Search results for: virtual physical model
21946 Machine Learning Approach for Automating Electronic Component Error Classification and Detection
Authors: Monica Racha, Siva Chandrasekaran, Alex Stojcevski
Abstract:
The engineering programs focus on promoting students' personal and professional development by ensuring that students acquire technical and professional competencies during four-year studies. The traditional engineering laboratory provides an opportunity for students to "practice by doing," and laboratory facilities aid them in obtaining insight and understanding of their discipline. Due to rapid technological advancements and the current COVID-19 outbreak, the traditional labs were transforming into virtual learning environments. Aim: To better understand the limitations of the physical laboratory, this research study aims to use a Machine Learning (ML) algorithm that interfaces with the Augmented Reality HoloLens and predicts the image behavior to classify and detect the electronic components. The automated electronic components error classification and detection automatically detect and classify the position of all components on a breadboard by using the ML algorithm. This research will assist first-year undergraduate engineering students in conducting laboratory practices without any supervision. With the help of HoloLens, and ML algorithm, students will reduce component placement error on a breadboard and increase the efficiency of simple laboratory practices virtually. Method: The images of breadboards, resistors, capacitors, transistors, and other electrical components will be collected using HoloLens 2 and stored in a database. The collected image dataset will then be used for training a machine learning model. The raw images will be cleaned, processed, and labeled to facilitate further analysis of components error classification and detection. For instance, when students conduct laboratory experiments, the HoloLens captures images of students placing different components on a breadboard. The images are forwarded to the server for detection in the background. A hybrid Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) algorithm will be used to train the dataset for object recognition and classification. The convolution layer extracts image features, which are then classified using Support Vector Machine (SVM). By adequately labeling the training data and classifying, the model will predict, categorize, and assess students in placing components correctly. As a result, the data acquired through HoloLens includes images of students assembling electronic components. It constantly checks to see if students appropriately position components in the breadboard and connect the components to function. When students misplace any components, the HoloLens predicts the error before the user places the components in the incorrect proportion and fosters students to correct their mistakes. This hybrid Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) algorithm automating electronic component error classification and detection approach eliminates component connection problems and minimizes the risk of component damage. Conclusion: These augmented reality smart glasses powered by machine learning provide a wide range of benefits to supervisors, professionals, and students. It helps customize the learning experience, which is particularly beneficial in large classes with limited time. It determines the accuracy with which machine learning algorithms can forecast whether students are making the correct decisions and completing their laboratory tasks.Keywords: augmented reality, machine learning, object recognition, virtual laboratories
Procedia PDF Downloads 13721945 Virtual Simulation as a Teaching Method for Community Health Nursing: An Investigation of Student Performance
Authors: Omar Mayyas
Abstract:
Clinical decision-making (CDM) is essential to community health nursing (CHN) education. For this reason, nursing educators are responsible for developing these skills among nursing students because nursing students are exposed to highly critical conditions after graduation. However, due to limited exposure to real-world situations, many nursing students need help developing clinical decision-making skills in this area. Therefore, the impact of Virtual Simulation (VS) on community health nursing students' clinical decision-making in nursing education has to be investigated. This study aims to examine the difference in CDM ability among CHN students who received traditional education compared to those who received VS classes, to identify the factors that may influence CDM ability differences between CHN students who received a traditional education and VS classes, and to provide recommendations for educational programs that can enhance the CDM ability of CHN students and improve the quality of care provided in community settings. A mixed-method study will conduct. A randomized controlled trial will compare the CDM ability of CHN students who received 1hr traditional class with another group who received 1hr VS scenario about diabetic patient nursing care. Sixty-four students in each group will randomly select to be exposed to the intervention from undergraduate nursing students who completed the CHN course at York University. The participants will receive the same Clinical Decision Making in Nursing Scale (CDMNS) questionnaire. The study intervention will follow the Medical Research Council (MRC) approach. SPSS and content analysis will use for data analysis.Keywords: clinical decision-making, virtual simulation, community health nursing students, community health nursing education
Procedia PDF Downloads 6721944 Design and Implementation a Virtualization Platform for Providing Smart Tourism Services
Authors: Nam Don Kim, Jungho Moon, Tae Yun Chung
Abstract:
This paper proposes an Internet of Things (IoT) based virtualization platform for providing smart tourism services. The virtualization platform provides a consistent access interface to various types of data by naming IoT devices and legacy information systems as pathnames in a virtual file system. In the other words, the IoT virtualization platform functions as a middleware which uses the metadata for underlying collected data. The proposed platform makes it easy to provide customized tourism information by using tourist locations collected by IoT devices and additionally enables to create new interactive smart tourism services focused on the tourist locations. The proposed platform is very efficient so that the provided tourism services are isolated from changes in raw data and the services can be modified or expanded without changing the underlying data structure.Keywords: internet of things (IoT), IoT platform, serviceplatform, virtual file system (VSF)
Procedia PDF Downloads 50421943 Physical Theory for One-Dimensional Correlated Electron Systems
Authors: Nelson Nenuwe
Abstract:
The behavior of interacting electrons in one dimension was studied by calculating correlation functions and critical exponents at zero and external magnetic fields for arbitrary band filling. The technique employed in this study is based on the conformal field theory (CFT). The charge and spin degrees of freedom are separated, and described by two independent conformal theories. A detailed comparison of the t-J model with the repulsive Hubbard model was then undertaken with emphasis on their Tomonaga-Luttinger (TL) liquid properties. Near half-filling the exponents of the t-J model take the values of the strong-correlation limit of the Hubbard model, and in the low-density limit the exponents are those of a non-interacting system. The critical exponents obtained in this study belong to the repulsive TL liquid (conducting phase) and attractive TL liquid (superconducting phase). The theoretical results from this study find applications in one-dimensional organic conductors (TTF-TCNQ), organic superconductors (Bechgaard salts) and carbon nanotubes (SWCNTs, DWCNTs and MWCNTs). For instance, the critical exponent at from this study is consistent with the experimental result from optical and photoemission evidence of TL liquid in one-dimensional metallic Bechgaard salt- (TMTSF)2PF6.Keywords: critical exponents, conformal field theory, Hubbard model, t-J model
Procedia PDF Downloads 34421942 Hybrid Adaptive Modeling to Enhance Robustness of Real-Time Optimization
Authors: Hussain Syed Asad, Richard Kwok Kit Yuen, Gongsheng Huang
Abstract:
Real-time optimization has been considered an effective approach for improving energy efficient operation of heating, ventilation, and air-conditioning (HVAC) systems. In model-based real-time optimization, model mismatches cannot be avoided. When model mismatches are significant, the performance of the real-time optimization will be impaired and hence the expected energy saving will be reduced. In this paper, the model mismatches for chiller plant on real-time optimization are considered. In the real-time optimization of the chiller plant, simplified semi-physical or grey box model of chiller is always used, which should be identified using available operation data. To overcome the model mismatches associated with the chiller model, hybrid Genetic Algorithms (HGAs) method is used for online real-time training of the chiller model. HGAs combines Genetic Algorithms (GAs) method (for global search) and traditional optimization method (i.e. faster and more efficient for local search) to avoid conventional hit and trial process of GAs. The identification of model parameters is synthesized as an optimization problem; and the objective function is the Least Square Error between the output from the model and the actual output from the chiller plant. A case study is used to illustrate the implementation of the proposed method. It has been shown that the proposed approach is able to provide reliability in decision making, enhance the robustness of the real-time optimization strategy and improve on energy performance.Keywords: energy performance, hybrid adaptive modeling, hybrid genetic algorithms, real-time optimization, heating, ventilation, and air-conditioning
Procedia PDF Downloads 41821941 Synchrotron Radiation and Inverse Compton Scattering in Astrophysical Plasma
Authors: S. S. Sathiesh
Abstract:
The aim of this project is to study the radiation mechanism synchrotron and Inverse Compton scattering. Theoretically, we discussed spectral energy distribution for both. Programming is done for plotting the graph of Power-law spectrum for synchrotron Radiation using fortran90. The importance of power law spectrum was discussed and studied to infer its physical parameters from the model fitting. We also discussed how to infer the physical parameters from the theoretically drawn graph, we have seen how one can infer B (magnetic field of the source), γ min, γ max, spectral indices (p1, p2) while fitting the curve to the observed data.Keywords: blazars/quasars, beaming, synchrotron radiation, Synchrotron Self Compton, inverse Compton scattering, mrk421
Procedia PDF Downloads 41321940 The Knowledge and Experiences of Pregnant Women Regarding Physical Activity during Pregnancy
Authors: Katarzyna Kwiatkowska, Izabela Walasik, Katarzyna Kosińska-Kaczyńska, Olga Płaza, Kinga Żebrowska
Abstract:
Introduction Adequate physical activity of a pregnant woman has been proven to decrease the risk of pregnancy complications. The knowledge of women regarding physical exercise in pregnancy is a part of conscious motherhood, while a lack of it may lead to not taking up any form of physical activity during pregnancy. Aim: The aim of the study was to assess the knowledge and experience of women regarding physical activity during their latest pregnancy. Material and methodology: An anonymous questionnaire, consisting of 57 questions, was completed electronically in 2018 by women who gave birth at least once. The respondents were qualified as 'physically active during pregnancy' if they performed physical exercises such as regular walks, marching, jogging, working out at a gym, swimming, yoga, pilates, fitness, exercise-ball workouts or home gymnastics. Results: The study group consisted of 9345 women. 52% of them performed exercises during pregnancy. The main reasons for the lack of physical activity were: lack of interest in physical activity (45%), lack of energy (40%), lack of knowledge regarding proper exercise during pregnancy (34%), lack of time (27%) and medical contraindications (25%). Non-active respondents suffered from gestational hypertension (6,7% vs 9,2%; p<00,1) and gave birth prematurely (11% vs 15%; p < 001) to newborns with a lower birth weight significantly more often ( < 2500g vs > 2500g; p < 0,001). Physically active women reported suffering from pregnancy-related ailments such as fatigue, back pain or constipation significantly less often. 22% of all respondents were unable to identify reliable sources of information regarding exercise during pregnancy. A majority of the exercising women used the Internet to obtain gain information on physical activity during pregnancy (69,1%). 4% of women thought that exercising during pregnancy is forbidden, while 20% thought it is not allowed in the 3rd trimester. Physically active women had vaginal delivery more often (61% vs 55%; p < 0,05). Episiotomy was performed most often on non-active primiparous respondents (77,5% vs 71% active primiparous, p < 0,001). 13% of women felt discriminated due to their physical activity during pregnancy. 22% of respondents’ physical activity was not accepted by their environment. 39,1% of the women were told by others to stop physical exercise because it was bad for the baby’s health. Conclusion: The knowledge of Polish women regarding proper physical activity during pregnancy is insufficient, which may influence a lack of will to initiate such activity among pregnant women. Physical activity of a pregnant woman may have an impact on the course of pregnancy and birth.Keywords: childbirth, discrimination, physical activity, pregnancy
Procedia PDF Downloads 16421939 Increasing the Resilience of Cyber Physical Systems in Smart Grid Environments using Dynamic Cells
Authors: Andrea Tundis, Carlos García Cordero, Rolf Egert, Alfredo Garro, Max Mühlhäuser
Abstract:
Resilience is an important system property that relies on the ability of a system to automatically recover from a degraded state so as to continue providing its services. Resilient systems have the means of detecting faults and failures with the added capability of automatically restoring their normal operations. Mastering resilience in the domain of Cyber-Physical Systems is challenging due to the interdependence of hybrid hardware and software components, along with physical limitations, laws, regulations and standards, among others. In order to overcome these challenges, this paper presents a modeling approach, based on the concept of Dynamic Cells, tailored to the management of Smart Grids. Additionally, a heuristic algorithm that works on top of the proposed modeling approach, to find resilient configurations, has been defined and implemented. More specifically, the model supports a flexible representation of Smart Grids and the algorithm is able to manage, at different abstraction levels, the resource consumption of individual grid elements on the presence of failures and faults. Finally, the proposal is evaluated in a test scenario where the effectiveness of such approach, when dealing with complex scenarios where adequate solutions are difficult to find, is shown.Keywords: cyber-physical systems, energy management, optimization, smart grids, self-healing, resilience, security
Procedia PDF Downloads 32721938 Impact of Education on Levels of Physical Activity and Depression in Taiwanese Vegetarians and Omnivores
Authors: Ya-Lin Chang, Chia Chen Chang, Yu-Ru Liang, Joyce Chen, You-Kang Chang, Tina Chiu
Abstract:
Physical activity and mental health status are important for health. The purpose of this study was to examine levels of physical activities and depression in Taiwanese vegetarians (VEG) and omnivores (OMNI). Sixty-three vegetarians (20 males) and 56 omnivores (23 males) with an average age of 51 years were recruited for a food frequency validation study at Taipei Tzu Chi Hospital from July to September in 2016. Participants filled out a validated Chinese version international physical activity questionnaire-short-form (IPAQ), Beck Depression Inventory-II-Chinese version (BDI), food frequency questionnaire (FFQ) and a questionnaire on demographics and medical history upon recruitment. Total BDI scores were calculated for depression and the metabolic equivalent of task (MET) was calculated for physical activity levels. Mann-Whitney U tests and Chi-square test were used to compare demographics, physical activity levels and depression scores. VEG and OMNI did not differ significantly on MET (1441.9 ± 3387.3 vs. 1605.8 ± 2486.1. p=0.2652, respectively). VEG scored slightly lower on BDI compared to OMNI without statistical significance (5.6 ± 5.7 vs. 7.4 ± 6.3. p=0.06). In addition, we found that regardless of diet practice, those who held a college degree and above scored better on MET (1788.1 ± 2532.6 vs. 1215.5 ± 3425.5. p=0.0014) and BDI (5.2 ± 5.1 vs. 7.8 ± 6.7. p=0.03). In this cross-sectional study, Taiwanese vegetarians and omnivores scored comparatively on physical activity levels and depression. However, education is a significant determinant of physical activity and depression.Keywords: BDI, diet, education, physical activity
Procedia PDF Downloads 39121937 Review Paper on an Algorithm Enhancing Privacy and Security in Online Meeting Platforms Using a Secured Encryption
Authors: Tonderai Muchenje, Mkhatshwa Phethile
Abstract:
Humans living in this current situation know that communication with one another is necessary for themselves. There are many ways to communicate with each other; during unexpected natural disasters and outbreak of epidemics and pandemics, the need for online meeting platforms are considered most important. Apparently, the development in the telecommunication sector also played an important role. Therefore, the epidemic of the Covid-19 Pandemic and the new normal situation resulted in the overwhelming production of online meeting platforms to prevent the situation. This software is commonly used in business communications in the beginning. Rapidly the COVID-19 pandemic changed the situation. At present-day, these virtual meeting applications are not only used to have informal meetings with friends and relatives but also to be used to have formal meetings in the business and education (universities) sector. In this article, an attempt has been made to list out the useful secured ways for using online meeting platforms.Keywords: virtual background, zoom, secure online algorithm, RingCentral, Pexip Pexip, TeamViewer, microsoft teams
Procedia PDF Downloads 11721936 Introduction of an Approach of Complex Virtual Devices to Achieve Device Interoperability in Smart Building Systems
Authors: Thomas Meier
Abstract:
One of the major challenges for sustainable smart building systems is to support device interoperability, i.e. connecting sensor or actuator devices from different vendors, and present their functionality to the external applications. Furthermore, smart building systems are supposed to connect with devices that are not available yet, i.e. devices that become available on the market sometime later. It is of vital importance that a sustainable smart building platform provides an appropriate external interface that can be leveraged by external applications and smart services. An external platform interface must be stable and independent of specific devices and should support flexible and scalable usage scenarios. A typical approach applied in smart home systems is based on a generic device interface used within the smart building platform. Device functions, even of rather complex devices, are mapped to that generic base type interface by means of specific device drivers. Our new approach, presented in this work, extends that approach by using the smart building system’s rule engine to create complex virtual devices that can represent the most diverse properties of real devices. We examined and evaluated both approaches by means of a practical case study using a smart building system that we have developed. We show that the solution we present allows the highest degree of flexibility without affecting external application interface stability and scalability. In contrast to other systems our approach supports complex virtual device configuration on application layer (e.g. by administration users) instead of device configuration at platform layer (e.g. platform operators). Based on our work, we can show that our approach supports almost arbitrarily flexible use case scenarios without affecting the external application interface stability. However, the cost of this approach is additional appropriate configuration overhead and additional resource consumption at the IoT platform level that must be considered by platform operators. We conclude that the concept of complex virtual devices presented in this work can be applied to improve the usability and device interoperability of sustainable intelligent building systems significantly.Keywords: Internet of Things, smart building, device interoperability, device integration, smart home
Procedia PDF Downloads 27221935 Analysis of Q-Learning on Artificial Neural Networks for Robot Control Using Live Video Feed
Authors: Nihal Murali, Kunal Gupta, Surekha Bhanot
Abstract:
Training of artificial neural networks (ANNs) using reinforcement learning (RL) techniques is being widely discussed in the robot learning literature. The high model complexity of ANNs along with the model-free nature of RL algorithms provides a desirable combination for many robotics applications. There is a huge need for algorithms that generalize using raw sensory inputs, such as vision, without any hand-engineered features or domain heuristics. In this paper, the standard control problem of line following robot was used as a test-bed, and an ANN controller for the robot was trained on images from a live video feed using Q-learning. A virtual agent was first trained in simulation environment and then deployed onto a robot’s hardware. The robot successfully learns to traverse a wide range of curves and displays excellent generalization ability. Qualitative analysis of the evolution of policies, performance and weights of the network provide insights into the nature and convergence of the learning algorithm.Keywords: artificial neural networks, q-learning, reinforcement learning, robot learning
Procedia PDF Downloads 37321934 Accessible Mobile Augmented Reality App for Art Social Learning Based on Technology Acceptance Model
Authors: Covadonga Rodrigo, Felipe Alvarez Arrieta, Ana Garcia Serrano
Abstract:
Mobile augmented reality technologies have become very popular in the last years in the educational field. Researchers have studied how these technologies improve the engagement of the student and better understanding of the process of learning. But few studies have been made regarding the accessibility of these new technologies applied to digital humanities. The goal of our research is to develop an accessible mobile application with embedded augmented reality main characters of the art work and gamification events accompanied by multi-sensorial activities. The mobile app conducts a learning itinerary around the artistic work, driving the user experience in and out the museum. The learning design follows the inquiry-based methodology and social learning conducted through interaction with social networks. As for the software application, it’s being user-centered designed, following the universal design for learning (UDL) principles to assure the best level of accessibility for all. The mobile augmented reality application starts recognizing a marker from a masterpiece of a museum using the camera of the mobile device. The augmented reality information (history, author, 3D images, audio, quizzes) is shown through virtual main characters that come out from the art work. To comply with the UDL principles, we use a version of the technology acceptance model (TAM) to study the easiness of use and perception of usefulness, extended by the authors with specific indicators for measuring accessibility issues. Following a rapid prototype method for development, the first app has been recently produced, fulfilling the EN 301549 standard and W3C accessibility guidelines for mobile development. A TAM-based web questionnaire with 214 participants with different kinds of disabilities was previously conducted to gather information and feedback on user preferences from the artistic work on the Museo del Prado, the level of acceptance of technology innovations and the easiness of use of mobile elements. Preliminary results show that people with disabilities felt very comfortable while using mobile apps and internet connection. The augmented reality elements seem to offer an added value highly engaging and motivating for the students.Keywords: H.5.1 (multimedia information systems), artificial, augmented and virtual realities, evaluation/methodology
Procedia PDF Downloads 13721933 Assessing the Impact of Physical Inactivity on Dialysis Adequacy and Functional Health in Peritoneal Dialysis Patients
Authors: Mohammad Ali Tabibi, Farzad Nazemi, Nasrin Salimian
Abstract:
Background: Peritoneal dialysis (PD) is a prevalent renal replacement therapy for patients with end-stage renal disease. Despite its benefits, PD patients often experience reduced physical activity and physical function, which can negatively impact dialysis adequacy and overall health outcomes. Despite the known benefits of maintaining physical activity in chronic disease management, the specific interplay between physical inactivity, physical function, and dialysis adequacy in PD patients remains underexplored. Understanding this relationship is essential for developing targeted interventions to enhance patient care and outcomes in this vulnerable population. This study aims to assess the impact of physical inactivity on dialysis adequacy and functional health in PD patients. Methods: This cross-sectional study included 135 peritoneal dialysis patients from multiple dialysis centers. Physical inactivity was measured using the International Physical Activity Questionnaire (IPAQ), while physical function was assessed using the Short Physical Performance Battery (SPPB). Dialysis adequacy was evaluated using the Kt/V ratio. Additional variables such as demographic data, comorbidities, and laboratory parameters were collected to control for potential confounders. Statistical analyses were performed to determine the relationships between physical inactivity, physical function, and dialysis adequacy. Results: The study cohort comprised 70 males and 65 females with a mean age of 55.4 ± 13.2 years. A significant proportion of the patients (65%) were categorized as physically inactive based on IPAQ scores. Inactive patients demonstrated significantly lower SPPB scores (mean 6.2 ± 2.1) compared to their more active counterparts (mean 8.5 ± 1.8, p < 0.001). Dialysis adequacy, as measured by Kt/V, was found to be suboptimal (Kt/V < 1.7) in 48% of the patients. There was a significant positive correlation between physical function scores and Kt/V values (r = 0.45, p < 0.01), indicating that better physical function is associated with higher dialysis adequacy. Also, there was a significant negative correlation between physical inactivity and physical function (r = -0.55, p < 0.01). Additionally, physically inactive patients had lower Kt/V ratios compared to their active counterparts (1.3 ± 0.3 vs. 1.8 ± 0.4, p < 0.05). Multivariate regression analysis revealed that physical inactivity was an independent predictor of reduced dialysis adequacy (β = -0.32, p < 0.01) and poorer physical function (β = -0.41, p < 0.01) after adjusting for age, sex, comorbidities, and dialysis vintage. Conclusion: This study underscores the critical role of physical activity and physical function in maintaining adequate dialysis in peritoneal dialysis patients. These findings highlight the need for targeted interventions to promote physical activity in this population to improve their overall health outcomes. Future research should focus on developing and evaluating exercise programs tailored for PD patients to enhance their physical function and dialysis adequacy. The findings suggest that interventions aimed at increasing physical activity and improving physical function may enhance dialysis adequacy and overall health outcomes in this population. Further research is warranted to explore the mechanisms underlying these associations and to develop targeted strategies for enhancing patient care.Keywords: inactivity, physical function, peritoneal dialysis, dialysis adequacy
Procedia PDF Downloads 3621932 Artificial Neural Network Approach for GIS-Based Soil Macro-Nutrients Mapping
Authors: Shahrzad Zolfagharnassab, Abdul Rashid Mohamed Shariff, Siti Khairunniza Bejo
Abstract:
Conventional methods for nutrient soil mapping are based on laboratory tests of samples that are obtained from surveys. The time and cost involved in gathering and analyzing soil samples are the reasons that researchers use Predictive Soil Mapping (PSM). PSM can be defined as the development of a numerical or statistical model of the relationship among environmental variables and soil properties, which is then applied to a geographic database to create a predictive map. Kriging is a group of geostatistical techniques to spatially interpolate point values at an unobserved location from observations of values at nearby locations. The main problem with using kriging as an interpolator is that it is excessively data-dependent and requires a large number of closely spaced data points. Hence, there is a need to minimize the number of data points without sacrificing the accuracy of the results. In this paper, an Artificial Neural Networks (ANN) scheme was used to predict macronutrient values at un-sampled points. ANN has become a popular tool for prediction as it eliminates certain difficulties in soil property prediction, such as non-linear relationships and non-normality. Back-propagation multilayer feed-forward network structures were used to predict nitrogen, phosphorous and potassium values in the soil of the study area. A limited number of samples were used in the training, validation and testing phases of ANN (pattern reconstruction structures) to classify soil properties and the trained network was used for prediction. The soil analysis results of samples collected from the soil survey of block C of Sawah Sempadan, Tanjung Karang rice irrigation project at Selangor of Malaysia were used. Soil maps were produced by the Kriging method using 236 samples (or values) that were a combination of actual values (obtained from real samples) and virtual values (neural network predicted values). For each macronutrient element, three types of maps were generated with 118 actual and 118 virtual values, 59 actual and 177 virtual values, and 30 actual and 206 virtual values, respectively. To evaluate the performance of the proposed method, for each macronutrient element, a base map using 236 actual samples and test maps using 118, 59 and 30 actual samples respectively produced by the Kriging method. A set of parameters was defined to measure the similarity of the maps that were generated with the proposed method, termed the sample reduction method. The results show that the maps that were generated through the sample reduction method were more accurate than the corresponding base maps produced through a smaller number of real samples. For example, nitrogen maps that were produced from 118, 59 and 30 real samples have 78%, 62%, 41% similarity, respectively with the base map (236 samples) and the sample reduction method increased similarity to 87%, 77%, 71%, respectively. Hence, this method can reduce the number of real samples and substitute ANN predictive samples to achieve the specified level of accuracy.Keywords: artificial neural network, kriging, macro nutrient, pattern recognition, precision farming, soil mapping
Procedia PDF Downloads 7121931 Re-Conceptualizing the Indigenous Learning Space for Children in Bangladesh Placing Built Environment as Third Teacher
Authors: Md. Mahamud Hassan, Shantanu Biswas Linkon, Nur Mohammad Khan
Abstract:
Over the last three decades, the primary education system in Bangladesh has experienced significant improvement, but it has failed to cope with different social and cultural aspects, which present many challenges for children, families, and the public school system. Neglecting our own contextual learning environment, it is a matter of sorrow that much attention has been paid to the more physical outcome-focused model, which is nothing but mere infrastructural development, and less subtle to the environment that suits the child's psychology and improves their social, emotional, physical, and moral competency. In South Asia, the symbol of education was never the little red house of colonial architecture but “A Guru sitting under a tree", whereas a responsive and inclusive design approach could help to create more innovative learning environments. Such an approach incorporates how the built, natural, and cultural environment shapes the learner; in turn, learners shape the learning. This research will be conducted to, i) identify the major issues and drawbacks of government policy for primary education development programs; ii) explore and evaluate the morphology of the conventional model of school, and iii) propose an alternative model in a collaborative design process with the stakeholders for maximizing the relationship between the physical learning environments and learners by treating “the built environment” as “the third teacher.” Based on observation, this research will try to find out to what extent built, and natural environments can be utilized as a teaching tool for a more optimal learning environment. It should also be evident that there is a significant gap in the state policy, predetermined educational specifications, and implementation process in response to stakeholders’ involvement. The outcome of this research will contribute to a people-place sensitive design approach through a more thoughtful and responsive architectural process.Keywords: built environment, conventional planning, indigenous learning space, responsive design
Procedia PDF Downloads 10821930 Material Response Characterisation of a PolyJet 3D Printed Human Infant Skull
Authors: G. A. Khalid, R. Prabhu, W. Whittington, M. D. Jones
Abstract:
To establish a causal relationship of infant head injury consequences, this present study addresses the necessary challenges of cranial geometry and the physical response complexities of the paediatric head tissues. Herein, we describe a new approach to characterising and understanding infant head impact mechanics by developing printed head models, using high resolution clinical postmortem imaging, to provide the most complete anatomical representation currently available, and biological material response data-matched polypropylene polymers, to replicate the relative mechanical response properties of immature cranial bone, sutures and fontanelles. Additive manufacturing technology was applied to creating a physical polymeric model of a newborn infant skull, using PolyJet printed materials. Infant skull materials responses, were matched by a response characterisation study, utilising uniaxial tensile testing (1 mm min-1 loading rate), to determine: the stiffness, ultimate tensile strength and maximum strain of rigid and rubber additively manufactured acrylates. The results from the mechanical experiments confirm that the polymeric materials RGD835 Vero White Plus (White), representing the frontal and parietal bones; RGD8510- DM Rigid Light Grey25 (Grey), representing the occipital bone; and FLX9870-DM (Black) representing the suture and fontanelles, were found to show a close stiffness -correlation (E) at ambient temperatures. A 3D physical model of infant head was subsequently printed from the matched materials and subsequently validated against results obtained from a series of Post Mortem Human Surrogate (PMHS) tests. A close correlation was demonstrated between the model impact tests and the PMHS. This study, therefore, represents a key step towards applying printed physical models to understanding head injury biomechanics and is useful in the efforts to predict and mitigate head injury consequences in infants, whether accidental or by abuse.Keywords: infant head trauma, infant skull, material response, post mortem human subjects, polyJet printing
Procedia PDF Downloads 14121929 Opportunities and Challenges of Digital Diplomacy in the Public Diplomacy of the Islamic Republic of Iran
Authors: Somayeh Pashaee
Abstract:
The ever-increasing growth of the Internet and the development of information and communication technology have prompted the politicians of different countries to use virtual networks as an efficient tool for their foreign policy. The communication of governments and countries, even in the farthest places from each other, through electronic networks, has caused vast changes in the way of statecraft and governance. Importantly, in the meantime, diplomacy, which is always based on information and communication, has been affected by the new prevailing conditions and new technologies more than other areas and has faced greater changes. The emergence of virtual space and the formation of new communication tools in the field of public diplomacy has led to the redefinition of the framework of diplomacy and politics in the international arena and the appearance of a new aspect of diplomacy called digital diplomacy. Digital diplomacy is in the concept of changing relations from a face-to-face and traditional way to a non-face-to-face and new way, and its purpose is to solve foreign policy issues using virtual space. Digital diplomacy, by affecting diplomatic procedures and its change, explains the role of technology in the visualization and implementation of diplomacy in different ways. The purpose of this paper is to investigate the position of digital diplomacy in the public diplomacy of the Islamic Republic of Iran. The paper tries to answer these two questions in a descriptive-analytical way, considering the progress of communication and the role of virtual space in the service of diplomacy, what is the approach of the Islamic Republic of Iran towards digital diplomacy and the use of a new way of establishing foreign relations in public diplomacy? What capacities and damages are facing the country after the use of this type of new diplomacy? In this paper, various theoretical concepts in the field of public diplomacy and modern diplomacy, including Geoff Berridge, Charles Kegley, Hans Tuch and Ronald Peter Barston, as well as the theoretical framework of Marcus Holmes on digital diplomacy, will be used as a conceptual basis to support the analysis. As a result, in order to better achieve the political goals of the country, especially in foreign policy, the approach of the Islamic Republic of Iran to public diplomacy with a focus on digital diplomacy should be strengthened and revised. Today, only emphasizing on advancing diplomacy through traditional methods may weaken Iran's position in the public opinion level from other countries.Keywords: digital diplomacy, public diplomacy, islamic republic of Iran, foreign policy, opportunities and challenges
Procedia PDF Downloads 11821928 Impact of Data and Model Choices to Urban Flood Risk Assessments
Authors: Abhishek Saha, Serene Tay, Gerard Pijcke
Abstract:
The availability of high-resolution topography and rainfall information in urban areas has made it necessary to revise modeling approaches used for simulating flood risk assessments. Lidar derived elevation models that have 1m or lower resolutions are becoming widely accessible. The classical approaches of 1D-2D flow models where channel flow is simulated and coupled with a coarse resolution 2D overland flow models may not fully utilize the information provided by high-resolution data. In this context, a study was undertaken to compare three different modeling approaches to simulate flooding in an urban area. The first model used is the base model used is Sobek, which uses 1D model formulation together with hydrologic boundary conditions and couples with an overland flow model in 2D. The second model uses a full 2D model for the entire area with shallow water equations at the resolution of the digital elevation model (DEM). These models are compared against another shallow water equation solver in 2D, which uses a subgrid method for grid refinement. These models are simulated for different horizontal resolutions of DEM varying between 1m to 5m. The results show a significant difference in inundation extents and water levels for different DEMs. They are also sensitive to the different numerical models with the same physical parameters, such as friction. The study shows the importance of having reliable field observations of inundation extents and levels before a choice of model and data can be made for spatial flood risk assessments.Keywords: flooding, DEM, shallow water equations, subgrid
Procedia PDF Downloads 14221927 Research on Architectural Steel Structure Design Based on BIM
Authors: Tianyu Gao
Abstract:
Digital architectures use computer-aided design, programming, simulation, and imaging to create virtual forms and physical structures. Today's customers want to know more about their buildings. They want an automatic thermostat to learn their behavior and contact them, such as the doors and windows they want to open with a mobile app. Therefore, the architectural display form is more closely related to the customer's experience. Based on the purpose of building informationization, this paper studies the steel structure design based on BIM. Taking the Zigan office building in Hangzhou as an example, it is divided into four parts, namely, the digital design modulus of the steel structure, the node analysis of the steel structure, the digital production and construction of the steel structure. Through the application of BIM software, the architectural design can be synergized, and the building components can be informationized. Not only can the architectural design be feedback in the early stage, but also the stability of the construction can be guaranteed. In this way, the monitoring of the entire life cycle of the building and the meeting of customer needs can be realized.Keywords: digital architectures, BIM, steel structure, architectural design
Procedia PDF Downloads 19521926 Visualize Global Warming and Its Consequences Using Augmented Reality
Authors: K. R. Parvathy, R. Rao Bhavani , M. L. McLain, Kamal Bijlani, R. Jayakrishnan
Abstract:
Augmented Reality (AR) technology is considered to be an important emerging technology used in education today. One potentially key use of AR in education is to teach socio-scientific issues (SSI), topics that inure students towards social conscience and critical thinking. This work uses multiple markers and virtual buttons that interact with each other, creating a life-like visual spectacle. Learning about issues such as global warming by using AR technology, students will have an increased sense of experiencing immersion, immediacy, and presence, thereby enhancing their learning as well as likely improving their ability to make better informed decisions about considerations of such issues. Another advantage of AR is that it is a low cost technology, making it advantageous for educators to adapt to their classrooms. Also in this work we compare the effectiveness of AR versus ordinary video by polling a group of students to assess the content understandability, effectiveness and interaction of both the delivery methods.Keywords: augmented reality, global warming, multiple markers, virtual buttons
Procedia PDF Downloads 40121925 Dynamic Model of Automatic Loom on SimulationX
Authors: A. Jomartov, A. Tuleshov, B. Tultaev
Abstract:
One of the main tasks in the development of textile machinery is to increase the rapidity of automatic looms, and consequently, their productivity. With increasing automatic loom speeds, the dynamic loads on their separate mechanisms and moving joints sharply increase. Dynamic research allows us to determine the weakest mechanisms of the automatic loom. The modern automatic loom consists of a large number of structurally different mechanisms. These are cam, lever, gear, friction and combined cyclic mechanisms. The modern automatic loom contains various mechatronic devices: A device for the automatic removal of faulty weft, electromechanical drive warp yarns, electronic controllers, servos, etc. In the paper, we consider the multibody dynamic model of the automatic loom on the software complex SimulationX. SimulationX is multidisciplinary software for modeling complex physical and technical facilities and systems. The multibody dynamic model of the automatic loom allows consideration of: The transition processes, backlash at the joints and nodes, the force of resistance and electric motor performance.Keywords: automatic loom, dynamics, model, multibody, SimulationX
Procedia PDF Downloads 34821924 Analyzing the Association between Physical Activity and Sleep Quality in College Students: Cross-Sectional Study
Authors: Fildzah Badzlina, Mega Puspa Sari
Abstract:
To rest the body after a full day of activities, the body needs sleep. During sleep, the body's response to external stimuli will be reduced and relatively inactive so that it is used to optimize the body's biological functions that cannot be done when awake. College students often experience poor sleep quality because of the dense activities carried out during the day. In addition, the level of physical activity of college students is also relatively low. Based on previous research, college students who have low physical activity have poor sleep quality. Therefore, the purpose of this study was to determine the relationship between physical activity and sleep quality in college students of the University of Muhammadiyah Prof. Dr. Hamka. This study used a cross-sectional research design with 107 respondents as research subjects. Samples were taken using the purposive sampling technique. The data was taken using a google form which was distributed to all college students in September 2021. The statistical test used was Chi-square. The results of this study showed that 85 (79.4%) college students experienced poor sleep quality during the Covid-19 Pandemic Period. Most respondents were 96 women (89.7%) and 32.7% (35 people) aged 20 years. In the pocket money category, most college students (71%) got pocket money less than 500.000 rupiahs per month. A total of 52 respondents (48.6%) had a moderate level of physical activity category. Poor sleep quality was more common in male students (90.9%) compared to female students (78.1%) (p>0.05). In the group with poor sleep quality, 88.9% of students were categorized in Rp. 500.001 to Rp. 1.000.000 for pocket money, 80.3% of students included in the category Rp. 500.000 or less, and 61.5% of students are included in the category of Rp. 1.000.000 or more. Poor sleep quality was more common among students in the age category 20 years (84.1%), compared to students in the age category > 20 years (71.1%). For the level of physical activity in the poor sleep quality group, 87% were included in the category of heavy physical activity, 82.7% included in the moderate level of physical activity, and 68.8% included in the category of low-level physical activity. There was no significant relationship between gender, pocket money, age, and physical activity with sleep quality (p>0.05).Keywords: college students, physical activity, sleep quality, university students
Procedia PDF Downloads 14021923 Nonlinear Porous Diffusion Modeling of Ionic Agrochemicals in Astomatous Plant Cuticle Aqueous Pores: A Mechanistic Approach
Authors: Eloise C. Tredenick, Troy W. Farrell, W. Alison Forster, Steven T. P. Psaltis
Abstract:
The agriculture industry requires improved efficacy of sprays being applied to crops. More efficacious sprays provide many environmental and financial benefits. The plant leaf cuticle is known to be the main barrier to diffusion of agrochemicals within the leaf. The importance of a mathematical model to simulate uptake of agrochemicals in plant cuticles has been noted, as the results of each uptake experiments are specific to each formulation of active ingredient and plant species. In this work we develop a mathematical model and numerical simulation for the uptake of ionic agrochemicals through aqueous pores in plant cuticles. We propose a nonlinear porous diffusion model of ionic agrochemicals in isolated cuticles, which provides additions to a simple diffusion model through the incorporation of parameters capable of simulating plant species' variations, evaporation of surface droplet solutions and swelling of the aqueous pores with water. The model could feasibly be adapted to other ionic active ingredients diffusing through other plant species' cuticles. We validate our theoretical results against appropriate experimental data, discuss the key sensitivities in the model and relate theoretical predictions to appropriate physical mechanisms.Keywords: aqueous pores, ionic active ingredient, mathematical model, plant cuticle, porous diffusion
Procedia PDF Downloads 26321922 Distributed Cost-Based Scheduling in Cloud Computing Environment
Authors: Rupali, Anil Kumar Jaiswal
Abstract:
Cloud computing can be defined as one of the prominent technologies that lets a user change, configure and access the services online. it can be said that this is a prototype of computing that helps in saving cost and time of a user practically the use of cloud computing can be found in various fields like education, health, banking etc. Cloud computing is an internet dependent technology thus it is the major responsibility of Cloud Service Providers(CSPs) to care of data stored by user at data centers. Scheduling in cloud computing environment plays a vital role as to achieve maximum utilization and user satisfaction cloud providers need to schedule resources effectively. Job scheduling for cloud computing is analyzed in the following work. To complete, recreate the task calculation, and conveyed scheduling methods CloudSim3.0.3 is utilized. This research work discusses the job scheduling for circulated processing condition also by exploring on this issue we find it works with minimum time and less cost. In this work two load balancing techniques have been employed: ‘Throttled stack adjustment policy’ and ‘Active VM load balancing policy’ with two brokerage services ‘Advanced Response Time’ and ‘Reconfigure Dynamically’ to evaluate the VM_Cost, DC_Cost, Response Time, and Data Processing Time. The proposed techniques are compared with Round Robin scheduling policy.Keywords: physical machines, virtual machines, support for repetition, self-healing, highly scalable programming model
Procedia PDF Downloads 16921921 Impact of an Exercise Program on Physical Fitness of a Candidate to Naval Academy: A Case Study
Authors: Ricardo Chaves, Carlos Vasconcelos
Abstract:
Candidates to join the Naval Academy have to take a set of physical tests, which is crucial for a high level of physical fitness. Thus, the planning of physical exercises for candidates to the Naval School must take into account the improvement of their physical fitness. The aim of this study was to investigate the impact of a 6-month exercise program to improve the physical fitness of an individual who will apply for the Naval Academy. This was a non-experimental pre-post-evaluation study. The patient was male, had 18 years old, and a body mass index of 21.1 kg.m². The patient participated in a 6-month aerobic and strength exercise program (3 sessions per week, 75 minutes duration each session). Physical fitness tests were performed according to the physical fitness requirements for entry into the Naval academy (muscle strength [maximum number of lifts and maximum number of sit-ups for 1 minute]; aerobic fitness [2.4 km run and 200 m swimming test]) before (baseline) and after the exercise intervention (6 months). Regarding muscle strength, in the abdominal test, the improvements between the pre-test (39 abdominals.) and post-test (61 abdominals) were 56.4%. For elevations, there was an increase in its number by 150% between the pre-test (4 elevations) and post-test (10 elevations). With regard to aerobic fitness, in the 2.4 km race, there was an evolution of 32.0% between the pre-test (16.46 min.) and the post-test (12.42 min.). For the 200-meter swimming test, there was a negative variation of 2% between the pre-test (2.25 min.) and post-test (2.28 min). A 6-month aerobic and strength exercise program leads to a positive evolution in the muscular strength of the patient. Regarding aerobic fitness, opposite results were found, with a positive evolution in the 2.4 km running test and a negative evolution in the swimming test. In future exercise programs for the improvement of the physical fitness of candidates for the Naval Academy, more emphasis has to be done on specific swimming training.Keywords: case study, exercise program, Naval Academy, physical fitness
Procedia PDF Downloads 9221920 Balancing Electricity Demand and Supply to Protect a Company from Load Shedding: A Review
Authors: G. W. Greubel, A. Kalam
Abstract:
This paper provides a review of the technical problems facing the South African electricity system and discusses a hypothetical ‘virtual grid’ concept that may assist in solving the problems. The proposed solution has potential application across emerging markets with constrained power infrastructure or for companies who wish to be entirely powered by renewable energy. South Africa finds itself at a confluence of forces where the national electricity supply system is constrained with under-supply primarily from old and failing coal-fired power stations and congested and inadequate transmission and distribution systems. Simultaneously, the country attempts to meet carbon reduction targets driven by both an alignment with international goals and a consumer-driven requirement. The constrained electricity system is an aspect of an economy characterized by very low economic growth, high unemployment, and frequent and significant load shedding. The fiscus does not have the funding to build new generation capacity or strengthen the grid. The under-supply is increasingly alleviated by the penetration of wind and solar generation capacity and embedded roof-top solar. However, this increased penetration results in less inertia, less synchronous generation, and less capability for fast frequency response, with resultant instability. The renewable energy facilities assist in solving the under-supply issues but merely ‘kick the can down the road’ by not contributing to grid stability or by substituting the lost inertia, thus creating an expanding issue for the grid to manage. By technically balancing its electricity demand and supply a company with facilities located across the country can be protected from the effects of load shedding, and thus ensure financial and production performance, protect jobs, and contribute meaningfully to the economy. By treating the company’s load (across the country) and its various distributed generation facilities as a ‘virtual grid’, which by design will provide ancillary services to the grid one is able to create a win-win situation for both the company and the grid.Keywords: load shedding, renewable energy integration, smart grid, virtual grid, virtual power plant
Procedia PDF Downloads 6021919 Effects of Virtual Reality on Relieving Postoperative Pain in Surgical Patients: A Systematic Review and Meta-Analysis
Authors: Lingyu Ding, Hongxia Hua, Hanfei Zhu, Jinling Lu, Qin Xu
Abstract:
Background: Postoperative pain is a prevalent problem leading to many adverse outcomes in surgical patients. Virtual reality (VR) is an emerging non-pharmacological method of postoperative pain relief, but the effects of it are not clear. This review aimed to explore the effects of VR on relieving postoperative pain. Methods: We searched PubMed, Embase, Web of Science, and other databases from inception to November 2019 to get the eligible studies. Meta-analyses were conducted to compare VR and usual care for relieving postoperative pain. Subgroup analyses and sensitivity analyses were performed to explain the heterogeneity. Results: Overall, 8 randomized control trials (RCTs) enrolling 723 participants were included. Our results demonstrated that the patients receiving the VR intervention had lower postoperative pain scores than those receiving the usual care. One subgroup analysis revealed that VR could relieve postoperative pain both in minor surgery and major surgery. Another subgroup analysis demonstrated a significant reduction in postoperative pain among patients receiving VR during the intraoperative and the postoperative periods. However, there was no significant postoperative pain relief when receiving VR during the preoperative period. Additionally, significant improvements in postoperative satisfaction were reported in two studies. However, another two studies included found that VR could not affect physiological parameters related to pain. Conclusion: Applying VR can relieve postoperative pain effectively. The type of surgery and timing of using VR are the main sources of heterogeneity. More rigorous studies about the relationship between VR and postoperative pain relief will be needed.Keywords: meta-analysis, postoperative pain, systematic review, virtual reality
Procedia PDF Downloads 13421918 Structuring After-School Physical Education Programs That are Engaging, Diverse, and Inclusive
Authors: Micah J. Dobson
Abstract:
After-school programs of physical education provide children with opportunities to engage in physical activities while developing healthy habits. To ensure that these programs are inclusive, diverse, and engaging, however, schools must consider various factors when designing and implementing them. This study sought to bring out efficient strategies for structuring after-school programs of physical education. The literature review was conducted using various databases and search engines. Some databases that index the journals include ERIC, Google Scholar, Scopus, Web of Science, and EBSCOhost. The search terms were combinations of keywords such as “after-school,” “physical education,” “inclusion,” “diversity,” “engagement,” “program design,” “program implementation,” “program effectiveness,” and “best practices.” The findings of this study suggest that schools that desire inclusivity must consider four key factors when designing and implementing after-school physical education programs. First, the programs must be designed with variety and fun by incorporating activities such as dance, sports, and games that appeal to all students. Second, instructors must be trained to create supportive and positive environments that foster student engagement while promoting physical literacy. Third, schools must collaborate with community stakeholders and organizations to ensure that programs are culturally inclusive and responsive. Fourth, schools can incorporate technology into their programs to enhance engagement and provide additional growth and learning opportunities.In conclusion, this study provides valuable insights into efficient strategies for structuring after-school programs of physical education that are inclusive, diverse, and engaging for all students. By considering these factors when designing and implementing their programs, schools can promote physical activity while supporting students’ overall well-being and health.Keywords: after-school programs of physical education, community partnership, inclusivity, instructor training, technology
Procedia PDF Downloads 7721917 Evaluation of Virtual Reality for the Rehabilitation of Athlete Lower Limb Musculoskeletal Injury: A Method for Obtaining Practitioner’s Viewpoints through Observation and Interview
Authors: Hannah K. M. Tang, Muhammad Ateeq, Mark J. Lake, Badr Abdullah, Frederic A. Bezombes
Abstract:
Based on a theoretical assessment of current literature, virtual reality (VR) could help to treat sporting injuries in a number of ways. However, it is important to obtain rehabilitation specialists’ perspectives in order to design, develop and validate suitable content for a VR application focused on treatment. Subsequently, a one-day observation and interview study focused on the use of VR for the treatment of lower limb musculoskeletal conditions in athletes was conducted at St George’s Park England National Football Centre with rehabilitation specialists. The current paper established the methods suitable for obtaining practitioner’s viewpoints through observation and interview in this context. Particular detail was provided regarding the method of qualitatively processing interview results using the qualitative data analysis software tool NVivo, in order to produce a narrative of overarching themes. The observations and overarching themes identified could be used as a framework and success criteria of a VR application developed in future research. In conclusion, this work explained the methods deemed suitable for obtaining practitioner’s viewpoints through observation and interview. This was required in order to highlight characteristics and features of a VR application designed to treat lower limb musculoskeletal injury of athletes and could be built upon to direct future work.Keywords: athletes, lower-limb musculoskeletal injury, rehabilitation, return-to-sport, virtual reality
Procedia PDF Downloads 258