Search results for: uncertainty and error visualisation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2858

Search results for: uncertainty and error visualisation

2228 Optimization of Assay Parameters of L-Glutaminase from Bacillus cereus MTCC1305 Using Artificial Neural Network

Authors: P. Singh, R. M. Banik

Abstract:

Artificial neural network (ANN) was employed to optimize assay parameters viz., time, temperature, pH of reaction mixture, enzyme volume and substrate concentration of L-glutaminase from Bacillus cereus MTCC 1305. ANN model showed high value of coefficient of determination (0.9999), low value of root mean square error (0.6697) and low value of absolute average deviation. A multilayer perceptron neural network trained with an error back-propagation algorithm was incorporated for developing a predictive model and its topology was obtained as 5-3-1 after applying Levenberg Marquardt (LM) training algorithm. The predicted activity of L-glutaminase was obtained as 633.7349 U/l by considering optimum assay parameters, viz., pH of reaction mixture (7.5), reaction time (20 minutes), incubation temperature (35˚C), substrate concentration (40mM), and enzyme volume (0.5ml). The predicted data was verified by running experiment at simulated optimum assay condition and activity was obtained as 634.00 U/l. The application of ANN model for optimization of assay conditions improved the activity of L-glutaminase by 1.499 fold.

Keywords: Bacillus cereus, L-glutaminase, assay parameters, artificial neural network

Procedia PDF Downloads 429
2227 Design of Parity-Preserving Reversible Logic Signed Array Multipliers

Authors: Mojtaba Valinataj

Abstract:

Reversible logic as a new favorable design domain can be used for various fields especially creating quantum computers because of its speed and intangible power consumption. However, its susceptibility to a variety of environmental effects may lead to yield the incorrect results. In this paper, because of the importance of multiplication operation in various computing systems, some novel reversible logic array multipliers are proposed with error detection capability by incorporating the parity-preserving gates. The new designs are presented for two main parts of array multipliers, partial product generation and multi-operand addition, by exploiting the new arrangements of existing gates, which results in two signed parity-preserving array multipliers. The experimental results reveal that the best proposed 4×4 multiplier in this paper reaches 12%, 24%, and 26% enhancements in the number of constant inputs, number of required gates, and quantum cost, respectively, compared to previous design. Moreover, the best proposed design is generalized for n×n multipliers with general formulations to estimate the main reversible logic criteria as the functions of the multiplier size.

Keywords: array multipliers, Baugh-Wooley method, error detection, parity-preserving gates, quantum computers, reversible logic

Procedia PDF Downloads 259
2226 A Dual-Mode Infinite Horizon Predictive Control Algorithm for Load Tracking in PUSPATI TRIGA Reactor

Authors: Mohd Sabri Minhat, Nurul Adilla Mohd Subha

Abstract:

The PUSPATI TRIGA Reactor (RTP), Malaysia reached its first criticality on June 28, 1982, with power capacity 1MW thermal. The Feedback Control Algorithm (FCA) which is conventional Proportional-Integral (PI) controller, was used for present power control method to control fission process in RTP. It is important to ensure the core power always stable and follows load tracking within acceptable steady-state error and minimum settling time to reach steady-state power. At this time, the system could be considered not well-posed with power tracking performance. However, there is still potential to improve current performance by developing next generation of a novel design nuclear core power control. In this paper, the dual-mode predictions which are proposed in modelling Optimal Model Predictive Control (OMPC), is presented in a state-space model to control the core power. The model for core power control was based on mathematical models of the reactor core, OMPC, and control rods selection algorithm. The mathematical models of the reactor core were based on neutronic models, thermal hydraulic models, and reactivity models. The dual-mode prediction in OMPC for transient and terminal modes was based on the implementation of a Linear Quadratic Regulator (LQR) in designing the core power control. The combination of dual-mode prediction and Lyapunov which deal with summations in cost function over an infinite horizon is intended to eliminate some of the fundamental weaknesses related to MPC. This paper shows the behaviour of OMPC to deal with tracking, regulation problem, disturbance rejection and caters for parameter uncertainty. The comparison of both tracking and regulating performance is analysed between the conventional controller and OMPC by numerical simulations. In conclusion, the proposed OMPC has shown significant performance in load tracking and regulating core power for nuclear reactor with guarantee stabilising in the closed-loop.

Keywords: core power control, dual-mode prediction, load tracking, optimal model predictive control

Procedia PDF Downloads 162
2225 Multiple Linear Regression for Rapid Estimation of Subsurface Resistivity from Apparent Resistivity Measurements

Authors: Sabiu Bala Muhammad, Rosli Saad

Abstract:

Multiple linear regression (MLR) models for fast estimation of true subsurface resistivity from apparent resistivity field measurements are developed and assessed in this study. The parameters investigated were apparent resistivity (ρₐ), horizontal location (X) and depth (Z) of measurement as the independent variables; and true resistivity (ρₜ) as the dependent variable. To achieve linearity in both resistivity variables, datasets were first transformed into logarithmic domain following diagnostic checks of normality of the dependent variable and heteroscedasticity to ensure accurate models. Four MLR models were developed based on hierarchical combination of the independent variables. The generated MLR coefficients were applied to another data set to estimate ρₜ values for validation. Contours of the estimated ρₜ values were plotted and compared to the observed data plots at the colour scale and blanking for visual assessment. The accuracy of the models was assessed using coefficient of determination (R²), standard error (SE) and weighted mean absolute percentage error (wMAPE). It is concluded that the MLR models can estimate ρₜ for with high level of accuracy.

Keywords: apparent resistivity, depth, horizontal location, multiple linear regression, true resistivity

Procedia PDF Downloads 276
2224 Nurse-Reported Perceptions of Medication Safety in Private Hospitals in Gauteng Province.

Authors: Madre Paarlber, Alwiena Blignaut

Abstract:

Background: Medication administration errors remains a global patient safety problem targeted by the WHO (World Health Organization), yet research on this matter is sparce within the South African context. Objective: The aim was to explore and describe nurses’ (medication administrators) perceptions regarding medication administration safety-related culture, incidence, causes, and reporting in the Gauteng Province of South Africa, and to determine any relationships between perceived variables concerned with medication safety (safety culture, incidences, causes, reporting of incidences, and reasons for non-reporting). Method: A quantitative research design was used through which self-administered online surveys were sent to 768 nurses (medication administrators) (n=217). The response rate was 28.26%. The survey instrument was synthesised from the Agency of Healthcare Research and Quality (AHRQ) Hospital Survey on Patient Safety Culture, the Registered Nurse Forecasting (RN4CAST) survey, a survey list prepared from a systematic review aimed at generating a comprehensive list of medication administration error causes and the Medication Administration Error Reporting Survey from Wakefield. Exploratory and confirmatory factor analyses were used to determine the validity and reliability of the survey. Descriptive and inferential statistical data analysis were used to analyse quantitative data. Relationships and correlations were identified between items, subscales and biographic data by using Spearmans’ Rank correlations, T-Tests and ANOVAs (Analysis of Variance). Nurses reported on their perceptions of medication administration safety-related culture, incidence, causes, and reporting in the Gauteng Province. Results: Units’ teamwork deemed satisfactory, punitive responses to errors accentuated. “Crisis mode” working, concerns regarding mistake recording and long working hours disclosed as impacting patient safety. Overall medication safety graded mostly positively. Work overload, high patient-nurse ratios, and inadequate staffing implicated as error-inducing. Medication administration errors were reported regularly. Fear and administrative response to errors effected non-report. Non-report of errors’ reasons was affected by non-punitive safety culture. Conclusions: Medication administration safety improvement is contingent on fostering a non-punitive safety culture within units. Anonymous medication error reporting systems and auditing nurses’ workload are recommended in the quest of improved medication safety within Gauteng Province private hospitals.

Keywords: incidence, medication administration errors, medication safety, reporting, safety culture

Procedia PDF Downloads 54
2223 Sensitivity and Uncertainty Analysis of Hydrocarbon-In-Place in Sandstone Reservoir Modeling: A Case Study

Authors: Nejoud Alostad, Anup Bora, Prashant Dhote

Abstract:

Kuwait Oil Company (KOC) has been producing from its major reservoirs that are well defined and highly productive and of superior reservoir quality. These reservoirs are maturing and priority is shifting towards difficult reservoir to meet future production requirements. This paper discusses the results of the detailed integrated study for one of the satellite complex field discovered in the early 1960s. Following acquisition of new 3D seismic data in 1998 and re-processing work in the year 2006, an integrated G&G study was undertaken to review Lower Cretaceous prospectivity of this reservoir. Nine wells have been drilled in the area, till date with only three wells showing hydrocarbons in two formations. The average oil density is around 300API (American Petroleum Institute), and average porosity and water saturation of the reservoir is about 23% and 26%, respectively. The area is dissected by a number of NW-SE trending faults. Structurally, the area consists of horsts and grabens bounded by these faults and hence compartmentalized. The Wara/Burgan formation consists of discrete, dirty sands with clean channel sand complexes. There is a dramatic change in Upper Wara distributary channel facies, and reservoir quality of Wara and Burgan section varies with change of facies over the area. So predicting reservoir facies and its quality out of sparse well data is a major challenge for delineating the prospective area. To characterize the reservoir of Wara/Burgan formation, an integrated workflow involving seismic, well, petro-physical, reservoir and production engineering data has been used. Porosity and water saturation models are prepared and analyzed to predict reservoir quality of Wara and Burgan 3rd sand upper reservoirs. Subsequently, boundary conditions are defined for reservoir and non-reservoir facies by integrating facies, porosity and water saturation. Based on the detailed analyses of volumetric parameters, potential volumes of stock-tank oil initially in place (STOIIP) and gas initially in place (GIIP) were documented after running several probablistic sensitivity analysis using Montecalro simulation method. Sensitivity analysis on probabilistic models of reservoir horizons, petro-physical properties, and oil-water contacts and their effect on reserve clearly shows some alteration in the reservoir geometry. All these parameters have significant effect on the oil in place. This study has helped to identify uncertainty and risks of this prospect particularly and company is planning to develop this area with drilling of new wells.

Keywords: original oil-in-place, sensitivity, uncertainty, sandstone, reservoir modeling, Monte-Carlo simulation

Procedia PDF Downloads 197
2222 Mean and Volatility Spillover between US Stocks Market and Crude Oil Markets

Authors: Kamel Malik Bensafta, Gervasio Bensafta

Abstract:

The purpose of this paper is to investigate the relationship between oil prices and socks markets. The empirical analysis in this paper is conducted within the context of Multivariate GARCH models, using a transform version of the so-called BEKK parameterization. We show that mean and uncertainty of US market are transmitted to oil market and European market. We also identify an important transmission from WTI prices to Brent Prices.

Keywords: oil volatility, stock markets, MGARCH, transmission, structural break

Procedia PDF Downloads 486
2221 The Role of Emotions in Addressing Social and Environmental Issues in Ethical Decision Making

Authors: Kirsi Snellman, Johannes Gartner, , Katja Upadaya

Abstract:

A transition towards a future where the economy serves society so that it evolves within the safe operating space of the planet calls for fundamental changes in the way managers think, feel and act, and make decisions that relate to social and environmental issues. Sustainable decision-making in organizations are often challenging tasks characterized by trade-offs between environmental, social and financial aspects, thus often bringing forth ethical concerns. Although there have been significant developments in incorporating uncertainty into environmental decision-making and measuring constructs and dimensions in ethical behavior in organizations, the majority of sustainable decision-making models are rationalist-based. Moreover, research in psychology indicates that one’s readiness to make a decision depends on the individual’s state of mind, the feasibility of the implied change, and the compatibility of strategies and tactics of implementation. Although very informative, most of this extant research is limited in the sense that it often directs attention towards the rational instead of the emotional. Hence, little is known about the role of emotions in sustainable decision making, especially in situations where decision-makers evaluate a variety of options and use their feelings as a source of information in tackling the uncertainty. To fill this lacuna, and to embrace the uncertainty and perceived risk involved in decisions that touch upon social and environmental aspects, it is important to add emotion to the evaluation when aiming to reach the one right and good ethical decision outcome. This analysis builds on recent findings in moral psychology that associate feelings and intuitions with ethical decisions and suggests that emotions can sensitize the manager to evaluate the rightness or wrongness of alternatives if ethical concerns are present in sustainable decision making. Capturing such sensitive evaluation as triggered by intuitions, we suggest that rational justification can be complemented by using emotions as a tool to tune in to what feels right in making sustainable decisions. This analysis integrates ethical decision-making theories with recent advancements in emotion theories. It determines the conditions under which emotions play a role in sustainability decisions by contributing to a personal equilibrium in which intuition and rationality are both activated and in accord. It complements the rationalist ethics view according to which nothing fogs the mind in decision making so thoroughly as emotion, and the concept of cheater’s high that links unethical behavior with positive affect. This analysis contributes to theory with a novel theoretical model that specifies when and why managers, who are more emotional, are, in fact, more likely to make ethical decisions than those managers who are more rational. It also proposes practical advice on how emotions can convert the manager’s preferences into choices that benefit both common good and one’s own good throughout the transition towards a more sustainable future.

Keywords: emotion, ethical decision making, intuition, sustainability

Procedia PDF Downloads 132
2220 Numerical Investigation of Geotextile Application in Clay Reinforcement in ABAQUS Software

Authors: Seyed Abolhasan Naeini, Eisa Aliagahei

Abstract:

Today, the use of geosynthetic materials in geotechnical activities is increasing significantly. One of the main uses of these materials is to increase the compressive strength of clay reinforced by geotextile layers. In the present study, the effect of clay reinforcement by geotextile layers in increasing the compressive strength of clay has been investigated using modeling in ABAQUS 6.11.3 software. For this purpose, the modified Drager Prager model has been chosen to simulate the stress-strain behavior of soil layers and the linear elastic model for the geotextile layer. Unreinforced samples and reinforced samples are modeled by geotextile layers (1, 2 and 3 geotextile layers) by software. In order to validate the results, an article in the same field was used and the numerical modeling results were calibrated with the laboratory results. Based on the obtained results, the software has a suitable capability for modeling and the results of the numerical model overlap with the laboratory results to a very acceptable extent, by increasing the number of geotextile layers, the error between the results of the laboratory sample and the software model increases. The highest amount of error is related to the sample reinforced with three layers of geotextile and is 7.3%.

Keywords: Abaqus, cap model, clay, geotextile layer, reinforced soil

Procedia PDF Downloads 88
2219 A Longitudinal Case Study of Greek as a Second Language

Authors: M. Vassou, A. Karasimos

Abstract:

A primary concern in the field of Second Language Acquisition (SLA) research is to determine the innate mechanisms of second language learning and acquisition through the systematic study of a learner's interlanguage. Errors emerge while a learner attempts to communicate using the target-language and can be seen either as the observable linguistic product of the latent cognitive and language process of mental representations or as an indispensable learning mechanism. Therefore, the study of the learner’s erroneous forms may depict the various strategies and mechanisms that take place during the language acquisition process resulting in deviations from the target-language norms and difficulties in communication. Mapping the erroneous utterances of a late adult learner in the process of acquiring Greek as a second language constitutes one of the main aims of this study. For our research purposes, we created an error-tagged learner corpus composed of the participant’s written texts produced throughout a period of a 4- year instructed language acquisition. Error analysis and interlanguage theory constitute the methodological and theoretical framework, respectively. The research questions pertain to the learner's most frequent errors per linguistic category and per year as well as his choices concerning the Greek Article System. According to the quantitative analysis of the data, the most frequent errors are observed in the categories of the stress system and syntax, whereas a significant fluctuation and/or gradual reduction throughout the 4 years of instructed acquisition indicate the emergence of developmental stages. The findings with regard to the article usage bespeak fossilization of erroneous structures in certain contexts. In general, our results point towards the existence and further development of an established learner’s (inter-) language system governed not only by mother- tongue and target-language influences but also by the learner’s assumptions and set of rules as the result of a complex cognitive process. It is expected that this study will contribute not only to the knowledge in the field of Greek as a second language and SLA generally, but it will also provide an insight into the cognitive mechanisms and strategies developed by multilingual learners of late adulthood.

Keywords: Greek as a second language, error analysis, interlanguage, late adult learner

Procedia PDF Downloads 127
2218 Data Mining Approach: Classification Model Evaluation

Authors: Lubabatu Sada Sodangi

Abstract:

The rapid growth in exchange and accessibility of information via the internet makes many organisations acquire data on their own operation. The aim of data mining is to analyse the different behaviour of a dataset using observation. Although, the subset of the dataset being analysed may not display all the behaviours and relationships of the entire data and, therefore, may not represent other parts that exist in the dataset. There is a range of techniques used in data mining to determine the hidden or unknown information in datasets. In this paper, the performance of two algorithms Chi-Square Automatic Interaction Detection (CHAID) and multilayer perceptron (MLP) would be matched using an Adult dataset to find out the percentage of an/the adults that earn > 50k and those that earn <= 50k per year. The two algorithms were studied and compared using IBM SPSS statistics software. The result for CHAID shows that the most important predictors are relationship and education. The algorithm shows that those are married (husband) and have qualification: Bachelor, Masters, Doctorate or Prof-school whose their age is > 41<57 earn > 50k. Also, multilayer perceptron displays marital status and capital gain as the most important predictors of the income. It also shows that individuals that their capital gain is less than 6,849 and are single, separated or widow, earn <= 50K, whereas individuals with their capital gain is > 6,849, work > 35 hrs/wk, and > 27yrs their income will be > 50k. By comparing the two algorithms, it is observed that both algorithms are reliable but there is strong reliability in CHAID which clearly shows that relation and education contribute to the prediction as displayed in the data visualisation.

Keywords: data mining, CHAID, multi-layer perceptron, SPSS, Adult dataset

Procedia PDF Downloads 378
2217 Pressure-Robust Approximation for the Rotational Fluid Flow Problems

Authors: Medine Demir, Volker John

Abstract:

Fluid equations in a rotating frame of reference have a broad class of important applications in meteorology and oceanography, especially in the large-scale flows considered in ocean and atmosphere, as well as many physical and industrial applications. The Coriolis and the centripetal forces, resulting from the rotation of the earth, play a crucial role in such systems. For such applications it may be required to solve the system in complex three-dimensional geometries. In recent years, the Navier--Stokes equations in a rotating frame have been investigated in a number of papers using the classical inf-sup stable mixed methods, like Taylor-Hood pairs, to contribute to the analysis and the accurate and efficient numerical simulation. Numerical analysis reveals that these classical methods introduce a pressure-dependent contribution in the velocity error bounds that is proportional to some inverse power of the viscosity. Hence, these methods are optimally convergent but small velocity errors might not be achieved for complicated pressures and small viscosity coefficients. Several approaches have been proposed for improving the pressure-robustness of pairs of finite element spaces. In this contribution, a pressure-robust space discretization of the incompressible Navier--Stokes equations in a rotating frame of reference is considered. The discretization employs divergence-free, $H^1$-conforming mixed finite element methods like Scott--Vogelius pairs. However, this approach might come with a modification of the meshes, like the use of barycentric-refined grids in case of Scott--Vogelius pairs. However, this strategy requires the finite element code to have control on the mesh generator which is not realistic in many engineering applications and might also be in conflict with the solver for the linear system. An error estimate for the velocity is derived that tracks the dependency of the error bound on the coefficients of the problem, in particular on the angular velocity. Numerical examples illustrate the theoretical results. The idea of pressure-robust method could be cast on different types of flow problems which would be considered as future studies. As another future research direction, to avoid a modification of the mesh, one may use a very simple parameter-dependent modification of the Scott-Vogelius element, the pressure-wired Stokes element, such that the inf-sup constant is independent of nearly-singular vertices.

Keywords: navier-stokes equations in a rotating frame of refence, coriolis force, pressure-robust error estimate, scott-vogelius pairs of finite element spaces

Procedia PDF Downloads 67
2216 Estimation of Implicit Colebrook White Equation by Preferable Explicit Approximations in the Practical Turbulent Pipe Flow

Authors: Itissam Abuiziah

Abstract:

In several hydraulic systems, it is necessary to calculate the head losses which depend on the resistance flow friction factor in Darcy equation. Computing the resistance friction is based on implicit Colebrook-White equation which is considered as the standard for the friction calculation, but it needs high computational cost, therefore; several explicit approximation methods are used for solving an implicit equation to overcome this issue. It follows that the relative error is used to determine the most accurate method among the approximated used ones. Steel, cast iron and polyethylene pipe materials investigated with practical diameters ranged from 0.1m to 2.5m and velocities between 0.6m/s to 3m/s. In short, the results obtained show that the suitable method for some cases may not be accurate for other cases. For example, when using steel pipe materials, Zigrang and Silvester's method has revealed as the most precise in terms of low velocities 0.6 m/s to 1.3m/s. Comparatively, Halland method showed a less relative error with the gradual increase in velocity. Accordingly, the simulation results of this study might be employed by the hydraulic engineers, so they can take advantage to decide which is the most applicable method according to their practical pipe system expectations.

Keywords: Colebrook–White, explicit equation, friction factor, hydraulic resistance, implicit equation, Reynolds numbers

Procedia PDF Downloads 187
2215 Pattern of Anisometropia, Management and Outcome of Anisometropic Amblyopia

Authors: Husain Rajib, T. H. Sheikh, D. G. Jewel

Abstract:

Background: Amblyopia is a frequent cause of monocular blindness in children. It can be unilateral or bilateral reduction of best corrected visual acuity associated with decrement in visual processing, accomodation, motility, spatial perception or spatial projection. Anisometropia is an important risk factor for amblyopia that develops when unequal refractive error causes the image to be blurred in the critical developmental period and central inhibition of the visual signal originating from the affected eye associated with significant visual problems including anisokonia, strabismus, and reduced stereopsis. Methods: It is a prospective hospital based study of newly diagnosed of amblyopia seen at the pediatric clinic of Chittagong Eye Infirmary & Training Complex. There were 50 anisometropic amblyopia subjects were examined & questionnaire was piloted. Included were all patients diagnosed with refractive amblyopia between 3 to 13 years, without previous amblyopia treatment, and whose parents were interested to participate in the study. Patients diagnosed with strabismic amblyopia were excluded. Patients were first corrected with the best correction for a month. When the VA in the amblyopic eye did not improve over month, then occlusion treatment was started. Occlusion was done daily for 6-8 hours (full time) together with vision therapy. The occlusion was carried out for 3 months. Results: In this study about 8% subjects had anisometropia from myopia, 18% from hyperopia, 74% from astigmatism. The initial mean visual acuity was 0.74 ± 0.39 Log MAR and after intervention of amblyopia therapy with active vision therapy mean visual acuity was 0.34 ± 0.26 Log MAR. About 94% of subjects were improving at least two lines. The depth of amblyopia associated with type of anisometropic refractive error and magnitude of Anisometropia (p<0.005). By doing this study 10% mild amblyopia, 64% moderate and 26% severe amblyopia were found. Binocular function also decreases with magnitude of Anisometropia. Conclusion: Anisometropic amblyopia is a most important factor in pediatric age group because it can lead to visual impairment. Occlusion therapy with at least one instructed hour of active visual activity practiced out of school hours was effective in anisometropic amblyopes who were diagnosed at the age of 8 years and older, and the patients complied well with the treatment.

Keywords: refractive error, anisometropia, amblyopia, strabismic amblyopia

Procedia PDF Downloads 276
2214 Validation Study of Radial Aircraft Engine Model

Authors: Lukasz Grabowski, Tytus Tulwin, Michal Geca, P. Karpinski

Abstract:

This paper presents the radial aircraft engine model which has been created in AVL Boost software. This model is a one-dimensional physical model of the engine, which enables us to investigate the impact of an ignition system design on engine performance (power, torque, fuel consumption). In addition, this model allows research under variable environmental conditions to reflect varied flight conditions (altitude, humidity, cruising speed). Before the simulation research the identifying parameters and validating of model were studied. In order to verify the feasibility to take off power of gasoline radial aircraft engine model, some validation study was carried out. The first stage of the identification was completed with reference to the technical documentation provided by manufacturer of engine and the experiments on the test stand of the real engine. The second stage involved a comparison of simulation results with the results of the engine stand tests performed on a WSK ’PZL-Kalisz’. The engine was loaded by a propeller in a special test bench. Identifying the model parameters referred to a comparison of the test results to the simulation in terms of: pressure behind the throttles, pressure in the inlet pipe, and time course for pressure in the first inlet pipe, power, and specific fuel consumption. Accordingly, the required coefficients and error of simulation calculation relative to the real-object experiments were determined. Obtained the time course for pressure and its value is compatible with the experimental results. Additionally the engine power and specific fuel consumption tends to be significantly compatible with the bench tests. The mapping error does not exceed 1.5%, which verifies positively the model of combustion and allows us to predict engine performance if the process of combustion will be modified. The next conducted tests verified completely model. The maximum mapping error for the pressure behind the throttles and the inlet pipe pressure is 4 %, which proves the model of the inlet duct in the engine with the charging compressor to be correct.

Keywords: 1D-model, aircraft engine, performance, validation

Procedia PDF Downloads 336
2213 Migration in Times of Uncertainty

Authors: Harman Jaggi, David Steinsaltz, Shripad Tuljapurkar

Abstract:

Understanding the effect of fluctuations on populations is crucial in the context of increasing habitat fragmentation, climate change, and biological invasions, among others. Migration in response to environmental disturbances enables populations to escape unfavorable conditions, benefit from new environments and thereby ride out fluctuations in variable environments. Would populations disperse if there is no uncertainty? Karlin showed in 1982 that when sub-populations experience distinct but fixed growth rates at different sites, greater mixing of populations will lower the overall growth rate relative to the most favorable site. Here we ask if and when environmental variability favors migration over no-migration. Specifically, in random environments, would a small amount of migration increase the overall long-run growth rate relative to the zero migration case? We use analysis and simulations to show how long-run growth rate changes with migration rate. Our results show that when fitness (dis)advantages fluctuate over time across sites, migration may allow populations to benefit from variability. When there is one best site with highest growth rate, the effect of migration on long-run growth rate depends on the difference in expected growth between sites, scaled by the variance of the difference. When variance is large, there is a substantial probability of an inferior site experiencing higher growth rate than its average. Thus, a high variance can compensate for a difference in average growth rates between sites. Positive correlations in growth rates across sites favor less migration. With multiple sites and large fluctuations, the length of shortest cycle (excursion) from the best site (on average) matters, and we explore the interplay between excursion length, average differences between sites and the size of fluctuations. Our findings have implications for conservation biology: even when there are superior sites in a sea of poor habitats, variability and habitat quality across space may be key to determining the importance of migration.

Keywords: migration, variable-environments, random, dispersal, fluctuations, habitat-quality

Procedia PDF Downloads 139
2212 Charting Sentiments with Naive Bayes and Logistic Regression

Authors: Jummalla Aashrith, N. L. Shiva Sai, K. Bhavya Sri

Abstract:

The swift progress of web technology has not only amassed a vast reservoir of internet data but also triggered a substantial surge in data generation. The internet has metamorphosed into one of the dynamic hubs for online education, idea dissemination, as well as opinion-sharing. Notably, the widely utilized social networking platform Twitter is experiencing considerable expansion, providing users with the ability to share viewpoints, participate in discussions spanning diverse communities, and broadcast messages on a global scale. The upswing in online engagement has sparked a significant curiosity in subjective analysis, particularly when it comes to Twitter data. This research is committed to delving into sentiment analysis, focusing specifically on the realm of Twitter. It aims to offer valuable insights into deciphering information within tweets, where opinions manifest in a highly unstructured and diverse manner, spanning a spectrum from positivity to negativity, occasionally punctuated by neutrality expressions. Within this document, we offer a comprehensive exploration and comparative assessment of modern approaches to opinion mining. Employing a range of machine learning algorithms such as Naive Bayes and Logistic Regression, our investigation plunges into the domain of Twitter data streams. We delve into overarching challenges and applications inherent in the realm of subjectivity analysis over Twitter.

Keywords: machine learning, sentiment analysis, visualisation, python

Procedia PDF Downloads 56
2211 Development of Agricultural Robotic Platform for Inter-Row Plant: An Autonomous Navigation Based on Machine Vision

Authors: Alaa El-Din Rezk

Abstract:

In Egypt, management of crops still away from what is being used today by utilizing the advances of mechanical design capabilities, sensing and electronics technology. These technologies have been introduced in many places and recorm, for Straight Path, Curved Path, Sine Wave ded high accuracy in different field operations. So, an autonomous robotic platform based on machine vision has been developed and constructed to be implemented in Egyptian conditions as self-propelled mobile vehicle for carrying tools for inter/intra-row crop management based on different control modules. The experiments were carried out at plant protection research institute (PPRI) during 2014-2015 to optimize the accuracy of agricultural robotic platform control using machine vision in term of the autonomous navigation and performance of the robot’s guidance system. Results showed that the robotic platform' guidance system with machine vision was able to adequately distinguish the path and resisted image noise and did better than human operators for getting less lateral offset error. The average error of autonomous was 2.75, 19.33, 21.22, 34.18, and 16.69 mm. while the human operator was 32.70, 4.85, 7.85, 38.35 and 14.75 mm Path, Offset Discontinuity and Angle Discontinuity respectively.

Keywords: autonomous robotic, Hough transform, image processing, machine vision

Procedia PDF Downloads 315
2210 Integrated Navigation System Using Simplified Kalman Filter Algorithm

Authors: Othman Maklouf, Abdunnaser Tresh

Abstract:

GPS and inertial navigation system (INS) have complementary qualities that make them ideal use for sensor fusion. The limitations of GPS include occasional high noise content, outages when satellite signals are blocked, interference and low bandwidth. The strengths of GPS include its long-term stability and its capacity to function as a stand-alone navigation system. In contrast, INS is not subject to interference or outages, have high bandwidth and good short-term noise characteristics, but have long-term drift errors and require external information for initialization. A combined system of GPS and INS subsystems can exhibit the robustness, higher bandwidth and better noise characteristics of the inertial system with the long-term stability of GPS. The most common estimation algorithm used in integrated INS/GPS is the Kalman Filter (KF). KF is able to take advantages of these characteristics to provide a common integrated navigation implementation with performance superior to that of either subsystem (GPS or INS). This paper presents a simplified KF algorithm for land vehicle navigation application. In this integration scheme, the GPS derived positions and velocities are used as the update measurements for the INS derived PVA. The KF error state vector in this case includes the navigation parameters as well as the accelerometer and gyroscope error states.

Keywords: GPS, INS, Kalman filter, inertial navigation system

Procedia PDF Downloads 471
2209 Investigating Safe Operation Condition for Iterative Learning Control under Load Disturbances Effect in Singular Values

Authors: Muhammad A. Alsubaie

Abstract:

An iterative learning control framework designed in state feedback structure suffers a lack in investigating load disturbance considerations. The presented work discusses the controller previously designed, highlights the disturbance problem, finds new conditions using singular value principle to assure safe operation conditions with error convergence and reference tracking under the influence of load disturbance. It is known that periodic disturbances can be represented by a delay model in a positive feedback loop acting on the system input. This model can be manipulated by isolating the delay model and finding a controller for the overall system around the delay model to remedy the periodic disturbances using the small signal theorem. The overall system is the base for control design and load disturbance investigation. The major finding of this work is the load disturbance condition found which clearly sets safe operation condition under the influence of load disturbances such that the error tends to nearly zero as the system keeps operating trial after trial.

Keywords: iterative learning control, singular values, state feedback, load disturbance

Procedia PDF Downloads 158
2208 Cross-Validation of the Data Obtained for ω-6 Linoleic and ω-3 α-Linolenic Acids Concentration of Hemp Oil Using Jackknife and Bootstrap Resampling

Authors: Vibha Devi, Shabina Khanam

Abstract:

Hemp (Cannabis sativa) possesses a rich content of ω-6 linoleic and ω-3 linolenic essential fatty acid in the ratio of 3:1, which is a rare and most desired ratio that enhances the quality of hemp oil. These components are beneficial for the development of cell and body growth, strengthen the immune system, possess anti-inflammatory action, lowering the risk of heart problem owing to its anti-clotting property and a remedy for arthritis and various disorders. The present study employs supercritical fluid extraction (SFE) approach on hemp seed at various conditions of parameters; temperature (40 - 80) °C, pressure (200 - 350) bar, flow rate (5 - 15) g/min, particle size (0.430 - 1.015) mm and amount of co-solvent (0 - 10) % of solvent flow rate through central composite design (CCD). CCD suggested 32 sets of experiments, which was carried out. As SFE process includes large number of variables, the present study recommends the application of resampling techniques for cross-validation of the obtained data. Cross-validation refits the model on each data to achieve the information regarding the error, variability, deviation etc. Bootstrap and jackknife are the most popular resampling techniques, which create a large number of data through resampling from the original dataset and analyze these data to check the validity of the obtained data. Jackknife resampling is based on the eliminating one observation from the original sample of size N without replacement. For jackknife resampling, the sample size is 31 (eliminating one observation), which is repeated by 32 times. Bootstrap is the frequently used statistical approach for estimating the sampling distribution of an estimator by resampling with replacement from the original sample. For bootstrap resampling, the sample size is 32, which was repeated by 100 times. Estimands for these resampling techniques are considered as mean, standard deviation, variation coefficient and standard error of the mean. For ω-6 linoleic acid concentration, mean value was approx. 58.5 for both resampling methods, which is the average (central value) of the sample mean of all data points. Similarly, for ω-3 linoleic acid concentration, mean was observed as 22.5 through both resampling. Variance exhibits the spread out of the data from its mean. Greater value of variance exhibits the large range of output data, which is 18 for ω-6 linoleic acid (ranging from 48.85 to 63.66 %) and 6 for ω-3 linoleic acid (ranging from 16.71 to 26.2 %). Further, low value of standard deviation (approx. 1 %), low standard error of the mean (< 0.8) and low variance coefficient (< 0.2) reflect the accuracy of the sample for prediction. All the estimator value of variance coefficients, standard deviation and standard error of the mean are found within the 95 % of confidence interval.

Keywords: resampling, supercritical fluid extraction, hemp oil, cross-validation

Procedia PDF Downloads 141
2207 Fuzzy and Fuzzy-PI Controller for Rotor Speed of Gas Turbine

Authors: Mandar Ghodekar, Sharad Jadhav, Sangram Jadhav

Abstract:

Speed control of rotor during startup and under varying load conditions is one of the most difficult tasks of gas turbine operation. In this paper, power plant gas turbine (GE9001E) is considered for this purpose and fuzzy and fuzzy-PI rotor speed controllers are designed. The goal of the presented controllers is to keep the turbine rotor speed within predefined limits during startup condition as well as during operating condition. The fuzzy controller and fuzzy-PI controller are designed using Takagi-Sugeno method and Mamdani method, respectively. In applying the fuzzy-PI control to a gas-turbine plant, the tuning parameters (Kp and Ki) are modified online by fuzzy logic approach. Error and rate of change of error are inputs and change in fuel flow is output for both the controllers. Hence, rotor speed of gas turbine is controlled by modifying the fuel ƒflow. The identified linear ARX model of gas turbine is considered while designing the controllers. For simulations, demand power is taken as disturbance input. It is assumed that inlet guide vane (IGV) position is fixed. In addition, the constraint on the fuel flow is taken into account. The performance of the presented controllers is compared with each other as well as with H∞ robust and MPC controllers for the same operating conditions in simulations.

Keywords: gas turbine, fuzzy controller, fuzzy PI controller, power plant

Procedia PDF Downloads 335
2206 Forecasting 24-Hour Ahead Electricity Load Using Time Series Models

Authors: Ramin Vafadary, Maryam Khanbaghi

Abstract:

Forecasting electricity load is important for various purposes like planning, operation, and control. Forecasts can save operating and maintenance costs, increase the reliability of power supply and delivery systems, and correct decisions for future development. This paper compares various time series methods to forecast 24 hours ahead of electricity load. The methods considered are the Holt-Winters smoothing, SARIMA Modeling, LSTM Network, Fbprophet, and Tensorflow probability. The performance of each method is evaluated by using the forecasting accuracy criteria, namely, the mean absolute error and root mean square error. The National Renewable Energy Laboratory (NREL) residential energy consumption data is used to train the models. The results of this study show that the SARIMA model is superior to the others for 24 hours ahead forecasts. Furthermore, a Bagging technique is used to make the predictions more robust. The obtained results show that by Bagging multiple time-series forecasts, we can improve the robustness of the models for 24 hours ahead of electricity load forecasting.

Keywords: bagging, Fbprophet, Holt-Winters, LSTM, load forecast, SARIMA, TensorFlow probability, time series

Procedia PDF Downloads 95
2205 Continuous Blood Pressure Measurement from Pulse Transit Time Techniques

Authors: Chien-Lin Wang, Cha-Ling Ko, Tainsong Chen

Abstract:

Pulse Blood pressure (BP) is one of the vital signs, and is an index that helps determining the stability of life. In this respect, some spinal cord injury patients need to take the tilt table test. While doing the test, the posture changes abruptly, and may cause a patient’s BP to change abnormally. This may cause patients to feel discomfort, and even feel as though their life is threatened. Therefore, if a continuous non-invasive BP assessment system were built, it could help to alert health care professionals in the process of rehabilitation when the BP value is out of range. In our research, BP assessed by the pulse transit time technique was developed. In the system, we use a self-made photoplethysmograph (PPG) sensor and filter circuit to detect two PPG signals and to calculate the time difference. The BP can immediately be assessed by the trend line. According to the results of this study, the relationship between the systolic BP and PTT has a highly negative linear correlation (R2=0.8). Further, we used the trend line to assess the value of the BP and compared it to a commercial sphygmomanometer (Omron MX3); the error rate of the system was found to be in the range of ±10%, which is within the permissible error range of a commercial sphygmomanometer. The continue blood pressure measurement from pulse transit time technique may have potential to become a convenience method for clinical rehabilitation.

Keywords: continous blood pressure measurement, PPG, time transit time, transit velocity

Procedia PDF Downloads 354
2204 A Framework for Assessing and Implementing Ecological-Based Adaptation Solutions in Urban Areas of Shanghai

Authors: Xin Li

Abstract:

The uncertainty and the complexity of the urban environment combining with the threat of climate change are contributing factors to the vulnerability in multiple-dimensions in Chinese megacities, especially in Shanghai. The urban area occupied high valuable technological infrastructure and density buildings is under the threats of climate change and can provide insufficient ecological service to remain the trade-off on urban sustainable development. Urban ecological-based adaptation (UEbA) combines practices and theoretical work and integrates ecological services into multiple-layers of urban environment planning in order to reduce the impact of the complexity and uncertainty. To understand and to respond to the challenges in the urban level, this paper considers Shanghai as the research objective. It is necessary that its urban adaptation strategies should be reflected and contain the concept and knowledge of EbA. In this paper, we firstly use software to illustrates the visualizing patterns and trends of UEBA research in the current 10 years. Specifically, Citespace software was used for interpreting the significant hubs, landmarks points of peer-reviewed literature on the context of ecological service research in recent 10 years. Secondly, 135 evidence-based EbA literature were reviewed for categorizing the methodologies and framework of evidence-based EbA by the systematic map protocol. Finally, a conceptual framework combined with culture, economic and social components was developed in order to assess the current adaptation strategies in Shanghai. This research founds that the key to reducing urban vulnerability does not only focus on co-benefit arguments but also should pay more attention to the concept of trade-off. This research concludes that the designed framework can provide key knowledge and indicates the essential gap as a valuable tool against climate variability in the process of urban adaptation in Shanghai.

Keywords: urban ecological-based adaptation, climate change, sustainable development, climate variability

Procedia PDF Downloads 155
2203 Multichannel Surface Electromyography Trajectories for Hand Movement Recognition Using Intrasubject and Intersubject Evaluations

Authors: Christina Adly, Meena Abdelmeseeh, Tamer Basha

Abstract:

This paper proposes a system for hand movement recognition using multichannel surface EMG(sEMG) signals obtained from 40 subjects using 40 different exercises, which are available on the Ninapro(Non-Invasive Adaptive Prosthetics) database. First, we applied processing methods to the raw sEMG signals to convert them to their amplitudes. Second, we used deep learning methods to solve our problem by passing the preprocessed signals to Fully connected neural networks(FCNN) and recurrent neural networks(RNN) with Long Short Term Memory(LSTM). Using intrasubject evaluation, The accuracy using the FCNN is 72%, with a processing time for training around 76 minutes, and for RNN's accuracy is 79.9%, with 8 minutes and 22 seconds processing time. Third, we applied some postprocessing methods to improve the accuracy, like majority voting(MV) and Movement Error Rate(MER). The accuracy after applying MV is 75% and 86% for FCNN and RNN, respectively. The MER value has an inverse relationship with the prediction delay while varying the window length for measuring the MV. The different part uses the RNN with the intersubject evaluation. The experimental results showed that to get a good accuracy for testing with reasonable processing time, we should use around 20 subjects.

Keywords: hand movement recognition, recurrent neural network, movement error rate, intrasubject evaluation, intersubject evaluation

Procedia PDF Downloads 142
2202 Classification of Manufacturing Data for Efficient Processing on an Edge-Cloud Network

Authors: Onyedikachi Ulelu, Andrew P. Longstaff, Simon Fletcher, Simon Parkinson

Abstract:

The widespread interest in 'Industry 4.0' or 'digital manufacturing' has led to significant research requiring the acquisition of data from sensors, instruments, and machine signals. In-depth research then identifies methods of analysis of the massive amounts of data generated before and during manufacture to solve a particular problem. The ultimate goal is for industrial Internet of Things (IIoT) data to be processed automatically to assist with either visualisation or autonomous system decision-making. However, the collection and processing of data in an industrial environment come with a cost. Little research has been undertaken on how to specify optimally what data to capture, transmit, process, and store at various levels of an edge-cloud network. The first step in this specification is to categorise IIoT data for efficient and effective use. This paper proposes the required attributes and classification to take manufacturing digital data from various sources to determine the most suitable location for data processing on the edge-cloud network. The proposed classification framework will minimise overhead in terms of network bandwidth/cost and processing time of machine tool data via efficient decision making on which dataset should be processed at the ‘edge’ and what to send to a remote server (cloud). A fast-and-frugal heuristic method is implemented for this decision-making. The framework is tested using case studies from industrial machine tools for machine productivity and maintenance.

Keywords: data classification, decision making, edge computing, industrial IoT, industry 4.0

Procedia PDF Downloads 182
2201 Real-Time Classification of Hemodynamic Response by Functional Near-Infrared Spectroscopy Using an Adaptive Estimation of General Linear Model Coefficients

Authors: Sahar Jahani, Meryem Ayse Yucel, David Boas, Seyed Kamaledin Setarehdan

Abstract:

Near-infrared spectroscopy allows monitoring of oxy- and deoxy-hemoglobin concentration changes associated with hemodynamic response function (HRF). HRF is usually affected by natural physiological hemodynamic (systemic interferences) which occur in all body tissues including brain tissue. This makes HRF extraction a very challenging task. In this study, we used Kalman filter based on a general linear model (GLM) of brain activity to define the proportion of systemic interference in the brain hemodynamic. The performance of the proposed algorithm is evaluated in terms of the peak to peak error (Ep), mean square error (MSE), and Pearson’s correlation coefficient (R2) criteria between the estimated and the simulated hemodynamic responses. This technique also has the ability of real time estimation of single trial functional activations as it was applied to classify finger tapping versus resting state. The average real-time classification accuracy of 74% over 11 subjects demonstrates the feasibility of developing an effective functional near infrared spectroscopy for brain computer interface purposes (fNIRS-BCI).

Keywords: hemodynamic response function, functional near-infrared spectroscopy, adaptive filter, Kalman filter

Procedia PDF Downloads 167
2200 Statistical Correlation between Ply Mechanical Properties of Composite and Its Effect on Structure Reliability

Authors: S. Zhang, L. Zhang, X. Chen

Abstract:

Due to the large uncertainty on the mechanical properties of FRP (fibre reinforced plastic), the reliability evaluation of FRP structures are currently receiving much attention in industry. However, possible statistical correlation between ply mechanical properties has been so far overlooked, and they are mostly assumed to be independent random variables. In this study, the statistical correlation between ply mechanical properties of uni-directional and plain weave composite is firstly analyzed by a combination of Monte-Carlo simulation and finite element modeling of the FRP unit cell. Large linear correlation coefficients between the in-plane mechanical properties are observed, and the correlation coefficients are heavily dependent on the uncertainty of the fibre volume ratio. It is also observed that the correlation coefficients related to Poisson’s ratio are negative while others are positive. To experimentally achieve the statistical correlation coefficients between in-plane mechanical properties of FRP, all concerned in-plane mechanical properties of the same specimen needs to be known. In-plane shear modulus of FRP is experimentally derived by the approach suggested in the ASTM standard D5379M. Tensile tests are conducted using the same specimens used for the shear test, and due to non-uniform tensile deformation a modification factor is derived by a finite element modeling. Digital image correlation is adopted to characterize the specimen non-uniform deformation. The preliminary experimental results show a good agreement with the numerical analysis on the statistical correlation. Then, failure probability of laminate plates is calculated in cases considering and not considering the statistical correlation, using the Monte-Carlo and Markov Chain Monte-Carlo methods, respectively. The results highlight the importance of accounting for the statistical correlation between ply mechanical properties to achieve accurate failure probability of laminate plates. Furthermore, it is found that for the multi-layer laminate plate, the statistical correlation between the ply elastic properties significantly affects the laminate reliability while the effect of statistical correlation between the ply strength is minimal.

Keywords: failure probability, FRP, reliability, statistical correlation

Procedia PDF Downloads 160
2199 Simulations to Predict Solar Energy Potential by ERA5 Application at North Africa

Authors: U. Ali Rahoma, Nabil Esawy, Fawzia Ibrahim Moursy, A. H. Hassan, Samy A. Khalil, Ashraf S. Khamees

Abstract:

The design of any solar energy conversion system requires the knowledge of solar radiation data obtained over a long period. Satellite data has been widely used to estimate solar energy where no ground observation of solar radiation is available, yet there are limitations on the temporal coverage of satellite data. Reanalysis is a “retrospective analysis” of the atmosphere parameters generated by assimilating observation data from various sources, including ground observation, satellites, ships, and aircraft observation with the output of NWP (Numerical Weather Prediction) models, to develop an exhaustive record of weather and climate parameters. The evaluation of the performance of reanalysis datasets (ERA-5) for North Africa against high-quality surface measured data was performed using statistical analysis. The estimation of global solar radiation (GSR) distribution over six different selected locations in North Africa during ten years from the period time 2011 to 2020. The root means square error (RMSE), mean bias error (MBE) and mean absolute error (MAE) of reanalysis data of solar radiation range from 0.079 to 0.222, 0.0145 to 0.198, and 0.055 to 0.178, respectively. The seasonal statistical analysis was performed to study seasonal variation of performance of datasets, which reveals the significant variation of errors in different seasons—the performance of the dataset changes by changing the temporal resolution of the data used for comparison. The monthly mean values of data show better performance, but the accuracy of data is compromised. The solar radiation data of ERA-5 is used for preliminary solar resource assessment and power estimation. The correlation coefficient (R2) varies from 0.93 to 99% for the different selected sites in North Africa in the present research. The goal of this research is to give a good representation for global solar radiation to help in solar energy application in all fields, and this can be done by using gridded data from European Centre for Medium-Range Weather Forecasts ECMWF and producing a new model to give a good result.

Keywords: solar energy, solar radiation, ERA-5, potential energy

Procedia PDF Downloads 211