Search results for: symptom cluster
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1162

Search results for: symptom cluster

532 Review and Analysis of Parkinson's Tremor Genesis Using Mathematical Model

Authors: Pawan Kumar Gupta, Sumana Ghosh

Abstract:

Parkinson's Disease (PD) is a long-term neurodegenerative movement disorder of the central nervous system with vast symptoms related to the motor system. The common symptoms of PD are tremor, rigidity, bradykinesia/akinesia, and postural instability, but the clinical symptom includes other motor and non‐motor issues. The motor symptoms of the disease are consequence of death of the neurons in a region of the midbrain known as substantia nigra pars compacta, leading to decreased level of a neurotransmitter known as dopamine. The cause of this neuron death is not clearly known but involves formation of Lewy bodies, an abnormal aggregation or clumping of the protein alpha-synuclein in the neurons. Unfortunately, there is no cure for PD, and the management of this disease is challenging. Therefore, it is critical for a patient to be diagnosed at early stages. A limited choice of drugs is available to improve the symptoms, but those become less and less effective over time. Apart from that, with rapid growth in the field of science and technology, other methods such as multi-area brain stimulation are used to treat patients. In order to develop advanced techniques and to support drug development for treating PD patients, an accurate mathematical model is needed to explain the underlying relationship of dopamine secretion in the brain with the hand tremors. There has been a lot of effort in the past few decades on modeling PD tremors and treatment effects from a computational point of view. These models can effectively save time as well as the cost of drug development for the pharmaceutical industry and be helpful for selecting appropriate treatment mechanisms among all possible options. In this review paper, an effort is made to investigate studies on PD modeling and analysis and to highlight some of the key advances in the field over the past centuries with discussion on the current challenges.

Keywords: Parkinson's disease, deep brain stimulation, tremor, modeling

Procedia PDF Downloads 140
531 Logistic Model Tree and Expectation-Maximization for Pollen Recognition and Grouping

Authors: Endrick Barnacin, Jean-Luc Henry, Jack Molinié, Jimmy Nagau, Hélène Delatte, Gérard Lebreton

Abstract:

Palynology is a field of interest for many disciplines. It has multiple applications such as chronological dating, climatology, allergy treatment, and even honey characterization. Unfortunately, the analysis of a pollen slide is a complicated and time-consuming task that requires the intervention of experts in the field, which is becoming increasingly rare due to economic and social conditions. So, the automation of this task is a necessity. Pollen slides analysis is mainly a visual process as it is carried out with the naked eye. That is the reason why a primary method to automate palynology is the use of digital image processing. This method presents the lowest cost and has relatively good accuracy in pollen retrieval. In this work, we propose a system combining recognition and grouping of pollen. It consists of using a Logistic Model Tree to classify pollen already known by the proposed system while detecting any unknown species. Then, the unknown pollen species are divided using a cluster-based approach. Success rates for the recognition of known species have been achieved, and automated clustering seems to be a promising approach.

Keywords: pollen recognition, logistic model tree, expectation-maximization, local binary pattern

Procedia PDF Downloads 182
530 The Effect of High Intensity by Intervals Training on Plasma Interleukin 13 and Insulin Resistance in Patients with Attention Deficit Hyperactivity Disorder (ADHD)

Authors: Goodarzvand Fatemeh, Soori Rahman, Effatpanah Mohammad, Ajbarnejad Ali

Abstract:

Attention deficit hyperactivity disorder (ADHD) is characterized by a pervasive pattern of developmentally inappropriate inattentive, impulsive and hyperactive behaviors that typically begin during the preschool ages and often persist into adulthood. This disorder is related to autism and schizophrenia and other psychological disorders and clinical conditions such as insulin resistance and they may operate through common pathways, and treatments used exclusively for one of these conditions may prove beneficial for the others. While ADHD is not fully understood as developmental disorder with an etiopathogeny, but studies show that core symptom of disorder was associated with and increased by the interleukins IL-13, where relation of IL-13 with inattention was notable. Regular exercise improves functions associated with attention deficit hyperactivity disorder (ADHD). However, the impact of exercise on cytokines associated with the disease activity remains relatively unexplored. The aim of this study was to examine the effects of 6 weeks high intensity by intervals training (HIIT) on IL-13 levels and insulin resistance in boys with ADHD. Twenty eight boys with ADHD disease in a range of 12-18 year of old participated in this study as the subject. Subjects were divided into control group (n=10) and training group (n=18) randomly. The training group performed progressive HIIT program, 3 days a week for 6 weeks. The control group was in absolute rest at the same time. The results showed that after six weeks of HIIT, IL-13 decreased in the exercise group and these changes achieved (p= 0.002) statistical significance (p < 0.005). The results suggest HIIT with specific intensity and duration utilized in this study had not significant effect on insulin resistance levels in female patients with ADHD (p=0.39), while the difference in the average control and case group was decreased.

Keywords: attention deficit hyperactivity disorder, interleukin 13, insulin resistance, high intensity by intervals training

Procedia PDF Downloads 511
529 A Comparison of Convolutional Neural Network Architectures for the Classification of Alzheimer’s Disease Patients Using MRI Scans

Authors: Tomas Premoli, Sareh Rowlands

Abstract:

In this study, we investigate the impact of various convolutional neural network (CNN) architectures on the accuracy of diagnosing Alzheimer’s disease (AD) using patient MRI scans. Alzheimer’s disease is a debilitating neurodegenerative disorder that affects millions worldwide. Early, accurate, and non-invasive diagnostic methods are required for providing optimal care and symptom management. Deep learning techniques, particularly CNNs, have shown great promise in enhancing this diagnostic process. We aim to contribute to the ongoing research in this field by comparing the effectiveness of different CNN architectures and providing insights for future studies. Our methodology involved preprocessing MRI data, implementing multiple CNN architectures, and evaluating the performance of each model. We employed intensity normalization, linear registration, and skull stripping for our preprocessing. The selected architectures included VGG, ResNet, and DenseNet models, all implemented using the Keras library. We employed transfer learning and trained models from scratch to compare their effectiveness. Our findings demonstrated significant differences in performance among the tested architectures, with DenseNet201 achieving the highest accuracy of 86.4%. Transfer learning proved to be helpful in improving model performance. We also identified potential areas for future research, such as experimenting with other architectures, optimizing hyperparameters, and employing fine-tuning strategies. By providing a comprehensive analysis of the selected CNN architectures, we offer a solid foundation for future research in Alzheimer’s disease diagnosis using deep learning techniques. Our study highlights the potential of CNNs as a valuable diagnostic tool and emphasizes the importance of ongoing research to develop more accurate and effective models.

Keywords: Alzheimer’s disease, convolutional neural networks, deep learning, medical imaging, MRI

Procedia PDF Downloads 73
528 Off-Line Detection of "Pannon Wheat" Milling Fractions by Near-Infrared Spectroscopic Methods

Authors: E. Izsó, M. Bartalné-Berceli, Sz. Gergely, A. Salgó

Abstract:

The aims of this investigation is to elaborate near-infrared methods for testing and recognition of chemical components and quality in “Pannon wheat” allied (i.e. true to variety or variety identified) milling fractions as well as to develop spectroscopic methods following the milling processes and evaluate the stability of the milling technology by different types of milling products and according to sampling times, respectively. This wheat categories produced under industrial conditions where samples were collected versus sampling time and maximum or minimum yields. The changes of the main chemical components (such as starch, protein, lipid) and physical properties of fractions (particle size) were analysed by dispersive spectrophotometers using visible (VIS) and near-infrared (NIR) regions of the electromagnetic radiation. Close correlation were obtained between the data of spectroscopic measurement techniques processed by various chemometric methods (e.g. principal component analysis (PCA), cluster analysis (CA) and operation condition of milling technology. Its obvious that NIR methods are able to detect the deviation of the yield parameters and differences of the sampling times by a wide variety of fractions, respectively. NIR technology can be used in the sensitive monitoring of milling technology.

Keywords: near infrared spectroscopy, wheat categories, milling process, monitoring

Procedia PDF Downloads 406
527 An Intelligent Traffic Management System Based on the WiFi and Bluetooth Sensing

Authors: Hamed Hossein Afshari, Shahrzad Jalali, Amir Hossein Ghods, Bijan Raahemi

Abstract:

This paper introduces an automated clustering solution that applies to WiFi/Bluetooth sensing data and is later used for traffic management applications. The paper initially summarizes a number of clustering approaches and thereafter shows their performance for noise removal. In this context, clustering is used to recognize WiFi and Bluetooth MAC addresses that belong to passengers traveling by a public urban transit bus. The main objective is to build an intelligent system that automatically filters out MAC addresses that belong to persons located outside the bus for different routes in the city of Ottawa. The proposed intelligent system alleviates the need for defining restrictive thresholds that however reduces the accuracy as well as the range of applicability of the solution for different routes. This paper moreover discusses the performance benefits of the presented clustering approaches in terms of the accuracy, time and space complexity, and the ease of use. Note that results of clustering can further be used for the purpose of the origin-destination estimation of individual passengers, predicting the traffic load, and intelligent management of urban bus schedules.

Keywords: WiFi-Bluetooth sensing, cluster analysis, artificial intelligence, traffic management

Procedia PDF Downloads 241
526 Rural Sanitation in India: Special Context in the State of Odisa

Authors: Monalisha Ghosh, Asit Mohanty

Abstract:

The lack of sanitation increases living costs, decreases spend on education and nutrition, lowers income earning potential, and threatens safety and welfare. This is especially true for rural India. Only 32% of rural households have their own toilets and that less than half of Indian households have a toilet at home. Of the estimated billion people in the world who defecate in the open, more than half reside in rural India. It is empirically established that poor sanitation leads to high infant mortality rate and low income generation in rural India. In India, 1,600 children die every day before reaching their fifth birthday and 24% of girls drop out of school as the lack of basic sanitation. Above all, lack of sanitation is not a symptom of poverty but a major contributing factor. According to census 2011, 67.3% of the rural households in the country still did not have access to sanitation facilities. India’s sanitation deficit leads to losses worth roughly 6% of its gross domestic product (GDP) according to World Bank estimates by raising the disease burden in the country. The dropout rate for girl child is thirty percent in schools in rural areas because of lack of sanitation facilities for girl students. The productivity loss per skilled labors during a year is calculated at Rs.44, 160 in Odisha. The performance of the state of Odisha has not been satisfactory in improving sanitation facilities. The biggest challenge is triggering behavior change in vast section of rural population regarding need to use toilets. Another major challenge is funding and implementation for improvement of sanitation facility. In an environment of constrained economic resources, Public Private Partnership in form of performance based management or maintenance contract will be all the more relevant to improve the sanitation status in rural sector.

Keywords: rural sanitation, infant mortality rate, income, granger causality, pooled OLS method test public private partnership

Procedia PDF Downloads 420
525 Cluster Randomized Trial of 'Ready to Learn': An After-School Literacy Program for Children Starting School

Authors: Geraldine Macdonald, Oliver Perra, Nina O’Neill, Laura Neeson, Kathryn Higgins

Abstract:

Background: Despite improvements in recent years, almost one in six children in Northern Ireland (NI) leaves primary school without achieving the expected level in English and Maths. By early adolescence, this ratio is one in five. In 2010-11, around 9000 pupils in NI had failed to achieve the required standard in literacy and numeracy by the time they left full-time education. This paper reports the findings of an experimental evaluation of a programmed designed to improve educational outcomes of a cohort of children starting primary school in areas of high social disadvantage in Northern Ireland. The intervention: ‘Ready to Learn’ comprised two key components: a literacy-rich After School programme (one hour after school, three days per week), and a range of activities and support to promote the engagement of parents with their children’s learning, in school and at home. The intervention was delivered between September 2010 and August 2013. Study aims and objectives: The primary aim was to assess whether, and to what extent, ‘Ready to Learn’ improved the literacy of socially disadvantaged children entering primary schools compared with children in schools without access to the programme. Secondary aims included assessing the programme’s impact on children’s social, emotional and behavioural regulation, and parents’ engagement with their children’s learning. In total, 505 children (almost all) participated in the baseline assessment for the study, with good retention over seven sweeps of data collection. Study design: The intervention was evaluated by means of a cluster randomized trial, with schools as the unit of randomization and analysis. It included a qualitative component designed to examine process and implementation, and to explore the concept of parental engagement. Sixteen schools participated, with nine randomized to the experimental group. As well as outcome data relating to children, 134 semi-structured interviews were conducted with parents over the three years of the study, together with 88 interviews with school staff. Results: Given the children’s ages, not all measures used were direct measures of reading. Findings point to a positive impact of “Ready to Learn” on children’s reading achievement (comprehension and fluency), as assessed by the York Assessment of Reading Comprehension (YARC) and decoding, assessed using the Word Recognition and Phonic Skills (WRaPS3). Effects were not large, but evidence suggests that it is unusual for an after school programme to clearly to demonstrate effects on reading skills. No differences were found on three other measures of literacy-related skills: British Picture Vocabulary Scale (BPVS-II), Naming Speed and Non-word Reading Tests from the Phonological Assessment Battery (PhAB) or Concepts about Print (CAP) – the last due to an age-related ceiling effect). No differences were found between the two groups on measures of social, emotional and behavioural regulation, and due to low levels of participation, it was not possible directly to assess the contribution of the parent component to children’s outcomes. The qualitative data highlighted conflicting concepts of engagement between parents and school staff. Ready to Learn is a promising intervention that merits further support and evaluation.

Keywords: after-school, education, literacy, parental engagement

Procedia PDF Downloads 379
524 Existential Suffering in the Daily Lives of Those Living with Palliative Care Needs Arising from Chronic Obstructive Pulmonary Disease

Authors: Louise Elizabeth Bolton

Abstract:

Statement of the problem: There are an estimated 328 million cases of COPD worldwide. It is likely to become the third biggest cause of death by 2030. The impact of living with palliative care needs arising from COPD disrupts an individual’s existential situation. Understandings of individuals' existential situations within COPD are limited within the research literature and are rarely addressed within clinical practice, yet existential suffering has been linked to poor health-related quality of life for those living with other chronic conditions. The purpose of this integrative review is to provide a synthesis of existing evidence on existential suffering for those living with palliative care needs arising from COPD. Methods: This is an integrative review undertaken in accordance with PRISMA guidelines. Nine electronic databases were searched from April 2019 to January 2021. Thirty-five empirical research papers of both qualitative and quantitative methodologies, alongside systematic literature reviews, were included. Data analysis was undertaken using an integrative thematic analysis approach. Findings: Identified themes of existential suffering when living with palliative care needs arising from COPD are as follows: Liminality, Lamented Life, Loss of Personal Liberty, Life Meaning and Existential isolation. The absence of life meaning and purpose was of most importance to patients. Conclusion and Significance: This integrative review provides a synthesis of international evidence upon the presence of existential suffering. It is present and of significant impact within the daily lives of those living with palliative care needs arising from COPD. The absence of life meaning has the most significant impact, requiring further exploration of both its physical and psychological impact. Rediscovery of life meaning diminishes feelings of worthlessness and hopelessness in daily life and facilitates feelings of inner peace. For those with COPD living with such a relentless symptom burden, a positive existential situation is desirable.

Keywords: palliative care, COPD, existential suffering, end of life care

Procedia PDF Downloads 135
523 Lycopene and β-Carotene Variation among Genetically Diverse Momordica cochinchinensis

Authors: Dilani Wimalasiri, Robert Brkljaca, Sylvia Urban, Terrence Piva, Tien Huynh

Abstract:

Momordica cochinchinensis (Cucurbitaceae) is used as food and traditional medicine in South East Asia and is commonly known as Red Gac. The fruit aril consists 70 times higher lycopene and 10 times higher β-carotene than all known fruits and vegetables. Despite its nutritional value there is little information available on its genetic variation and its influence on nutritional value. In this study; genetic and nutritional variation (lycopene and β-carotene) was investigated among 47 M. cochinchinensis samples collected from Australia, Thailand and Vietnam using molecular markers (RAPD and ISSR) and HPLC, respectively. UPGMA based cluster analysis of genetic data grouped Northern and Central Vietnam samples together but were separated from Australia, Thailand and Southern Vietnam samples. The concentration of lycopene was significantly higher among the samples collected from Central Vietnam (p<0.05) and the concentration of β-carotene was significantly higher among the samples collected from Northern Vietnam (p<0.05) indicating the existence of best varieties. This study provides vital information in genetic diversity and facilitates the selection and breeding for nutritious M. cochinchinensis varieties.

Keywords: momordica cochinchinensis, lycopene, beta carotene, genetic diversity

Procedia PDF Downloads 505
522 Large-Scale Simulations of Turbulence Using Discontinuous Spectral Element Method

Authors: A. Peyvan, D. Li, J. Komperda, F. Mashayek

Abstract:

Turbulence can be observed in a variety fluid motions in nature and industrial applications. Recent investment in high-speed aircraft and propulsion systems has revitalized fundamental research on turbulent flows. In these systems, capturing chaotic fluid structures with different length and time scales is accomplished through the Direct Numerical Simulation (DNS) approach since it accurately simulates flows down to smallest dissipative scales, i.e., Kolmogorov’s scales. The discontinuous spectral element method (DSEM) is a high-order technique that uses spectral functions for approximating the solution. The DSEM code has been developed by our research group over the course of more than two decades. Recently, the code has been improved to run large cases in the order of billions of solution points. Running big simulations requires a considerable amount of RAM. Therefore, the DSEM code must be highly parallelized and able to start on multiple computational nodes on an HPC cluster with distributed memory. However, some pre-processing procedures, such as determining global element information, creating a global face list, and assigning global partitioning and element connection information of the domain for communication, must be done sequentially with a single processing core. A separate code has been written to perform the pre-processing procedures on a local machine. It stores the minimum amount of information that is required for the DSEM code to start in parallel, extracted from the mesh file, into text files (pre-files). It packs integer type information with a Stream Binary format in pre-files that are portable between machines. The files are generated to ensure fast read performance on different file-systems, such as Lustre and General Parallel File System (GPFS). A new subroutine has been added to the DSEM code to read the startup files using parallel MPI I/O, for Lustre, in a way that each MPI rank acquires its information from the file in parallel. In case of GPFS, in each computational node, a single MPI rank reads data from the file, which is specifically generated for the computational node, and send them to other ranks on the node using point to point non-blocking MPI communication. This way, communication takes place locally on each node and signals do not cross the switches of the cluster. The read subroutine has been tested on Argonne National Laboratory’s Mira (GPFS), National Center for Supercomputing Application’s Blue Waters (Lustre), San Diego Supercomputer Center’s Comet (Lustre), and UIC’s Extreme (Lustre). The tests showed that one file per node is suited for GPFS and parallel MPI I/O is the best choice for Lustre file system. The DSEM code relies on heavily optimized linear algebra operation such as matrix-matrix and matrix-vector products for calculation of the solution in every time-step. For this, the code can either make use of its matrix math library, BLAS, Intel MKL, or ATLAS. This fact and the discontinuous nature of the method makes the DSEM code run efficiently in parallel. The results of weak scaling tests performed on Blue Waters showed a scalable and efficient performance of the code in parallel computing.

Keywords: computational fluid dynamics, direct numerical simulation, spectral element, turbulent flow

Procedia PDF Downloads 133
521 Quantitative Texture Analysis of Shoulder Sonography for Rotator Cuff Lesion Classification

Authors: Chung-Ming Lo, Chung-Chien Lee

Abstract:

In many countries, the lifetime prevalence of shoulder pain is up to 70%. In America, the health care system spends 7 billion per year about the healthy issues of shoulder pain. With respect to the origin, up to 70% of shoulder pain is attributed to rotator cuff lesions This study proposed a computer-aided diagnosis (CAD) system to assist radiologists classifying rotator cuff lesions with less operator dependence. Quantitative features were extracted from the shoulder ultrasound images acquired using an ALOKA alpha-6 US scanner (Hitachi-Aloka Medical, Tokyo, Japan) with linear array probe (scan width: 36mm) ranging from 5 to 13 MHz. During examination, the postures of the examined patients are standard sitting position and are followed by the regular routine. After acquisition, the shoulder US images were drawn out from the scanner and stored as 8-bit images with pixel value ranging from 0 to 255. Upon the sonographic appearance, the boundary of each lesion was delineated by a physician to indicate the specific pattern for analysis. The three lesion categories for classification were composed of 20 cases of tendon inflammation, 18 cases of calcific tendonitis, and 18 cases of supraspinatus tear. For each lesion, second-order statistics were quantified in the feature extraction. The second-order statistics were the texture features describing the correlations between adjacent pixels in a lesion. Because echogenicity patterns were expressed via grey-scale. The grey-scale co-occurrence matrixes with four angles of adjacent pixels were used. The texture metrics included the mean and standard deviation of energy, entropy, correlation, inverse different moment, inertia, cluster shade, cluster prominence, and Haralick correlation. Then, the quantitative features were combined in a multinomial logistic regression classifier to generate a prediction model of rotator cuff lesions. Multinomial logistic regression classifier is widely used in the classification of more than two categories such as the three lesion types used in this study. In the classifier, backward elimination was used to select a feature subset which is the most relevant. They were selected from the trained classifier with the lowest error rate. Leave-one-out cross-validation was used to evaluate the performance of the classifier. Each case was left out of the total cases and used to test the trained result by the remaining cases. According to the physician’s assessment, the performance of the proposed CAD system was shown by the accuracy. As a result, the proposed system achieved an accuracy of 86%. A CAD system based on the statistical texture features to interpret echogenicity values in shoulder musculoskeletal ultrasound was established to generate a prediction model for rotator cuff lesions. Clinically, it is difficult to distinguish some kinds of rotator cuff lesions, especially partial-thickness tear of rotator cuff. The shoulder orthopaedic surgeon and musculoskeletal radiologist reported greater diagnostic test accuracy than general radiologist or ultrasonographers based on the available literature. Consequently, the proposed CAD system which was developed according to the experiment of the shoulder orthopaedic surgeon can provide reliable suggestions to general radiologists or ultrasonographers. More quantitative features related to the specific patterns of different lesion types would be investigated in the further study to improve the prediction.

Keywords: shoulder ultrasound, rotator cuff lesions, texture, computer-aided diagnosis

Procedia PDF Downloads 284
520 Revisiting High School Students’ Learning Styles in English Subject

Authors: Aroona Hashmi

Abstract:

The prime motive for this endeavor was to explore the tenth grade English class students’ preferred learning styles studying in government secondary school so that English subject teachers could tailor their pedagogical strategies in relation to their students learning needs. The further aim of this study was to identify any significance difference among the students on a gender basis, area basis and different categories of school basis. The population of this study consisting of all the secondary level schools working in the government sector and positioned in the province of Punjab. The multi-stage cluster sampling method was employed while selecting the study sample from the population. The scale used for the identification of students’ learning styles in this study was developed by Grasha-Riechmann. The data collected through learning style scale was analyzed by employing descriptive statistics technique. The results from data analysis depict that learning styles of the majority of students found to be Collaborative and Competitive. Overall, no considerable difference was surfaced between male-female, urban-rural, general-other categories of 10th grade English class students learning styles.

Keywords: learning style, learning style scale, grade, government sector

Procedia PDF Downloads 341
519 The Importance of Functioning and Disability Status Follow-Up in People with Multiple Sclerosis

Authors: Sanela Slavkovic, Congor Nad, Spela Golubovic

Abstract:

Background: The diagnosis of multiple sclerosis (MS) is a major life challenge and has repercussions on all aspects of the daily functioning of those attained by it – personal activities, social participation, and quality of life. Regular follow-up of only the neurological status is not informative enough so that it could provide data on the sort of support and rehabilitation that is required. Objective: The aim of this study was to establish the current level of functioning of persons attained by MS and the factors that influence it. Methods: The study was conducted in Serbia, on a sample of 108 persons with relapse-remitting form of MS, aged 20 to 53 (mean 39.86 years; SD 8.20 years). All participants were fully ambulatory. Methods applied in the study include Expanded Disability Status Scale-EDSS and World Health Organization Disability Assessment Schedule, WHODAS 2.0 (36-item version, self-administered). Results: Participants were found to experience the most problems in the domains of Participation, Mobility, Life activities and Cognition. The least difficulties were found in the domain of Self-care. Symptom duration was the only control variable with a significant partial contribution to the prediction of the WHODAS scale score (β=0.30, p < 0.05). The total EDSS score correlated with the total WHODAS 2.0 score (r=0.34, p=0.00). Statistically significant differences in the domain of EDSS 0-5.5 were found within categories (0-1.5; 2-3.5; 4-5.5). The more pronounced a participant’s EDSS score was, although not indicative of large changes in the neurological status, the more apparent the changes in the functional domain, i.e. in all areas covered by WHODAS 2.0. Pyramidal (β=0.34, p < 0.05) and Bowel and bladder (β=0.24, p < 0.05) functional systems were found to have a significant partial contribution to the prediction of the WHODAS score. Conclusion: Measuring functioning and disability is important in the follow-up of persons suffering from MS in order to plan rehabilitation and define areas in which additional support is needed.

Keywords: disability, functionality, multiple sclerosis, rehabilitation

Procedia PDF Downloads 121
518 Effect of Aging Time on CeO2 Nanoparticle Size Distribution Synthesized via Sol-Gel Method

Authors: Navid Zanganeh, Hafez Balavi, Farbod Sharif, Mahla Zabet, Marzieh Bakhtiary Noodeh

Abstract:

Cerium oxide (CeO2) also known as cerium dioxide or ceria is a pale yellow-white powder with various applications in the industry from wood coating to cosmetics, filtration, fuel cell electrolytes, gas sensors, hybrid solar cells and catalysts. In this research, attempts were made to synthesize and characterization of CeO2 nano-particles via sol-gel method. In addition, the effect of aging time on the size of particles was investigated. For this purpose, the aging times adjusted 48, 56, 64, and 72 min. The obtained particles were characterized by x-ray diffraction spectroscopy (XRD), scanning electron microscopy (SEM), transmitted electron microscopy (TEM), and Brunauer–Emmett–Teller (BET). As a result, XRD patterns confirmed the formation of CeO2 nanoparticles. SEM and TEM images illustrated the nano-particles with cluster shape, spherical and a nano-size range which was in agreement with XRD results. The finest particles (7.3 nm) was obtained at the optimum condition which was aging time of 48 min, calcination temperature at 400 ⁰C, and cerium concentration of 0.004 mol. Average specific surface area of the particles at optimum condition was measured by BET analysis and recorded as 47.57 m2/g.

Keywords: aging time, CeO2 nanoparticles, size distribution, sol-gel

Procedia PDF Downloads 456
517 Shifting Contexts and Shifting Identities: Campus Race-related Experiences, Racial Identity, and Achievement Motivation among Black College Students during the Transition to College

Authors: Tabbye Chavous, Felecia Webb, Bridget Richardson, Gloryvee Fonseca-Bolorin, Seanna Leath, Robert Sellers

Abstract:

There has been recent renewed attention to Black students’ experiences at predominantly White U.S. universities (PWIs), e.g., the #BBUM (“Being Black at the University of Michigan”), “I too am Harvard” social media campaigns, and subsequent student protest activities nationwide. These campaigns illuminate how many minority students encounter challenges to their racial/ethnic identities as they enter PWI contexts. Students routinely report experiences such as being ignored or treated as a token in classes, receiving messages of low academic expectations by faculty and peers, being questioned about their academic qualifications or belonging, being excluded from academic and social activities, and being racially profiled and harassed in the broader campus community due to race. Researchers have linked such racial marginalization and stigma experiences to student motivation and achievement. One potential mechanism is through the impact of college experiences on students’ identities, given the relevance of the college context for students’ personal identity development, including personal beliefs systems around social identities salient in this context. However, little research examines the impact of the college context on Black students’ racial identities. This study examined change in Black college students’ (N=329) racial identity beliefs over the freshman year at three predominantly White U.S. universities. Using cluster analyses, we identified profile groups reflecting different patterns of stability and change in students’ racial centrality (importance of race to overall self-concept), private regard (personal group affect/group pride), and public regard (perceptions of societal views of Blacks) from beginning of year (Time 1) to end of year (Time 2). Multinomial logit regression analyses indicated that the racial identity change clusters were predicted by pre-college background (racial composition of high school and neighborhood), as well as college-based experiences (racial discrimination, interracial friendships, and perceived campus racial climate). In particular, experiencing campus racial discrimination related to high, stable centrality, and decreases in private regard and public regard. Perceiving racial climates norms of institutional support for intergroup interactions on campus related to maintaining low and decreasing in private and public regard. Multivariate Analyses of Variance results showed change cluster effects on achievement motivation outcomes at the end of students’ academic year. Having high, stable centrality and high private regard related to more positive outcomes overall (academic competence, positive academic affect, academic curiosity and persistence). Students decreasing in private regard and public regard were particularly vulnerable to negative motivation outcomes. Findings support scholarship indicating both stability in racial identity beliefs and the importance of critical context transitions in racial identity development and adjustment outcomes among emerging adults. Findings also are consistent with research suggesting promotive effects of a strong, positive racial identity on student motivation, as well as research linking awareness of racial stigma to decreased academic engagement.

Keywords: diversity, motivation, learning, ethnic minority achievement, higher education

Procedia PDF Downloads 517
516 Steel Dust as a Coating Agent for Iron Ore Pellets at Ironmaking

Authors: M. Bahgat, H. Hanafy, H. Al-Tassan

Abstract:

Cluster formation is an essential phenomenon during direct reduction processes at shaft furnaces. Decreasing the reducing temperature to avoid this problem can cause a significant drop in throughput. In order to prevent sticking of pellets, a coating material basically inactive under the reducing conditions prevailing in the shaft furnace, should be applied to cover the outer layer of the pellets. In the present work, steel dust is used as coating material for iron ore pellets to explore dust coating effectiveness and determines the best coating conditions. Steel dust coating is applied for iron ore pellets in various concentrations. Dust slurry concentrations of 5.0-30% were used to have a coated steel dust amount of 1.0-5.0 kg per ton iron ore. Coated pellets with various concentrations were reduced isothermally in weight loss technique with simulated gas mixture to the composition of reducing gases at shaft furnaces. The influences of various coating conditions on the reduction behavior and the morphology were studied. The optimum reduced samples were comparatively applied for sticking index measurement. It was found that the optimized steel dust coating condition that achieve higher reducibility with lower sticking index was 30% steel dust slurry concentration with 3.0 kg steel dust/ton ore.

Keywords: reduction, ironmaking, steel dust, coating

Procedia PDF Downloads 302
515 Analyzing and Predicting the CL-20 Detonation Reaction Mechanism Based on Artificial Intelligence Algorithm

Authors: Kaining Zhang, Lang Chen, Danyang Liu, Jianying Lu, Kun Yang, Junying Wu

Abstract:

In order to solve the problem of a large amount of simulation and limited simulation scale in the first-principle molecular dynamics simulation of energetic material detonation reaction, we established an artificial intelligence model for analyzing and predicting the detonation reaction mechanism of CL-20 based on the first-principle molecular dynamics simulation of the multiscale shock technique (MSST). We employed principal component analysis to identify the dominant charge features governing molecular reactions. We adopted the K-means clustering algorithm to cluster the reaction paths and screen out the key reactions. We introduced the neural network algorithm to construct the mapping relationship between the charge characteristics of the molecular structure and the key reaction characteristics so as to establish a calculation method for predicting detonation reactions based on the charge characteristics of CL-20 and realize the rapid analysis of the reaction mechanism of energetic materials.

Keywords: energetic material detonation reaction, first-principle molecular dynamics simulation of multiscale shock technique, neural network, CL-20

Procedia PDF Downloads 113
514 Prevalence of Metabolic Syndrome According to Different Criteria in Population over 20 Years Old in Ahvaz

Authors: Armaghan Moravej Aleali, Hajieh Shahbazian, Seyed Mahmoud Latifi, Leila Yazdanpanah

Abstract:

Objective: Metabolic syndrome or insulin resistance syndrome or syndrome X is a collection of abdominal obesity, hypertension, glucose intolerance and lipid abnormalities (elevated triglycerides, elevated LDL, and decrease the amount of HDL). That increases the incidence of diabetes and risk of cardiovascular disease. The aim of this study is to investigate the prevalence of metabolic syndrome in people over 20 years of Ahvaz according to IDF, ATPIII, Harmonized I and Harmonized II. Material & Methods: A cross-sectional study with a random cluster sampling in six health centers in Ahvaz was done. After obtaining informed consent, questionnaire for each person filled up including demographic data and examinations, including blood pressure in sitting position, weight, height, waist circumference, and waist circumference measurement. Results: From all participating 912 people, (434 (2/47%) male and 478 (2/52%) female) were evaluated. Mean age was 42/27± 14years (44/2±14/26 for male and 40/5±13/5 for female). Prevalence of metabolic syndrome was 22/8%, 28/4%, 30/9% and 16/9% according to ATPIII, IDF, Harmonized I and Harmonized II criteria respectively and increased with age in both sexes. IDF and Harmonized I had most kappa coordination (0/94). Conclusion: The results show a high prevalence of metabolic syndrome in Ahvaz. So, identification of the risk factors should be attempted to prevent metabolic syndrome.

Keywords: metabolic syndrome, IDF, ATP III, prevalence

Procedia PDF Downloads 579
513 The Effect of "Trait" Variance of Personality on Depression: Application of the Trait-State-Occasion Modeling

Authors: Pei-Chen Wu

Abstract:

Both preexisting cross-sectional and longitudinal studies of personality-depression relationship have suffered from one main limitation: they ignored the stability of the construct of interest (e.g., personality and depression) can be expected to influence the estimate of the association between personality and depression. To address this limitation, the Trait-State-Occasion (TSO) modeling was adopted to analyze the sources of variance of the focused constructs. A TSO modeling was operated by partitioning a state variance into time-invariant (trait) and time-variant (occasion) components. Within a TSO framework, it is possible to predict change on the part of construct that really changes (i.e., time-variant variance), when controlling the trait variances. 750 high school students were followed for 4 waves over six-month intervals. The baseline data (T1) were collected from the senior high schools (aged 14 to 15 years). Participants were given Beck Depression Inventory and Big Five Inventory at each assessment. TSO modeling revealed that 70~78% of the variance in personality (five constructs) was stable over follow-up period; however, 57~61% of the variance in depression was stable. For personality construct, there were 7.6% to 8.4% of the total variance from the autoregressive occasion factors; for depression construct there were 15.2% to 18.1% of the total variance from the autoregressive occasion factors. Additionally, results showed that when controlling initial symptom severity, the time-invariant components of all five dimensions of personality were predictive of change in depression (Extraversion: B= .32, Openness: B = -.21, Agreeableness: B = -.27, Conscientious: B = -.36, Neuroticism: B = .39). Because five dimensions of personality shared some variance, the models in which all five dimensions of personality were simultaneous to predict change in depression were investigated. The time-invariant components of five dimensions were still significant predictors for change in depression (Extraversion: B = .30, Openness: B = -.24, Agreeableness: B = -.28, Conscientious: B = -.35, Neuroticism: B = .42). In sum, the majority of the variability of personality was stable over 2 years. Individuals with the greater tendency of Extraversion and Neuroticism have higher degrees of depression; individuals with the greater tendency of Openness, Agreeableness and Conscientious have lower degrees of depression.

Keywords: assessment, depression, personality, trait-state-occasion model

Procedia PDF Downloads 176
512 Improve Student Performance Prediction Using Majority Vote Ensemble Model for Higher Education

Authors: Wade Ghribi, Abdelmoty M. Ahmed, Ahmed Said Badawy, Belgacem Bouallegue

Abstract:

In higher education institutions, the most pressing priority is to improve student performance and retention. Large volumes of student data are used in Educational Data Mining techniques to find new hidden information from students' learning behavior, particularly to uncover the early symptom of at-risk pupils. On the other hand, data with noise, outliers, and irrelevant information may provide incorrect conclusions. By identifying features of students' data that have the potential to improve performance prediction results, comparing and identifying the most appropriate ensemble learning technique after preprocessing the data, and optimizing the hyperparameters, this paper aims to develop a reliable students' performance prediction model for Higher Education Institutions. Data was gathered from two different systems: a student information system and an e-learning system for undergraduate students in the College of Computer Science of a Saudi Arabian State University. The cases of 4413 students were used in this article. The process includes data collection, data integration, data preprocessing (such as cleaning, normalization, and transformation), feature selection, pattern extraction, and, finally, model optimization and assessment. Random Forest, Bagging, Stacking, Majority Vote, and two types of Boosting techniques, AdaBoost and XGBoost, are ensemble learning approaches, whereas Decision Tree, Support Vector Machine, and Artificial Neural Network are supervised learning techniques. Hyperparameters for ensemble learning systems will be fine-tuned to provide enhanced performance and optimal output. The findings imply that combining features of students' behavior from e-learning and students' information systems using Majority Vote produced better outcomes than the other ensemble techniques.

Keywords: educational data mining, student performance prediction, e-learning, classification, ensemble learning, higher education

Procedia PDF Downloads 107
511 Plant as an Alternative for Anti Depressant Drugs St John's Wort

Authors: Mahdi Akhbardeh

Abstract:

St John's wort plant can help to treat depression disease through decreasing this disease symptom, due to having some similar features of Prozac (Fluoxetine Hcl) pill. People suffering from slight depression who have fear of using antidepressants side effects can use St John's wort drops under doctor observation. This method of treatment is proposed specially to those women who are spending menopause or depression resulted from this period. St John's wort plant have proposed traditional and plant medicine as newest researches in treating mood disorders compared to Prozac (Fluoxetine Hcl) drug in treating depression disease which is being administrated in clinic research center of Washington. Objective: the aim of this study is to find an alternative treatment method in people suffering from depression which are treated with Prozac (Fluoxetine Hcl). Almost 70 percent of treatment failures with Prozac (Fluoxetine Hcl) drug in patients suffering from slight to normal depression is due to intensive side effects including: decrease in blood pressure, reduce in sexual desire and 30 percent of it is due to this drug affectless in treatment procedure which leads to leaving treatment. Results of Hypercuim plant function are exactly similar to antidepressants. Increase in serotonin amount in brain synopsis terminal end causes increase in existence time of this material in this part. In fact these two drugs have similar function. Though side effects of Hypercuim plant(St John's wort) including headache and slight nausea tolerable. Results: St John's wort plant can be used lonely in slight to normal depressions in which patients are avoiding Prozac (Fluoxetine Hcl) drug due to it's side effects. In intensive depressions through which general patients don’t indicate positive response to drug, it is probably expected relative or even complete treatment through combining antidepressants drugs with this plant. This treatment method has been investigated and confirmed in clinical tests and researches.

Keywords: depression, St John's wort, Prozac, antidepressant

Procedia PDF Downloads 488
510 The Electrophysiology Study Results in Patients with Guillain Barre Syndrome (GBS): A Retrospective Study in a TertiaryHospital in Cebu City, Philippines

Authors: Dyna Ann C. Sevilles, Noel J. Belonguel, Jarungchai Anton S. Vatanagul, Mary Jeanne O. Flordelis, Grace G. Anota

Abstract:

Guillain Barre syndrome is an acute inflammatory polyradiculoneuropathy causing progressive symmetrical weakness which can be debilitating to the patient. Early diagnosis is important especially in the acute phase when treatment favors good outcome and reduces the incidence of the need for mechanical ventilation. Electrodiagnostic studies aid in the evaluation of patients suspected with GBS. However, the characteristic electrical changes may not be evident until after several weeks. Thus, studies performed early in the course may give unclear results. The aim of this study is to associate the symptom onset of patients diagnosed with Guillain Barre syndrome with the EMG NCV results and determine the earliest time when there is evident findings supporting the diagnosis. This is a retrospective descriptive chart review study involving patients of >/= 18 years of age with GBS written on their charts in a Tertiaty hospital in Cebu City, Philippines from January 2000 to July 2014. Twenty patients showed electrodiagnostic findings suggestive of GBS. The mean day of illness when EMG NCV was carried out was 7 days. The earliest with suggestive findings was done on day 2 (10%) of illness. Moreover, the highest frequency with positive results was done on day 3 (20%) of illness. Based on the Dutch Guillain Barre Study group criteria, the most frequent variables noted were: prolonged distal motor latency in both median and ulnar nerves(65%) and both peroneal and tibial nerves (71%); and reduced CMAP in both median and ulnar nerves (65%) and both tibial and peroneal nerves (71%). The EMG NCV findings showed majority of demyelinating type (59%). Electrodiagnostic studies are helpful in aiding the physician in the diagnosis and treatment of the disease in the early stage. Based on this study, neurophysiologic evidence of GBS can be seen in as early as day 2 of clinical illness.

Keywords: Acute Inflammatory Demyelinating Polyneuropathy, electrophysiologic study, EMG NCV, Guillain Barre Syndrome

Procedia PDF Downloads 287
509 The Relationship between Body Esteem and Self-Esteem with Sport-Confidence Students

Authors: Saeid Motevalli, Siti Fatimah Azzahrah Binti Abd Mutalib, Mohd Sahandri Ghani Hamzah, Hazalizah Hamzah

Abstract:

The main purpose of the present study was to investigate the relationship between body esteem and self-esteem with sport-confidence among university students. This study was conducted by using the descriptive and correlational study design. Meanwhile, the method involved in this study was the online survey method. The population of the sample are mainly Universiti Pendidikan Sultan Idris (UPSI) students only which 120 participants were selected by cluster sampling method from two faculties named Fakulti Pembangunan Manusia (FPM) and Fakulti Sains Sukan dan Kejurulatihan (FSSKJ). The instrument used in this study was The Body-Esteem Scale (BES) by Franzoi and Shields (1984), Rosenberg Self-Esteem Scale (RSES) by Rosenberg (1965) and the Vealey’s Trait Sport-Confidence Inventory (TSCI) by (Vealey, 1986). The results of the Pearson product-moment correlation coefficient showed that there was a positive and moderate correlation between students’ body-esteem and sport-confidence and a negative and low correlation between students’ self-esteem and sport-confidence. Likewise, based on the entry method used all two predictor variables were significant in explaining sport confidence among UPSI students. In conclusion, it can be said that students’ sport-confidence affected by students’ self-esteem and body-esteem.

Keywords: body esteem, self-esteem, sport-confidence, students

Procedia PDF Downloads 149
508 Knowledge Transfer in Industrial Clusters

Authors: Ana Paula Lisboa Sohn, Filipa Dionísio Vieria, Nelson Casarotto, Idaulo José Cunha

Abstract:

This paper aims at identifying and analyzing the knowledge transmission channels in textile and clothing clusters located in Brazil and in Europe. Primary data was obtained through interviews with key individuals. The collection of primary data was carried out based on a questionnaire with ten categories of indicators of knowledge transmission. Secondary data was also collected through a literature review and through international organizations sites. Similarities related to the use of the main transmission channels of knowledge are observed in all cases. The main similarities are: influence of suppliers of machinery, equipment and raw materials; imitation of products and best practices; training promoted by technical institutions and businesses; and cluster companies being open to acquire new knowledge. The main differences lie in the relationship between companies, where in Europe the intensity of this relationship is bigger when compared to Brazil. The differences also occur in importance and frequency of the relationship with the government, with the cultural environment, and with the activities of research and development. It is also found factors that reduce the importance of geographical proximity in transmission of knowledge, and in generating trust and the establishment of collaborative behavior.

Keywords: industrial clusters, interorganizational learning, knowledge transmission channels, textile and clothing industry

Procedia PDF Downloads 366
507 An Improved K-Means Algorithm for Gene Expression Data Clustering

Authors: Billel Kenidra, Mohamed Benmohammed

Abstract:

Data mining technique used in the field of clustering is a subject of active research and assists in biological pattern recognition and extraction of new knowledge from raw data. Clustering means the act of partitioning an unlabeled dataset into groups of similar objects. Each group, called a cluster, consists of objects that are similar between themselves and dissimilar to objects of other groups. Several clustering methods are based on partitional clustering. This category attempts to directly decompose the dataset into a set of disjoint clusters leading to an integer number of clusters that optimizes a given criterion function. The criterion function may emphasize a local or a global structure of the data, and its optimization is an iterative relocation procedure. The K-Means algorithm is one of the most widely used partitional clustering techniques. Since K-Means is extremely sensitive to the initial choice of centers and a poor choice of centers may lead to a local optimum that is quite inferior to the global optimum, we propose a strategy to initiate K-Means centers. The improved K-Means algorithm is compared with the original K-Means, and the results prove how the efficiency has been significantly improved.

Keywords: microarray data mining, biological pattern recognition, partitional clustering, k-means algorithm, centroid initialization

Procedia PDF Downloads 190
506 Molecular Modeling of 17-Picolyl and 17-Picolinylidene Androstane Derivatives with Anticancer Activity

Authors: Sanja Podunavac-Kuzmanović, Strahinja Kovačević, Lidija Jevrić, Evgenija Djurendić, Jovana Ajduković

Abstract:

In the present study, the molecular modeling of a series of 24 17-picolyl and 17-picolinylidene androstane derivatives whit significant anticancer activity was carried out. Modelling of studied compounds was performed by CS ChemBioDraw Ultra v12.0 program for drawing 2D molecular structures and CS ChemBio3D Ultra v12.0 for 3D molecular modelling. The obtained 3D structures were subjected to energy minimization using molecular mechanics force field method (MM2). The cutoff for structure optimization was set at a gradient of 0.1 kcal/Åmol. Full geometry optimization was done by the Austin Model 1 (AM1) until the root mean square (RMS) gradient reached a value smaller than 0.0001 kcal/Åmol using Molecular Orbital Package (MOPAC) program. The obtained physicochemical, lipophilicity and topological descriptors were used for analysis of molecular similarities and dissimilarities applying suitable chemometric methods (principal component analysis and cluster analysis). These results are the part of the project No. 114-451-347/2015-02, financially supported by the Provincial Secretariat for Science and Technological Development of Vojvodina and CMST COST Action CM1306.

Keywords: androstane derivatives, anticancer activity, chemometrics, molecular descriptors

Procedia PDF Downloads 361
505 A Bibliometric Assessment of the Nexus Between Corporate Social Responsibility and Sustainable Development

Authors: Trilochana Dash, Chandan Kumar Sahoo

Abstract:

In today's environment of intensive industrialization, the role of business in societal modernization is critical. The concept of corporate social responsibility (CSR) arose due to rising societal awareness of company conduct. Corporations that practice CSR devote a portion of their profits to society’s sustainable development (SD). The concept of CSR and SD has increased the impact of industries on society. In this study, bibliometric analysis was conducted using the “R” programming language to determine the comprehensiveness of CSR and SD. From 2003 to 2022, bibliometric data was collected from two databases: Scopus and Web of Science (WOS). According to the findings, CSR and SD research has risen exponentially in the past two decades, and “Corporate Social Responsibility and Environment Management” emerged as the most influential journal in this field. The findings also show that relatively very few researchers collaborate in CSR and SD research in the last twenty years. It is widely acknowledged that most CSR and SD research is conducted in developed countries and developing countries undergoing fast industrialization. Thematic evolution and cluster analysis clearly show that the notion of CSR and SD among scholars has been quite popular over the last two decades. Finally, limitations and future directions are discussed.

Keywords: corporate social responsibility, sustainable development, bibliometric analysis, “R” programming language, visualization, holistic picture

Procedia PDF Downloads 84
504 Global City Typologies: 300 Cities and Over 100 Datasets

Authors: M. Novak, E. Munoz, A. Jana, M. Nelemans

Abstract:

Cities and local governments the world over are interested to employ circular strategies as a means to bring about food security, create employment and increase resilience. The selection and implementation of circular strategies is facilitated by modeling the effects of strategies locally and understanding the impacts such strategies have had in other (comparable) cities and how that would translate locally. Urban areas are heterogeneous because of their geographic, economic, social characteristics, governance, and culture. In order to better understand the effect of circular strategies on urban systems, we create a dataset for over 300 cities around the world designed to facilitate circular strategy scenario modeling. This new dataset integrates data from over 20 prominent global national and urban data sources, such as the Global Human Settlements layer and International Labour Organisation, as well as incorporating employment data from over 150 cities collected bottom up from local departments and data providers. The dataset is made to be reproducible. Various clustering techniques are explored in the paper. The result is sets of clusters of cities, which can be used for further research, analysis, and support comparative, regional, and national policy making on circular cities.

Keywords: data integration, urban innovation, cluster analysis, circular economy, city profiles, scenario modelling

Procedia PDF Downloads 180
503 Yoga Offers Protection for Premenstrual Syndrome

Authors: Katalin Gocze, Vanda A Nemes, Charlotte Briest

Abstract:

Introduction: Premenstrual syndrome (PMS) is a psychoneuroendocrinological disorder adversely affecting life-quality for over 80% of hormonally active women. PMS has a negative impact on women’s daily life in terms of work, interpersonal relationships and leisure time activities. The aim of our study was to evaluate the effects of a yoga intervention focusing on the female pelvic area. Materials and methods: 34 women (ages 18-40) with PMS (Premenstrual Syndrome Screening Tool) and no previous experience in yoga were recruited and randomly assigned to either the yoga or the control group. The intervention consisted of 90’ yoga sessions twice a week and a daily 15’ self-practice module with carefully chosen yogic exercises addressing the reproductive organs by toning the pelvic floor and opening the hips as well as relieving stress and improving concentration. Severity of symptoms of PMS was assessed at the beginning and after the 8-week-long intervention. Pre- and post-program data collection included physical and psychological parameters and the evaluation of ACOQ PMS questionnaire and daily symptom diary. Results: Age and educational background were similar in the control and intervention group with an overall mean age of 29.11±4.78 years. PSST scores significantly improved in the yoga group (p=0.002), while difference in the control group’s pre and post-program values were non-significant (p=0.38). Perception and tolerance of anxiety and stress was significantly better after the intervention (p=0.008). As for changes in physical symptoms distinct improvement was registered for breast tenderness (p=0.028) and for meteorism (p=0.015). Discussion: Yoga’s success originates from the synergic positive effects of stress relief and regular physical activity. Benefits (both mental and physical) of strategically planned, focused yoga practice are apparent even after shorter time periods and can help women with PMS manage or eliminate symptoms in order to improve their life-quality.

Keywords: life-quality, physical symptoms, premenstrual syndrome, psychological impact, yoga

Procedia PDF Downloads 117