in the near future) are continuously migrated to the uppermost level of the hierarchy. Our simulation results show that our data migration approach integrated with data mining techniques reduces the application execution elapsed time when using variety of traces in at least to 22%.

Keywords: hybrid storage system, data mining, recurrent neural network, support vector machine

Procedia PDF Downloads 311
9040 Cu Voids Detection of Electron Beam Inspection at the 5nm Node

Authors: Byungsik Moon

Abstract:

Electron beam inspection (EBI) has played an important role in detecting defects during the Fab process. The study focused on capturing buried Cu metal voids for 5nm technology nodes in Qualcomm Snapdragon mass production. This paper illustrates a case study where Cu metal voids can be detected without side effects with optimized EBI scanning conditions. The voids were buried in the VIA and not detected effectively by bright field inspection. EBI showed higher detectability, about 10 times that of bright fields, and a lower landing energy of EBI can avoid film damage. A comparison of detectability between EBI and bright field inspection was performed, and TEM confirmed voids that were detected by EBI. Therefore, a much higher detectability of buried Cu metal voids can be achieved without causing film damage.

Keywords: electron beam inspection, EBI, landing energy, Cu metal voids, bright field inspection

Procedia PDF Downloads 80
9039 Production, Quality Control and Biodistribution Assessment of 166 Ho-BPAMD as a New Bone Seeking Agent

Authors: H. Yousefnia, N. Amraee, M. Hosntalab, S. Zolghadri, A. Bahrami-Samani

Abstract:

The aim of this study was the preparation of a new agent for bone marrow ablation in patients with multiple myeloma. 166Ho was produced at Tehran research reactor via 165Ho(n,γ)166Ho reaction. Complexion of Ho‐166 with BPAMD was carried out by the addition of about 200µg of BPAMD in absolute water to 1 mci of 166HoCl3 and warming up the mixture 90 0C for 1 h. 166Ho-BPAMD was prepared successfully with radio chemical purity of 95% which was measured by ITLC method. The final solution was injected to wild-type mice and bio distribution was determined up to 48 h. SPECT images were acquired after 2 and 48 h post injection. Both the bio distribution studies and SPECT imaging indicated high bone uptake, while accumulation in other organs was approximately negligible. The results show that 166Ho-BPAMD has suitable characteristics and can be used as a new bone marrow ablative agent.

Keywords: bone marrow ablation, BPAMD, 166Ho, SPECT

Procedia PDF Downloads 509
9038 Practices Supporting the Wellbeing of Healthcare Staff Post-disaster: Findings from a Narrative Inquiry

Authors: Julaine Allan, Katarzyna Olcon, Padmini Pai, Lynne Keevers, Mim Fox, Maria Mackay, Ruth Everingham

Abstract:

Effective local responses to community needs are grounded in contextual knowledge and build on existing resources. The Stability, Encompassing, Endurance & Direction (SEED) Wellbeing Program was created in 2020 in response to cumulative disasters, bushfires, floods and COVID, experienced by healthcare staff in the Illawarra Shoalhaven Local Health District, NSW Australia. SEED used a participatory action methodology to bring healthcare staff teams together to engage in restorative activities in the workplace. Guided by Practice Theory, this study identified the practices that supported the recovery of healthcare staff.

Keywords: mental health and wellbeing, workplace wellness, healthcare providers, natural disasters, COVID-19, burnout, occupational trauma

Procedia PDF Downloads 94
9037 Analysing Perceptions of Online Games-Based Learning: Case Study of the University of Northampton

Authors: Alison Power

Abstract:

Games-based learning aims to enhance students’ engagement with and enjoyment of learning opportunities using games-related principles to create a fun yet productive learning environment. Motivating students to learn in an online setting can be particularly challenging, so a cross-Faculty synchronous online session provided students with the opportunity to engage with ‘GAMING’: an interactive, flexible and scalable e-resource for students to work synchronously in groups to complete a series of e-tivities designed to enhance their skills of leadership, collaboration and negotiation. Findings from a post-session online survey found the majority of students had a positive learning experience, finding 'GAMING' to be an innovative and engaging e-resource which motivated their group to learn.

Keywords: collaboration, games-based learning, groupwork, synchronous online learning, teamwork

Procedia PDF Downloads 130
9036 A Machine Learning Based Method to Detect System Failure in Resource Constrained Environment

Authors: Payel Datta, Abhishek Das, Abhishek Roychoudhury, Dhiman Chattopadhyay, Tanushyam Chattopadhyay

Abstract:

Machine learning (ML) and deep learning (DL) is most predominantly used in image/video processing, natural language processing (NLP), audio and speech recognition but not that much used in system performance evaluation. In this paper, authors are going to describe the architecture of an abstraction layer constructed using ML/DL to detect the system failure. This proposed system is used to detect the system failure by evaluating the performance metrics of an IoT service deployment under constrained infrastructure environment. This system has been tested on the manually annotated data set containing different metrics of the system, like number of threads, throughput, average response time, CPU usage, memory usage, network input/output captured in different hardware environments like edge (atom based gateway) and cloud (AWS EC2). The main challenge of developing such system is that the accuracy of classification should be 100% as the error in the system has an impact on the degradation of the service performance and thus consequently affect the reliability and high availability which is mandatory for an IoT system. Proposed ML/DL classifiers work with 100% accuracy for the data set of nearly 4,000 samples captured within the organization.

Keywords: machine learning, system performance, performance metrics, IoT, edge

Procedia PDF Downloads 198
9035 Modified Ninhydrin Reagent for the Detection of Amino Acids on TLC Paper

Authors: H. Elgubbi, A. Mlitan, A. Alzridy

Abstract:

Ninhydrin is the most well known spray reagent for identification of amino acids. Spring with Ninhydrin as a non-specific reagent is well-known and widely used for its remarkable high sensitivity. Using Ninhydrin reagent alone to detect amino acid on thin layer chromatography (TLA) paper is not advisable due to its lower sensitivity. A new spray reagent, Stannus chloride solution (Sn CL2) has been used to detect amino acids on filtter paper (witman 14) and TLC paper, silica Gel, 60 F254 TLC Aluminium Sheet 20x20cm Merck- Germany. Also, modified TLC pre-staining method was used, which only consisted of 3 steps: spotting, separating and color. The improved method was rapid and inexpensive and the results obtained were clear and reliable. In addition, it is suitable for screening different amino acid.

Keywords: amino acid, ninhydrin, modified ninhydrin reagent, stannus chloride reagent, thin-layer chromatography (TLC), TLC pre-staining

Procedia PDF Downloads 417
9034 Sociolinguistic Aspects and Language Contact, Lexical Consequences in Francoprovençal Settings

Authors: Carmela Perta

Abstract:

In Italy the coexistence of standard language, its varieties and different minority languages - historical and migration languages - has been a way to study language contact in different directions; the focus of most of the studies is either the relations among the languages of the social repertoire, or the study of contact phenomena occurring in a particular structural level. However, studies on contact facts in relation to a given sociolinguistic situation of the speech community are still not present in literature. As regard the language level to investigate from the perspective of contact, it is commonly claimed that the lexicon is the most volatile part of language and most likely to undergo change due to superstrate influence, indeed first lexical features are borrowed, then, under long term cultural pressure, structural features may also be borrowed. The aim of this paper is to analyse language contact in two historical minority communities where Francoprovençal is spoken, in relation to their sociolinguistic situation. In this perspective, firstly lexical borrowings present in speakers’ speech production will be examined, trying to find a possible correlation between this part of the lexicon and informants’ sociolinguistic variables; secondly a possible correlation between a particular community sociolinguistic situation and lexical borrowing will be found. Methods used to collect data are based on the results obtained from 24 speakers in both the villages; the speaker group in the two communities consisted of 3 males and 3 females in each of four age groups, ranging in age from 9 to 85, and then divided into five groups according to their occupations. Speakers were asked to describe a sequence of pictures naming common objects and then describing scenes when they used these objects: they are common objects, frequently pronounced and belonging to semantic areas which are usually resistant and which are thought to survive. A subset of this task, involving 19 items with Italian source is examined here: in order to determine the significance of the independent variables (social factors) on the dependent variable (lexical variation) the statistical package SPSS, particularly the linear regression, was used.

Keywords: borrowing, Francoprovençal, language change, lexicon

Procedia PDF Downloads 376
9033 An Empirical Study to Predict Myocardial Infarction Using K-Means and Hierarchical Clustering

Authors: Md. Minhazul Islam, Shah Ashisul Abed Nipun, Majharul Islam, Md. Abdur Rakib Rahat, Jonayet Miah, Salsavil Kayyum, Anwar Shadaab, Faiz Al Faisal

Abstract:

The target of this research is to predict Myocardial Infarction using unsupervised Machine Learning algorithms. Myocardial Infarction Prediction related to heart disease is a challenging factor faced by doctors & hospitals. In this prediction, accuracy of the heart disease plays a vital role. From this concern, the authors have analyzed on a myocardial dataset to predict myocardial infarction using some popular Machine Learning algorithms K-Means and Hierarchical Clustering. This research includes a collection of data and the classification of data using Machine Learning Algorithms. The authors collected 345 instances along with 26 attributes from different hospitals in Bangladesh. This data have been collected from patients suffering from myocardial infarction along with other symptoms. This model would be able to find and mine hidden facts from historical Myocardial Infarction cases. The aim of this study is to analyze the accuracy level to predict Myocardial Infarction by using Machine Learning techniques.

Keywords: Machine Learning, K-means, Hierarchical Clustering, Myocardial Infarction, Heart Disease

Procedia PDF Downloads 207
9032 Flood Monitoring in the Vietnamese Mekong Delta Using Sentinel-1 SAR with Global Flood Mapper

Authors: Ahmed S. Afifi, Ahmed Magdy

Abstract:

Satellite monitoring is an essential tool to study, understand, and map large-scale environmental changes that affect humans, climate, and biodiversity. The Sentinel-1 Synthetic Aperture Radar (SAR) instrument provides a high collection of data in all-weather, short revisit time, and high spatial resolution that can be used effectively in flood management. Floods occur when an overflow of water submerges dry land that requires to be distinguished from flooded areas. In this study, we use global flood mapper (GFM), a new google earth engine application that allows users to quickly map floods using Sentinel-1 SAR. The GFM enables the users to adjust manually the flood map parameters, e.g., the threshold for Z-value for VV and VH bands and the elevation and slope mask threshold. The composite R:G:B image results by coupling the bands of Sentinel-1 (VH:VV:VH) reduces false classification to a large extent compared to using one separate band (e.g., VH polarization band). The flood mapping algorithm in the GFM and the Otsu thresholding are compared with Sentinel-2 optical data. And the results show that the GFM algorithm can overcome the misclassification of a flooded area in An Giang, Vietnam.

Keywords: SAR backscattering, Sentinel-1, flood mapping, disaster

Procedia PDF Downloads 109
9031 Digital Subsistence of Cultural Heritage: Digital Media as a New Dimension of Cultural Ecology

Authors: Dan Luo

Abstract:

With the climate change can exacerbate exposure of cultural heritage to climatic stressors, scholars pin their hope on digital technology can help the site avoid surprises. Virtual museum has been regarded as a highly effective technology that enables people to gain enjoyable visiting experience and immersive information about cultural heritage. The technology clearly reproduces the images of the tangible cultural heritage, and the aesthetic experience created by new media helps consumers escape from the realistic environment full of uncertainty. The new cultural anchor has appeared outside the cultural sites. This article synthesizes the international literature on the virtual museum by developing diagrams of Citespace focusing on the tangible cultural heritage and the alarmingly situation has emerged in the process of resolving climate change: (1) Digital collections are the different cultural assets for public. (2) The media ecology change people ways of thinking and meeting style of cultural heritage. (3) Cultural heritage may live forever in the digital world. This article provides a typical practice information to manage cultural heritage in a changing climate—the Dunhuang Mogao Grottoes in the far northwest of China, which is a worldwide cultural heritage site famous for its remarkable and sumptuous murals. This monument is a typical synthesis of art containing 735 Buddhist temples, which was listed by UNESCO as one of the World Cultural Heritage sites. The caves contain some extraordinary examples of Buddhist art spanning a period of 1,000 years - the architectural form, the sculptures in the caves, and the murals on the walls, all together constitute a wonderful aesthetic experience. Unfortunately, this magnificent treasure cave has been threatened by increasingly frequent dust storms and precipitation. The Dunhuang Academy has been using digital technology since the last century to preserve these immovable cultural heritages, especially the murals in the caves. And then, Dunhuang culture has become a new media culture after introduce the art to the world audience through exhibitions, VR, video, etc. The paper chooses qualitative research method that used Nvivo software to encode the collected material to answer this question. The author paid close attention to the survey in Dunhuang City, including participated in 10 exhibition and 20 salons that are Dunhuang-themed on network. What’s more, 308 visitors were interviewed who are fans of the art and have experienced Dunhuang culture online(6-75 years).These interviewees have been exposed to Dunhuang culture through different media, and they are acutely aware of the threat to this cultural heritage. The conclusion is that the unique halo of the cultural heritage was always emphasized, and digital media breeds twin brothers of cultural heritage. In addition, the digital media make it possible for cultural heritage to reintegrate into the daily life of the masses. Visitors gain the opportunity to imitate the mural figures through enlarged or emphasized images but also lose the perspective of understanding the whole cultural life. New media construct a new life aesthetics apart from the Authorized heritage discourse.

Keywords: cultural ecology, digital twins, life aesthetics, media

Procedia PDF Downloads 85
9030 Ethereum Based Smart Contracts for Trade and Finance

Authors: Rishabh Garg

Abstract:

Traditionally, business parties build trust with a centralized operating mechanism, such as payment by letter of credit. However, the increase in cyber-attacks and malicious hacking has jeopardized business operations and finance practices. Emerging markets, owing to their higher banking risks and bigger presence of digital financing, are looking forward to technology-driven solutions, financial inclusion and innovative working paradigms. Blockchain has the potential to enhance transaction transparency and supply chain traceability. It has captured a vast landscape with 200 million crypto users worldwide. Fintech and blockchain products are popping up across brokerage, digital wallets, exchanges, post-trade clearance, settlement, middleware, infrastructure, and base protocols.

Keywords: blockchain, distributed ledger technology, decentralized applications, ethereum, smart contracts, trade finance

Procedia PDF Downloads 160
9029 Classifying Facial Expressions Based on a Motion Local Appearance Approach

Authors: Fabiola M. Villalobos-Castaldi, Nicolás C. Kemper, Esther Rojas-Krugger, Laura G. Ramírez-Sánchez

Abstract:

This paper presents the classification results about exploring the combination of a motion based approach with a local appearance method to describe the facial motion caused by the muscle contractions and expansions that are presented in facial expressions. The proposed feature extraction method take advantage of the knowledge related to which parts of the face reflects the highest deformations, so we selected 4 specific facial regions at which the appearance descriptor were applied. The most common used approaches for feature extraction are the holistic and the local strategies. In this work we present the results of using a local appearance approach estimating the correlation coefficient to the 4 corresponding landmark-localized facial templates of the expression face related to the neutral face. The results let us to probe how the proposed motion estimation scheme based on the local appearance correlation computation can simply and intuitively measure the motion parameters for some of the most relevant facial regions and how these parameters can be used to recognize facial expressions automatically.

Keywords: facial expression recognition system, feature extraction, local-appearance method, motion-based approach

Procedia PDF Downloads 416
9028 The Effect of LEADER and Community-Led Local Development in Spanish Municipal Unemployment: A Difference-in-Difference Approach

Authors: Miguel A. Borrella, Ana P. Fanjul, Suca Munoz, Liliana Herrera

Abstract:

This paper evaluates the impact of LEADER, a remarkable Community-Led Local Development (CLLD) approach of the European Program for Rural Development applied to rural municipalities of Spain in 2018 and 2019. Using a difference-in-difference estimation strategy and a newly-constructed database, results show that aided municipalities have significantly lower unemployment levels than non-aided municipalities. Results are significant for the decrease in unemployment for both women and people younger than 25 years old, two of the target groups of the policy. Nevertheless, they are larger for male and older workers. Therefore, findings suggest that LEADER 2017-2018 was successful in reducing unemployment in rural areas.

Keywords: community-led local development, ex-post evaluation, LEADER, rural development

Procedia PDF Downloads 344
9027 Improvement of Ground Truth Data for Eye Location on Infrared Driver Recordings

Authors: Sorin Valcan, Mihail Gaianu

Abstract:

Labeling is a very costly and time consuming process which aims to generate datasets for training neural networks in several functionalities and projects. For driver monitoring system projects, the need for labeled images has a significant impact on the budget and distribution of effort. This paper presents the modifications done to an algorithm used for the generation of ground truth data for 2D eyes location on infrared images with drivers in order to improve the quality of the data and performance of the trained neural networks. The algorithm restrictions become tougher, which makes it more accurate but also less constant. The resulting dataset becomes smaller and shall not be altered by any kind of manual label adjustment before being used in the neural networks training process. These changes resulted in a much better performance of the trained neural networks.

Keywords: labeling automation, infrared camera, driver monitoring, eye detection, convolutional neural networks

Procedia PDF Downloads 123
9026 Near Infrared Spectrometry to Determine the Quality of Milk, Experimental Design Setup and Chemometrics: Review

Authors: Meghana Shankara, Priyadarshini Natarajan

Abstract:

Infrared (IR) spectroscopy has revolutionized the way we look at materials around us. Unraveling the pattern in the molecular spectra of materials to analyze the composition and properties of it has been one of the most interesting challenges in modern science. Applications of the IR spectrometry are numerous in the field’s pharmaceuticals, health, food and nutrition, oils, agriculture, construction, polymers, beverage, fabrics and much more limited only by the curiosity of the people. Near Infrared (NIR) spectrometry is applied robustly in analyzing the solids and liquid substances because of its non-destructive analysis method. In this paper, we have reviewed the application of NIR spectrometry in milk quality analysis and have presented the modes of measurement applied in NIRS measurement setup, Design of Experiment (DoE), classification/quantification algorithms used in the case of milk composition prediction like Fat%, Protein%, Lactose%, Solids Not Fat (SNF%) along with different approaches for adulterant identification. We have also discussed the important NIR ranges for the chosen milk parameters. The performance metrics used in the comparison of the various Chemometric approaches include Root Mean Square Error (RMSE), R^2, slope, offset, sensitivity, specificity and accuracy

Keywords: chemometrics, design of experiment, milk quality analysis, NIRS measurement modes

Procedia PDF Downloads 273
9025 Comparison of Flow and Mixing Characteristics between Non-Oscillating and Transversely Oscillating Jet

Authors: Dinku Seyoum Zeleke, Rong Fung Huang, Ching Min Hsu

Abstract:

Comparison of flow and mixing characteristics between non-oscillating jet and transversely oscillating jet was investigated experimentally. Flow evolution process was detected by using high-speed digital camera, and jet spread width was calculated using binary edge detection techniques by using the long-exposure images. The velocity characteristics of transversely oscillating jet induced by a V-shaped fluidic oscillator were measured using single component hot-wire anemometer. The jet spread width of non-oscillating jet was much smaller than the jet exit gap because of behaving natural jet behaviors. However, the transversely oscillating jet has a larger jet spread width, which was associated with the excitation of the flow by self-induced oscillation. As a result, the flow mixing characteristics desperately improved both near-field and far-field. Therefore, this transversely oscillating jet has a better turbulence intensity, entrainment, and spreading width so that it augments flow-mixing characteristics desperately.

Keywords: flow mixing, transversely oscillating, spreading width, velocity characteristics

Procedia PDF Downloads 255
9024 Detection of Lymphedema after Breast Cancer in Yucatecan Women

Authors: Olais A. Ingrid, Peraza G. Leydi, Estrella C. Damaris

Abstract:

Breast cancer is the most common among women worldwide; the different treatments can bring sequels that directly affect the quality of life, such as lymphedema. The objective was to determine if there is presence of lymphedema secondary to breast cancer in Yucatecan women. It was an observational, analytical, cross-sectional study, 92 women were included who met the following criteria: women with surgical treatment for unilateral: breast cancer, aged between 25 and 65 years old, minimum 6 weeks after unilateral breast surgery and have completed any type of chemotherapy or adjuvant radiotherapy treatment for breast cancer. The evaluation was through indirect measurement volume by circometry to determine the presence of lymphedema. 23% of women had lymphedema grade I. It related to the presence of some of the symptoms like stiffness, swelling, decreased range of motion and feeling of heaviness in the arm of the operated side of the breast. It is important to determine the presence of lymphedema to perform physical therapy treatment.

Keywords: breast cancer, lymphedema, physical therapy, Yucatan

Procedia PDF Downloads 354
9023 Improoving Readability for Tweet Contextualization Using Bipartite Graphs

Authors: Amira Dhokar, Lobna Hlaoua, Lotfi Ben Romdhane

Abstract:

Tweet contextualization (TC) is a new issue that aims to answer questions of the form 'What is this tweet about?' The idea of this task was imagined as an extension of a previous area called multi-document summarization (MDS), which consists in generating a summary from many sources. In both TC and MDS, the summary should ideally contain the most relevant information of the topic that is being discussed in the source texts (for MDS) and related to the query (for TC). Furthermore of being informative, a summary should be coherent, i.e. well written to be readable and grammatically compact. Hence, coherence is an essential characteristic in order to produce comprehensible texts. In this paper, we propose a new approach to improve readability and coherence for tweet contextualization based on bipartite graphs. The main idea of our proposed method is to reorder sentences in a given paragraph by combining most expressive words detection and HITS (Hyperlink-Induced Topic Search) algorithm to make up a coherent context.

Keywords: bipartite graphs, readability, summarization, tweet contextualization

Procedia PDF Downloads 197
9022 Identification of Landslide Features Using Back-Propagation Neural Network on LiDAR Digital Elevation Model

Authors: Chia-Hao Chang, Geng-Gui Wang, Jee-Cheng Wu

Abstract:

The prediction of a landslide is a difficult task because it requires a detailed study of past activities using a complete range of investigative methods to determine the changing condition. In this research, first step, LiDAR 1-meter by 1-meter resolution of digital elevation model (DEM) was used to generate six environmental factors of landslide. Then, back-propagation neural networks (BPNN) was adopted to identify scarp, landslide areas and non-landslide areas. The BPNN uses 6 environmental factors in input layer and 1 output layer. Moreover, 6 landslide areas are used as training areas and 4 landslide areas as test areas in the BPNN. The hidden layer is set to be 1 and 2; the hidden layer neurons are set to be 4, 5, 6, 7 and 8; the learning rates are set to be 0.01, 0.1 and 0.5. When using 1 hidden layer with 7 neurons and the learning rate sets to be 0.5, the result of Network training root mean square error is 0.001388. Finally, evaluation of BPNN classification accuracy by the confusion matrix shows that the overall accuracy can reach 94.4%, and the Kappa value is 0.7464.

Keywords: digital elevation model, DEM, environmental factors, back-propagation neural network, BPNN, LiDAR

Procedia PDF Downloads 149
9021 Enhancing of Laser Imaging by Using Ultrasound Effect

Authors: Hayder Raad Hafuze, Munqith Saleem Dawood, Jamal Abdul Jabbar

Abstract:

The effect of using both ultrasounds with laser in medical imaging of the biological tissue has been studied in this paper. Different wave lengths of incident laser light (405 nm, 532 nm, 650 nm, 808 nm and 1064 nm) were used with different ultrasound frequencies (1MHz and 3.3MHz). The results showed that, the change of acoustic intensity enhance the laser penetration of the tissue for different thickness. The existence of the ideal Raman-Nath diffraction pattern were investigated in terms of phase delay and incident angle.

Keywords: tissue, laser, ultrasound, effect, imaging

Procedia PDF Downloads 437
9020 A Study on Water Quality Parameters of Pond Water for Better Management of Pond

Authors: Dona Grace Jeyaseeli

Abstract:

Water quality conditions in a pond are controlled by both natural processes and human influences. Natural factors such as the source of the pond water and the types of rock and soil in the pond watershed will influence some water quality characteristics. These factors are difficult to control but usually cause few problems. Instead, most serious water quality problems originate from land uses or other activities near or in the pond. The effects of these activities can often be minimized through proper management and early detection of problems through testing. In the present study a survey of three ponds in Coimbatore city, Tamilnadu, India were analyzed and found that water quality problems in their ponds, ranging from muddy water to fish kills. Unfortunately, most pond owners have never tested their ponds, and water quality problems are usually only detected after they cause a problem. Hence the present study discusses some common water quality parameters that may cause problems in ponds and how to detect through testing for better management of pond.

Keywords: water quality, pond, test, problem

Procedia PDF Downloads 515
9019 An Early Detection Type 2 Diabetes Using K - Nearest Neighbor Algorithm

Authors: Ng Liang Shen, Ngahzaifa Abdul Ghani

Abstract:

This research aimed at developing an early warning system for pre-diabetic and diabetics by analyzing simple and easily determinable signs and symptoms of diabetes among the people living in Malaysia using Particle Swarm Optimized Artificial. With the skyrocketing prevalence of Type 2 diabetes in Malaysia, the system can be used to encourage affected people to seek further medical attention to prevent the onset of diabetes or start managing it early enough to avoid the associated complications. The study sought to find out the best predictive variables of Type 2 Diabetes Mellitus, developed a system to diagnose diabetes from the variables using Artificial Neural Networks and tested the system on accuracy to find out the patent generated from diabetes diagnosis result in machine learning algorithms even at primary or advanced stages.

Keywords: diabetes diagnosis, Artificial Neural Networks, artificial intelligence, soft computing, medical diagnosis

Procedia PDF Downloads 341
9018 Subfamilial Relationships within Solanaceae as Inferred from atpB-rbcL Intergenic Spacer

Authors: Syeda Qamarunnisa, Ishrat Jamil, Abid Azhar, Zabta K. Shinwari, Syed Irtifaq Ali

Abstract:

A phylogenetic analysis of family Solanaceae was conducted using sequence data from the chloroplast intergenic atpB-rbcL spacer. Sequence data was generated from 17 species representing 09 out of 14 genera of Solanaceae from Pakistan. Cladogram was constructed using maximum parsimony method and results indicate that Solanaceae is mainly divided into two subfamilies; Solanoideae and Cestroideae. Four major clades within Solanoideae represent tribes; Physaleae, Capsiceae, Datureae and Solaneae are supported by high bootstrap value and the relationships among them are not corroborating with the previous studies. The findings established that subfamily Cestroideae comprised of three genera; Cestrum, Lycium, and Nicotiana with high bootstrap support. Position of Nicotiana inferred with atpB-rbcL sequence is congruent with traditional classification, which placed the taxa in Cestroideae. In the current study Lycium unexpectedly nested with Nicotiana with 100% bootstrap support and identified as a member of tribe Nicotianeae. Expanded sampling of other genera from Pakistan could be valuable towards improving our understanding of intrafamilial relationships within Solanaceae.

Keywords: systematics, solanaceae, phylogenetics, intergenic spacer, tribes

Procedia PDF Downloads 473