Search results for: reducing waste
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5925

Search results for: reducing waste

5295 Environment Management Practices at Oil and Natural Gas Corporation Hazira Gas Processing Complex

Authors: Ashish Agarwal, Vaibhav Singh

Abstract:

Harmful emissions from oil and gas processing facilities have long remained a matter of concern for governments and environmentalists throughout the world. This paper analyses Oil and Natural Gas Corporation (ONGC) gas processing plant in Hazira, Gujarat, India. It is the largest gas-processing complex in the country designed to process 41MMSCMD sour natural gas & associated sour condensate. The complex, sprawling over an area of approximate 705 hectares is the mother plant for almost all industries at Hazira and enroute Hazira Bijapur Jagdishpur pipeline. Various sources of pollution from each unit starting from Gas Terminal to Dew Point Depression unit and Caustic Wash unit along the processing chain were examined with the help of different emission data obtained from ONGC. Pollution discharged to the environment was classified into Water, Air, Hazardous Waste and Solid (Non-Hazardous) Waste so as to analyze each one of them efficiently. To protect air environment, Sulphur recovery unit along with automatic ambient air quality monitoring stations, automatic stack monitoring stations among numerous practices were adopted. To protect water environment different effluent treatment plants were used with due emphasis on aquaculture of the nearby area. Hazira plant has obtained the authorization for handling and disposal of five types of hazardous waste. Most of the hazardous waste were sold to authorized recyclers and the rest was given to Gujarat Pollution Control Board authorized vendors. Non-Hazardous waste was also handled with an overall objective of zero negative impact on the environment. The effect of methods adopted is evident from emission data of the plant which was found to be well under Gujarat Pollution Control Board limits.

Keywords: sulphur recovery unit, effluent treatment plant, hazardous waste, sour gas

Procedia PDF Downloads 220
5294 Application of Lean Manufacturing in Brake Shoe Manufacturing Plant: A Case Study

Authors: Anees K. Ahamed, Aakash Kumar R. G., Raj M. Mohan

Abstract:

The main objective is to apply lean tools to identify and eliminate waste in and among the work stations so as to improve the process speed and quality. From the top seven wastes in the lean concept, we consider the movement of materials, defects, and inventory for the improvement since these cause the major impact on the performance measures. The layout was improved to reduce the movement of materials. It also quantifies the reduction in movement among the work stations. Value stream mapping has been used for identification of waste. Cause and effect diagram and 5W analysis are used to identify the reasons for defects and to provide the counter measures. Some cycle time reduction techniques also proposed to improve the productivity. Lean Audit check sheet was also used to identify the current position of the industry and to identify the gap to make the industry Lean.

Keywords: cause and effect diagram, cycle time reduction, defects, lean, waste reduction

Procedia PDF Downloads 380
5293 Implementation of Lean Tools (Value Stream Mapping and ECRS) in an Oil Refinery

Authors: Ronita Singh, Yaman Pattanaik, Soham Lalwala

Abstract:

In today’s highly competitive business environment, every organization is striving towards lean manufacturing systems to achieve lower Production Lead Times, lower costs, less inventory and overall improvement in supply chains efficiency. Based on the similar idea, this paper presents the practical application of Value Stream Mapping (VSM) tool and ECRS (Eliminate, Combine, Reduce, and Simplify) technique in the receipt section of the material management center of an oil refinery. A value stream is an assortment of all actions (value added as well as non-value added) that are required to bring a product through the essential flows, starting with raw material and ending with the customer. For drawing current state value stream mapping, all relevant data of the receipt cycle has been collected and analyzed. Then analysis of current state map has been done for determining the type and quantum of waste at every stage which helped in ascertaining as to how far the warehouse is from the concept of lean manufacturing. From the results achieved by current VSM, it was observed that the two processes- Preparation of GRN (Goods Receipt Number) and Preparation of UD (Usage Decision) are both bottle neck operations and have higher cycle time. This root cause analysis of various types of waste helped in designing a strategy for step-wise implementation of lean tools. The future state thus created a lean flow of materials at the warehouse center, reducing the lead time of the receipt cycle from 11 days to 7 days and increasing overall efficiency by 27.27%.

Keywords: current VSM, ECRS, future VSM, receipt cycle, supply chain, VSM

Procedia PDF Downloads 301
5292 Biodiesel Production from Edible Oil Wastewater Sludge with Bioethanol Using Nano-Magnetic Catalysis

Authors: Wighens Ngoie Ilunga, Pamela J. Welz, Olewaseun O. Oyekola, Daniel Ikhu-Omoregbe

Abstract:

Currently, most sludge from the wastewater treatment plants of edible oil factories is disposed to landfills, but landfill sites are finite and potential sources of environmental pollution. Production of biodiesel from wastewater sludge can contribute to energy production and waste minimization. However, conventional biodiesel production is energy and waste intensive. Generally, biodiesel is produced from the transesterification reaction of oils with alcohol (i.e., Methanol, ethanol) in the presence of a catalyst. Homogeneously catalysed transesterification is the conventional approach for large-scale production of biodiesel as reaction times are relatively short. Nevertheless, homogenous catalysis presents several challenges such as high probability of soap. The current study aimed to reuse wastewater sludge from the edible oil industry as a novel feedstock for both monounsaturated fats and bioethanol for the production of biodiesel. Preliminary results have shown that the fatty acid profile of the oilseed wastewater sludge is favourable for biodiesel production with 48% (w/w) monounsaturated fats and that the residue left after the extraction of fats from the sludge contains sufficient fermentable sugars after steam explosion followed by an enzymatic hydrolysis for the successful production of bioethanol [29% (w/w)] using a commercial strain of Saccharomyces cerevisiae. A novel nano-magnetic catalyst was synthesised from mineral processing alkaline tailings, mainly containing dolomite originating from cupriferous ores using a modified sol-gel. The catalyst elemental chemical compositions and structural properties were characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infra-red (FTIR) and the BET for the surface area with 14.3 m²/g and 34.1 nm average pore diameter. The mass magnetization of the nano-magnetic catalyst was 170 emu/g. Both the catalytic properties and reusability of the catalyst were investigated. A maximum biodiesel yield of 78% was obtained, which dropped to 52% after the fourth transesterification reaction cycle. The proposed approach has the potential to reduce material costs, energy consumption and water usage associated with conventional biodiesel production technologies. It may also mitigate the impact of conventional biodiesel production on food and land security, while simultaneously reducing waste.

Keywords: biodiesel, bioethanol, edible oil wastewater sludge, nano-magnetism

Procedia PDF Downloads 138
5291 Creep Behaviour of Asphalt Modified by Waste Polystyrene and Its Hybrids with Crumb Rubber and Low-Density Polyethylene

Authors: Soheil Heydari, Ailar Hajimohammadi, Nasser Khalili

Abstract:

Polystyrene, being made from a monomer called styrene, is a rigid and easy-to mould polymer that is widely used for many applications, from foam packaging to disposable containers. Considering that the degradation of waste polystyrene takes up to 500 years, there is an urgent need for a sustainable application for waste polystyrene. This study evaluates the application of waste polystyrene as an asphalt modifier. The inclusion of waste plastics in asphalt is either practised by the dry process or the wet process. In the dry process, plastics are added straight into the asphalt mixture and in the wet process, they are mixed and digested into bitumen. In this article, polystyrene was used as an asphalt modifier in a dry process. However, the mixing process is precisely designed to make sure that the polymer is melted and modified in the binder. It was expected that, due to the rigidity of polystyrene, it will have positive effects on the permanent deformation of the asphalt mixture. Therefore, different mixtures were manufactured with different contents of polystyrene and Marshall specimens were manufactured, and dynamic creep tests were conducted to evaluate the permanent deformation of the modification. This is a commonly repeated loading test conducted at different stress levels and temperatures. Loading cycles are applied to the AC specimen until failure occurs; with the amount of deformation constantly recorded the cumulative, permanent strain is determined and reported as a function of the number of cycles. Also, to our best knowledge, hybrid mixes of polystyrene with crumb rubber and low-density polyethylene were made and compared with a polystyrene-modified mixture. The test results of this study showed that the hybrid mix of polystyrene and low-density polyethylene has the highest resistance against permanent deformation. However, the polystyrene-modified mixture outperformed the hybrid mix of polystyrene and crumb rubber, and both demonstrated way lower permanent deformation than the unmodified specimen.

Keywords: permanent deformation, waste plastics, polystyrene, hybrid plastics, hybrid mix, hybrid modification, dry process

Procedia PDF Downloads 93
5290 Characteristics of Cement Pastes Incorporating Different Amounts of Waste Cellular Concrete Powder

Authors: Mohammed Abed, Rita Nemes

Abstract:

In this study different amounts of waste cellular concrete powder (WCCP) as replacement of cement have been investigated as an attempt to produce green binder, which is useful for sustainable construction applications. From zero to up to 60% of WCCP by mass replacement amounts of cement has been conducted. Consistency, compressive strength, bending strength and the activity index of WCCP through seven to ninety days old specimens have been examined, where the optimum WCCP replacement was up to 30%, depending on which the activity index still increased to the end of test period (90 days) and this could be an evidence for its continuity to increase for longer age. Also up to 30% of WCCP increased the bending strength to be higher than the control one. The main point in the present study that there is a possibility of replacing cement by 30% of WCCP, however, it is preferable to be less than this amount.

Keywords: cellular concrete powder, waste cellular concrete powder (WCCP), supplementary cementatious material, SCM, activity index, mechanical properties

Procedia PDF Downloads 210
5289 A Sustainable Approach for Waste Management: Automotive Waste Transformation into High Value Titanium Nitride Ceramic

Authors: Mohannad Mayyas, Farshid Pahlevani, Veena Sahajwalla

Abstract:

Automotive shredder residue (ASR) is an industrial waste, generated during the recycling process of End-of-life vehicles. The large increasing production volumes of ASR and its hazardous content have raised concerns worldwide, leading some countries to impose more restrictions on ASR waste disposal and encouraging researchers to find efficient solutions for ASR processing. Although a great deal of research work has been carried out, all proposed solutions, to our knowledge, remain commercially and technically unproven. While the volume of waste materials continues to increase, the production of materials from new sustainable sources has become of great importance. Advanced ceramic materials such as nitrides, carbides and borides are widely used in a variety of applications. Among these ceramics, a great deal of attention has been recently paid to Titanium nitride (TiN) owing to its unique characteristics. In our study, we propose a new sustainable approach for ASR management where TiN nanoparticles with ideal particle size ranging from 200 to 315 nm can be synthesized as a by-product. In this approach, TiN is thermally synthesized by nitriding pressed mixture of automotive shredder residue (ASR) incorporated with titanium oxide (TiO2). Results indicated that TiO2 influences and catalyses degradation reactions of ASR and helps to achieve fast and full decomposition. In addition, the process resulted in titanium nitride (TiN) ceramic with several unique structures (porous nanostructured, polycrystalline, micro-spherical and nano-sized structures) that were simply obtained by tuning the ratio of TiO2 to ASR, and a product with appreciable TiN content of around 85% was achieved after only one hour nitridation at 1550 °C.

Keywords: automotive shredder residue, nano-ceramics, waste treatment, titanium nitride, thermal conversion

Procedia PDF Downloads 290
5288 Carbohydrates Quantification from Agro-Industrial Waste and Fermentation with Lactic Acid Bacteria

Authors: Prittesh Patel, Bhavika Patel, Ramar Krishnamurthy

Abstract:

Present study was conducted to isolate lactic acid bacteria (LAB) from Oreochromis niloticus and Nemipterus japonicus fish gut. The LAB isolated were confirmed through 16s rRNA sequencing. It was observed that isolated Lactococcus spp. were able to tolerate NaCl and bile acid up to certain range. The isolated Lactococcus spp. were also able to survive in acidic and alkaline conditions. Further agro-industrial waste like peels of pineapple, orange, lemon, sugarcane, pomegranate; sweet lemon was analyzed for their polysaccharide contents and prebiotic properties. In the present study, orange peels, sweet lemon peels, and pineapple peels give maximum indigestible polysaccharide. To evaluate synbiotic effect combination of probiotic and prebiotic were analyzed under in vitro conditions. Isolates Lactococcus garvieae R3 and Lactococcus sp. R4 reported to have better fermentation efficiency with orange, sweet lemon and pineapple compare to lemon, sugarcane and pomegranate. The different agro-industrial waste evaluated in this research resulted in being a cheap and fermentable carbon source by LAB.

Keywords: agro-industrial waste, lactic acid bacteria, prebiotic, probiotic, synbiotic

Procedia PDF Downloads 155
5287 Smart Speed Bump

Authors: Mohammad Rahmani Rezaiyeh, Mojtaba Rahmani Rezaiyeh, Mehrdad Rahmani Rezaiyeh

Abstract:

Smart speed bump is a new invention and I am invented it. Smart speed bump is a system that can change the position of speed bumps either active or passive in necessary situations. The basic system of smart speed bumps is based on a robotic system which includes mechanic, electronic and artificial intelligence. The smart speed bump is capable of smart decision making and can change its position by anticipating the peak of terrific hours. It can be noted to the advantages of this system such as preventing the waste of petrol while crossing speed bumps, traffic management, accelerating, flowing and securing traffic, reducing accidents and judicial records.

Keywords: invention, smart, robotic system, speed bump, traffic, management

Procedia PDF Downloads 411
5286 Sainte Sophie Landfill: Field-Scale Assessment of Municipal Solid Waste Mechanical Characteristics

Authors: Wameed Alghazali, Shawn Kenny, Paul J. Van Geel

Abstract:

Settlement of municipal solid waste (MSW) in landfills can be represented by mechanical settlement, which is instantaneous and time-dependent creep components, and biodegradation-induced settlement. Mechanical settlement is governed by the physical characteristics of MSW and the applied overburden pressure. Several research studies used oedometers and different size compression cells to evaluate the primary and mechanical creep compression indices/ratios. However, MSW is known for its heterogeneity, which means data obtained from laboratory testing are not necessary to be a good representation of the mechanical response observed in the field. Furthermore, most of the laboratory tests found in the literature were conducted on shredded samples of MSW to obtain specimens that are suitable for the testing setup. It is believed that shredding MSW samples changes the physical and mechanical properties of the waste. In this study, settlement field data was collected during the filling stage of Ste. Sophie landfill was used to estimate the primary and mechanical creep compression ratios. The field results from Ste. Sophie landfill indicated that both the primary and mechanical creep compression ratios of MSW are not constants but decrease with the increase in the applied vertical stress.

Keywords: mechanical creep compression ratio, municipal solid waste, primary compression ratio, stress level

Procedia PDF Downloads 88
5285 Elaboration and Characterization of Self-Compacting Mortar Based Biopolymer

Authors: I. Djefour, M. Saidi, I. Tlemsani, S. Toubal

Abstract:

Lignin is a molecule derived from wood and also generated as waste from the paper industry. With a view to its valorization and protection of the environment, we are interested in its use as a superplasticizer-type adjuvant in mortars and concretes to improve their mechanical strengths. The additives of the concrete have a very strong influence on the properties of the fresh and / or hardened concrete. This study examines the development and use of industrial waste and lignin extracted from a renewable natural source (wood) in cementitious materials. The use of these resources is known at present as a definite resurgence of interest in the development of building materials. Physicomechanical characteristics of mortars are determined by optimization quantity of the natural superplasticizer. The results show that the mechanical strengths of mortars based on natural adjuvant have improved by 20% (64 MPa) for a W/C ratio = 0.4, and the amount of natural adjuvant of dry extract needed is 40 times smaller than commercial adjuvant. This study has a scientific impact (improving the performance of the mortar with an increase in compactness and reduction of the quantity of water), ecological use of the lignin waste generated by the paper industry) and economic reduction of the cost price necessary to elaboration of self-compacting mortars and concretes).

Keywords: biopolymer (lignin), industrial waste, mechanical resistances, self compacting mortars (SCM)

Procedia PDF Downloads 162
5284 Study of the Performances of an Environmental Concrete Based on Recycled Aggregates and Marble Waste Fillers Addition

Authors: Larbi Belagraa, Miloud Beddar, Abderrazak Bouzid

Abstract:

The needs of the construction sector still increasing for concrete. However, the shortage of natural resources of aggregate could be a problem for the concrete industry, in addition to the negative impact on the environment due to the demolition wastes. Recycling aggregate from construction and demolition (C&D) waste presents a major interest for users and researchers of concrete since this constituent can occupies more than 70% of concrete volume. The aim of the study here in is to assess the effect of sulfate resistant cement combined with the local mineral addition of marble waste fillers on the mechanical behavior of a recycled aggregate concrete (RAC). Physical and mechanical properties of RAC including the density, the flexural and the compressive strength were studied. The non destructive test methods (pulse-velocity, rebound hammer) were performed . The results obtained were compared to crushed aggregate concrete (CAC) using the normal compressive testing machine test method. The optimal content of 5% marble fillers showed an improvement for both used test methods (compression, flexion and NDT). Non-destructive methods (ultrasonic and rebound hammer test) can be used to assess the strength of RAC, but a correction coefficient is required to obtain a similar value to the compressive strength given by the compression tests. The study emphasizes that these waste materials can be successfully and economically utilized as additional inert filler in RAC formulation within similar performances compared to a conventional concrete.

Keywords: marble waste fillers, mechanical strength, natural aggregate, non-destructive testing (NDT), recycled aggregate concrete

Procedia PDF Downloads 303
5283 Cellulose Nanocrystals from Melon Plant Residues: A Sustainable and Renewable Source

Authors: Asiya Rezzouq, Mehdi El Bouchti, Omar Cherkaoui, Sanaa Majid, Souad Zyade

Abstract:

In recent years, there has been a steady increase in the exploration of new renewable and non-conventional sources for the production of biodegradable nanomaterials. Nature harbours valuable cellulose-rich materials that have so far been under-exploited and can be used to create cellulose derivatives such as cellulose microfibres (CMFs) and cellulose nanocrystals (CNCs). These unconventional sources have considerable potential as alternatives to conventional sources such as wood and cotton. By using agricultural waste to produce these cellulose derivatives, we are responding to the global call for sustainable solutions to environmental and economic challenges. Responsible management of agricultural waste is increasingly crucial to reducing the environmental consequences of its disposal, including soil and water pollution, while making efficient use of these untapped resources. In this study, the main objective was to extract cellulose nanocrystals (CNC) from melon plant residues using methods that are both efficient and sustainable. To achieve this high-quality extraction, we followed a well-defined protocol involving several key steps: pre-treatment of the residues by grinding, filtration and chemical purification to obtain high-quality (CMF) with a yield of 52% relative to the initial mass of the melon plant residue. Acid hydrolysis was then carried out using phosphoric acid and sulphuric acid to convert (CMF) into cellulose nanocrystals. The extracted cellulose nanocrystals were subjected to in-depth characterization using advanced techniques such as transmission electron microscopy (TEM), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction. The resulting cellulose nanocrystals have exceptional properties, including a large specific surface area, high thermal stability and high mechanical strength, making them suitable for a variety of applications, including as reinforcements for composite materials. In summary, the study highlights the potential for recovering agricultural melon waste to produce high-quality cellulose nanocrystals with promising applications in industry, nanotechnology, and biotechnology, thereby contributing to environmental and economic sustainability.

Keywords: cellulose, melon plant residues, cellulose nanocrystals, properties, applications, composite materials

Procedia PDF Downloads 52
5282 The Long-Term Leaching Behaviour of 137Cs, 60Co and 152Eu Radionuclides Incorporated in Mortar Matrices Made from Natural Aggregates and Recycled Aggregates

Authors: R. Deju, M. Mincu, D. Gurau

Abstract:

During the interim storage or final disposal of low level waste, migration/diffusion of radionuclides can occur when the waste comes in contact with water. The long-term leaching behaviour into surrounding fluid (demineralized water) of 137Cs, 60Co and 152Eu radionuclides, artificially incorporated in mortar matrices made from natural aggregates (river sand) and recycled radioactive concrete was studied. Results presented in this work are obtained in two years of mortar testing and will be used for the safety increasing in the storage of low level radioactive waste. The study involved the influence of curing time, type and size distribution of the aggregates on leaching behaviour. The mortar samples were immersed in distilled water for 30 days. The leached activity of the mortar samples was measured on samples from the immersing water and analyzed through a gamma-ray spectrometry method using an HPGe detector with a GESPECOR code for efficiency evaluation. The long-term leaching behaviour of the radionuclides was evaluated from the leaching data calculating the apparent diffusion coefficient.

Keywords: gamma spectrometry, leaching behavior, reuse and recycling of radioactive concrete, waste management

Procedia PDF Downloads 238
5281 Home Made Rice Beer Waste (Choak): A Low Cost Feed for Sustainable Poultry Production

Authors: Vinay Singh, Chandra Deo, Asit Chakrabarti, Lopamudra Sahoo, Mahak Singh, Rakesh Kumar, Dinesh Kumar, H. Bharati, Biswajit Das, V. K. Mishra

Abstract:

The most widely used feed resources in poultry feed, like maize and soybean, are expensive as well as in short supply. Hence, there is a need to utilize non-conventional feed ingredients to cut down feed costs. As an alternative, brewery by-products like brewers’ dried grains are potential non-conventional feed resources. North-East India is inhabited by many tribes, and most of these tribes prepare their indigenous local brew, mostly using rice grains as the primary substrate. Choak, a homemade rice beer waste, is an excellent and cheap source of protein and other nutrients. Fresh homemade rice beer waste (rice brewer’s grain) was collected locally. The proximate analysis indicated 28.53% crude protein, 92.76% dry matter, 5.02% ether extract, 7.83% crude fibre, 2.85% total ash, 0.67% acid insoluble ash, 0.91% calcium, and 0.55% total phosphorus. A feeding trial with 5 treatments (incorporating rice beer waste at the inclusion levels of 0,10,20,30 & 40% by replacing maize and soybean from basal diet) was conducted with 25 laying hens per treatment for 16 weeks under completely randomized design in order to study the production performance, blood-biochemical parameters, immunity, egg quality and cost economics of laying hens. The results showed substantial variations (P<0.01) in egg production, egg mass, FCR per dozen eggs, FCR per kg egg mass, and net FCR. However, there was not a substantial difference in either body weight or feed intake or in egg weight. Total serum cholesterol reduced significantly (P<0.01) at 40% inclusion of rice beer waste. Additionally, the egg haugh unit grew considerably (P<0.01) when the graded levels of rice beer waste increased. The inclusion of 20% rice brewers dried grain reduced feed cost per kg egg mass and per dozen egg production by Rs. 15.97 and 9.99, respectively. Choak (homemade rice beer waste) can thus be safely incorporated into the diet of laying hens at a 20% inclusion level for better production performance and cost-effectiveness.

Keywords: choak, rice beer waste, laying hen, production performance, cost economics

Procedia PDF Downloads 51
5280 Decarboxylation of Waste Coconut Oil and Comparison of Acid Values

Authors: Pabasara H. Gamage, Sisira K. Weliwegamage, Sameera R. Gunatilake, Hondamuni I. C De Silva, Parakrama Karunaratne

Abstract:

Green diesel is an upcoming category of biofuels, which has more practical advantages than biodiesel. Production of green diesel involves production of hydrocarbons from various fatty acid sources. Though green diesel is chemically similar to fossil fuel hydrocarbons, it is more environmentally friendly. Decarboxylation of fatty acid sources is one of green diesel production methods and is less expensive and more energy efficient compared to hydrodeoxygenation. Free fatty acids (FFA), undergo decarboxylation readily than triglycerides. Waste coconut oil, which is a rich source of FFA, can be easily decarboxylated than other oils which have lower FFA contents. These free fatty acids can be converted to hydrocarbons by decarboxylation. Experiments were conducted to carry out decarboxylation of waste coconut oil in a high pressure hastealloy reactor (Toption Goup LTD), in the presence of soda lime and mixtures of soda lime and alumina. Acid value (AV) correlates to the amount of FFA available in a sample of oil. It can be shown that with the decreasing of AV, FFAs have converted to hydrocarbons. First, waste coconut oil was reacted with soda lime alone, at 150 °C, 200 °C, and 250 °C and 1.2 MPa pressure for 2 hours. AVs of products at different temperatures were compared. AV of products decreased with increasing temperature. Thereafter, different mixtures of soda lime and alumina (100% Soda lime, 1:1 soda lime and alumina and 100% alumina) were employed at temperatures 150 °C, 200 °C, and 250 °C and 1.2 MPa pressure. The lowest AV of 2.99±0.03 was obtained when 1:1 soda lime and alumina were employed at 250 °C. It can be concluded with respect to the AV that the amount of FFA decreased when decarboxylation temperature was increased. Soda lime:alumina 1:1 mixture showed the lowest AV among the compositions studied. These findings lead to formulate a method to successfully synthesize hydrocarbons by decarboxylating waste coconut oil in the presence of soda lime and alumina (1:1) at elevated tempertaures such as 250 °C.

Keywords: acid value, free fatty acids, green diesel, high pressure reactor, waste coconut oil

Procedia PDF Downloads 296
5279 The Effect of Flue Gas Condensation on the Exergy Efficiency and Economic Performance of a Waste-To-Energy Plant

Authors: Francis Chinweuba Eboh, Tobias Richards

Abstract:

In this study, a waste-to-energy combined heat and power plant under construction was modelled and simulated with the Aspen Plus software. The base case process plant was evaluated and compared when integrated with flue gas condensation (FGC) in order to find out the impact of the exergy efficiency and economic feasibility as well as the effect of overall system exergy losses and revenue generated in the investigated plant. The economic evaluations were carried out using the vendor cost data from Aspen process economic analyser. The results indicate that 4 % increase in the exergy efficiency and 29 % reduction in the exergy loss in the flue gas were obtained when the flue gas condensation was incorporated. Furthermore, with the integrated FGC, the net present values (NPV) and income generated in the base process plant were increased by 29 % and 10 % respectively after 20 years of operation.

Keywords: economic feasibility, exergy efficiency, exergy losses, flue gas condensation, waste-to-energy

Procedia PDF Downloads 185
5278 The Potential Use of Crude Palm Oil Liquid Wastes to Improve Nutrient Levels in Vegetable Plants

Authors: Hasan Basri Jumin

Abstract:

Application of crude palm oil waste combined to suitable concentration of benzyl-adenine give the significant effect to mean relative growth rate of vegetable plants and the same pattern in net assimilation rate crude palm oil waste has also significantly increased during 28 days old plants. Combination of treatment of suitable concentration of crude palm oil and benzyl adenine increased the growth and production of vegetable plants. The relative growth rate of vegetable plants was rapid 3 weeks after planting and gradually decreased at the end of the harvest time period. Combination of 400 mg.l-1 CPO with 1.0 mgl-1 till 10mgl-1 BA increased the Mean Relative Growth Rate (MRGR), Net assimilation rate (NAR), Leaf area and dry weight of Brassica juncea, Brassica oleraceae and Lactuca sativa.

Keywords: benzyladenine, crude-palm-oil, nutrient, vegetable, waste

Procedia PDF Downloads 185
5277 Design and Synthesis of Copper-Zeolite Composite for Antimicrobial Activity and Heavy Metal Removal From Waste Water

Authors: Feleke Terefe Fanta

Abstract:

Background: The existence of heavy metals and coliform bacteria contaminants in aquatic system of Akaki river basin, a sub city of Addis Ababa, Ethiopia has become a public concern as human population increases and land development continues. Hence, it is the right time to design treatment technologies that can handle multiple pollutants. Results: In this study, we prepared a synthetic zeolites and copper doped zeolite composite adsorbents as cost effective and simple approach to simultaneously remove heavy metals and total coliforms from wastewater of Akaki river. The synthesized copper–zeolite X composite was obtained by ion exchange method of copper ions into zeolites frameworks. Iodine test, XRD, FTIR and autosorb IQ automated gas sorption analyzer were used to characterize the adsorbents. The mean concentrations of Cd, Cr, and Pb in untreated sample were 0.795, 0.654 and 0.7025 mg/L respectively. These concentrations decreased to Cd (0.005 mg/L), Cr (0.052 mg/L) and Pb (bellow detection limit, BDL) for sample treated with bare zeolite X while a further decrease in concentration of Cd (0.005 mg/L), Cr (BDL) and Pb (BDL) was observed for the sample treated with copper–zeolite composite. Zeolite X and copper-modified zeolite X showed complete elimination of total coliforms after 90 and 50 min contact time respectively. Conclusion: The results obtained in this study showed high antimicrobial disinfection and heavy metal removal efficiencies of the synthesized adsorbents. Furthermore, these sorbents are efficient in significantly reducing physical parameters such as electrical conductivity, turbidity, BOD and COD.

Keywords: WASTE WATER, COPPER DOPED ZEOITE X, ADSORPITION, HEAVY METAL, DISINFECTION, AKAKI RIVER

Procedia PDF Downloads 57
5276 Design of New Sustainable Pavement Concrete: An Experimental Road

Authors: Manuel Rosales, Francisco Agrela, Julia Rosales

Abstract:

The development of concrete pavements that include recycled waste with active and predictive safety features is a possible approach to mitigate the harmful impacts of the construction industry, such as CO2 emissions and the consumption of energy and natural resources during the construction and maintenance of road infrastructure. This study establishes the basis for formulating new smart materials for concrete pavements and carrying out the in-situ implementation of an experimental road section. To this end, a comprehensive recycled pavement solution is developed that combines eco-hybrid cement made with 25% mixed recycled aggregate powder (pMRA) and biomass bottom ash powder (pBBA) and a 30% substitution of natural aggregate by MRA and BBA. This work is grouped in three lines. 1) construction materials with high rates of use of recycled material, 2) production processes with efficient consumption of natural resources and use of cleaner energies, and 3) implementation and monitoring of road section with sustainable concrete made from waste. The objective of this study is to ensure satisfactory rheology, mechanical strength, durability, and CO2 capture of pavement concrete manufactured from waste and its subsequent application in real road section as well as its monitoring to establish the optimal range of recycled material. The concrete developed during this study are aimed at the reuse of waste, promoting the circular economy. For this purpose, and after having carried out different tests in the laboratory, three mixtures were established to be applied on the experimental road.

Keywords: biomass bottom ash, construction and demolition waste, recycled concrete pavements, full-scale experimental road, monitoring

Procedia PDF Downloads 65
5275 Determination of Economic and Ecological Potential of Bio Hydrogen Generated through Dark Photosynthesis Process

Authors: Johannes Full, Martin Reisinger, Alexander Sauer, Robert Miehe

Abstract:

The use of biogenic residues for the biotechnological production of chemical energy carriers for electricity and heat generation as well as for mobile applications is an important lever for the shift away from fossil fuels towards a carbon dioxide neutral post-fossil future. A multitude of promising biotechnological processes needs, therefore, to be compared against each other. For this purpose, a multi-objective target system and a corresponding methodology for the evaluation of the underlying key figures are presented in this paper, which can serve as a basis for decisionmaking for companies and promotional policy measures. The methodology considers in this paper the economic and ecological potential of bio-hydrogen production using the example of hydrogen production from fruit and milk production waste with the purple bacterium R. rubrum (so-called dark photosynthesis process) for the first time. The substrate used in this cost-effective and scalable process is fructose from waste material and waste deposits. Based on an estimation of the biomass potential of such fructose residues, the new methodology is used to compare different scenarios for the production and usage of bio-hydrogen through the considered process. In conclusion, this paper presents, at the example of the promising dark photosynthesis process, a methodology to evaluate the ecological and economic potential of biotechnological production of bio-hydrogen from residues and waste.

Keywords: biofuel, hydrogen, R. rubrum, bioenergy

Procedia PDF Downloads 190
5274 Substitution of Natural Aggregates by Crushed Concrete Waste in Concrete Products Manufacturing

Authors: Jozef Junak, Nadezda Stevulova

Abstract:

This paper is aimed to the use of different types of industrial wastes in concrete production. From examined waste (crushed concrete waste) our tested concrete samples with dimension 150 mm were prepared. In these samples, fractions 4/8 mm and 8/16 mm by recycled concrete aggregate with a range of variation from 0 to 100% were replaced. Experiment samples were tested for compressive strength after 2, 7, 14 and 28 days of hardening. From obtained results it is evident that all samples prepared with washed recycled concrete aggregates met the requirement of standard for compressive strength of 20 MPa already after 14 days of hardening. Sample prepared with recycled concrete aggregates (4/8 mm: 100% and 8/16 mm: 60%) reached 101% of compressive strength value (34.7 MPa) after 28 days of hardening in comparison with the reference sample (34.4 MPa). The lowest strength after 28 days of hardening (27.42 MPa) was obtained for sample consisting of recycled concrete in proportion of 40% for 4/8 fraction and 100% for 8/16 fraction of recycled concrete.

Keywords: recycled concrete aggregate, re-use, workability, compressive strength

Procedia PDF Downloads 362
5273 New Evaluation Methodology for Solidification Product Durability Assessment

Authors: Bozena Dohnalkova, Jakub Hodul, Rostislav Drochytka, Jana Kosikova

Abstract:

This paper deals with a proposal of a new methodology for durability assessment of solidification product for its safe further use. The new methodology is based on a review of the current state of assessment of treated waste in Czech Republic and abroad. The aim of the paper is to propose an optimal evaluation methodology for verifying properties of solidification product to ensure its safe further use in building industry.

Keywords: solidification, stabilization, durability, waste

Procedia PDF Downloads 422
5272 Thermodynamic Cycle Using Cyclopentane for Waste Heat Recovery Power Generation from Clinker Cooler Exhaust Flue Gas

Authors: Vijayakumar Kunche

Abstract:

Waste heat recovery from Pre Heater exhaust gases and Clinker cooler vent gases is now common place in Cement Industry. Most common practice is to use Steam Rankine cycle for heat to power conversion. In this process, waste heat from the flue gas is recovered through a Heat Recovery steam generator where steam is generated and fed to a conventional Steam turbine generator. However steam Rankine cycle tends to have lesser efficiency for smaller power plants with less than 5MW capacity and where the steam temperature at the inlet of the turbine is less than 350 deg C. further a steam Rankine cycle needs treated water and maintenance intensive. These problems can be overcome by using Thermodynamic cycle using Cyclopentane vapour in place of steam. This innovative cycle is best suited for Heat recovery in cement plants and results in best possible heat to power conversion efficiency. This paper discusses about Heat Recovery Power generation using innovative thermal cycle which uses Cyclopentane vapour in place of water- steam. And how this technology has been adopted for a Clinker cooler hot gas from mid-tap.

Keywords: clinker cooler, energy efficiency, organic rankine cycle, waste heat recovery

Procedia PDF Downloads 231
5271 Fishing Waste: A Source of Valuable Products through Anaerobic Treatments

Authors: Luisa Maria Arrechea Fajardo, Luz Stella Cadavid Rodriguez

Abstract:

Fish is one of the most commercialized foods worldwide. However, this industry only takes advantage of about 55% of the product's weight, the rest is converted into waste, which is mainly composed of viscera, gills, scales and spines. Consequently, if these wastes are not used or disposed of properly, they cause serious environmental impacts. This is the case of Tumaco (Colombia), the second largest producer of marine fisheries on the Colombian Pacific coast, where artisanal fishermen process more than 50% of the commercialized volume. There, fishing waste is disposed primarily in the ocean, causing negative impacts on the environment and society. Therefore, in the present research, a proposal was made to take advantage of fishing waste through anaerobic treatments, through which it is possible to obtain products with high added value from organic waste. The research was carried out in four stages. First, the production of volatile fatty acids (VFA) in semi-continuous 4L reactors was studied, evaluating three hydraulic retention times (HRT) (10, 7 and 5 days) with four organic loading rates (OLR) (16, 14, 12 and 10 gVS/L/day), the experiment was carried out for 150 days. Subsequently, biogas production was evaluated from the solid digestate generated in the VFA production reactors, initially evaluating the biochemical methane potential (BMP) of 4 total solid concentrations (1, 2, 4 and 6% TS), for 40 days and then, with the optimum TS concentration (2 gVS/L/day), 2 HRT (15 and 20 days) in semi-continuous reactors, were evaluated for 100 days. Finally, the integration of the processes was carried out with the best conditions found, a first phase of VFA production from fishing waste and a second phase of biogas production from unrecovered VFAs and unprocessed material Additionally, an VFA membrane extraction system was included. In the first phase, a liquid digestate with a concentration and VFA production yield of 59.04 gVFA/L and 0.527 gVFA/gVS, respectively, was obtained, with the best condition found (HRT:7 days and OLR: 16 gVS/L/día), where acetic acid and isobutyric acid were the predominant acids. In the second phase of biogas production, a BMP of 0.349 Nm3CH4/KgVS was reached, and it was found as best HRT 20 days. In the integration, the isovaleric, butyric and isobutyric acid were the VFA with the highest percentage of extraction, additionally a 106.67% increase in biogas production was achieved. This research shows that anaerobic treatments are a promising technology for an environmentally safe management of fishing waste and presents the basis of a possible biorefinery.

Keywords: biogas production, fishing waste, VFA membrane extraction, VFA production

Procedia PDF Downloads 111
5270 Study of Environmental Impact

Authors: Houmame Benbouali

Abstract:

The risks, in general, exist in any project; one can hardly carry out a project without taking risks. The hydraulic works are rather complex projects in their design, realization and exploitation, and are often subjected at the multiple risks being able to influence with their good performance, and can have an negative impact on their environment. The present study was carried out to quote the impacts caused by purification plant STEP Chlef on the environment, it aims has studies the environmental impacts during construction and when designing this STEP, it is divided into two parts: The first part results from a research task bibliographer which contain three chapters (-cleansing of water worn-general information on water worn-proceed of purification of waste water). The second part is an experimental part which is divided into four chapters (detailed state initial-description of the station of purification-evaluation of the impacts of the project analyzes measurements and recommendations).

Keywords: treatment plant, waste water, waste water treatment, environmental impact

Procedia PDF Downloads 501
5269 Die Design for Flashless Forging of a Polymer Insulator Fitting

Authors: Pedram Khazaie, Sajjad Moein

Abstract:

In the conventional hot forging of Tongue, which is a fitting for polymer insulator, the material wasted to flash accounts for 20-30% of workpiece. In order to reduce the cost of forged products, this waste material must be minimized. In this study, a flashless forging die is designed and simulated using the finite element method (FEM). A solution to avoid overloading the die with a simple preform is also presented. Moreover, since in flashless forging, burr is formed on the edge of workpiece, a controlled flash forging method is proposed to solve this problem. The simulation results have been validated by experiments; achieving close agreement between simulated and experimental data. It was shown that numerical modeling is helpful in reducing cost and time in the manufacturing process.

Keywords: burr formation, die design, finite element method, flashless forging

Procedia PDF Downloads 154
5268 The Utilization of Tea Residues for Activated Carbon Preparation

Authors: Jiazhen Zhou, Youcai Zhao

Abstract:

Waste tea is commonly generated in certain areas of China and its utilization has drawn a lot of concern nowadays. In this paper, highly microporous and mesoporous activated carbons were produced from waste tea by physical activation in the presence of water vapor in a tubular furnace. The effect of activation temperature on yield and pore properties of produced activated carbon are studied. The yield decreased with the increase of activation temperature. According to the Nitrogen adsorption isotherms, the micropore and mesopore are both developed in the activated carbon. The specific surface area and the mesopore volume fractions of the activated carbon increased with the raise of activation temperature. The maximum specific surface area attained 756 m²/g produced at activation temperature 900°C. The results showed that the activation temperature had a significant effect on the micro and mesopore volumes as well as the specific surface area.

Keywords: activated carbon, nitrogen adsorption isotherm, physical activation, waste tea

Procedia PDF Downloads 325
5267 Production of Bricks Using Mill Waste and Tyre Crumbs at a Low Temperature by Alkali-Activation

Authors: Zipeng Zhang, Yat C. Wong, Arul Arulrajah

Abstract:

Since automobiles became widely popular around the early 20th century, end-of-life tyres have been one of the major types of waste humans encounter. Every minute, there are considerable quantities of tyres being disposed of around the world. Most end-of-life tyres are simply landfilled or simply stockpiled, other than recycling. To address the potential issues caused by tyre waste, incorporating it into construction materials can be a possibility. This research investigated the viability of manufacturing bricks using mill waste and tyre crumb by alkali-activation at a relatively low temperature. The mill waste was extracted from a brick factory located in Melbourne, Australia, and the tyre crumbs were supplied by a local recycling company. As the main precursor, the mill waste was activated by the alkaline solution, which was comprised of sodium hydroxide (8m) and sodium silicate (liquid). The introduction ratio of alkaline solution (relative to the solid weight) and the weight ratio between sodium hydroxide and sodium silicate was fixed at 20 wt.% and 1:1, respectively. The tyre crumb was introduced to substitute part of the mill waste at four ratios by weight, namely 0, 5, 10 and 15%. The mixture of mill waste and tyre crumbs were firstly dry-mixed for 2 min to ensure the homogeneity, followed by a 2.5-min wet mixing after adding the solution. The ready mixture subsequently was press-moulded into blocks with the size of 109 mm in length, 112.5 mm in width and 76 mm in height. The blocks were cured at 50°C with 95% relative humidity for 2 days, followed by a 110°C oven-curing for 1 day. All the samples were then placed under the ambient environment until the age of 7 and 28 days for testing. A series of tests were conducted to evaluate the linear shrinkage, compressive strength and water absorption of the samples. In addition, the microstructure of the samples was examined via the scanning electron microscope (SEM) test. The results showed the highest compressive strength was 17.6 MPa, found in the 28-day-old group using 5 wt.% tyre crumbs. Such strength has been able to satisfy the requirement of ASTM C67. However, the increasing addition of tyre crumb weakened the compressive strength of samples. Apart from the strength, the linear shrinkage and water absorption of all the groups can meet the requirements of the standard. It is worth noting that the use of tyre crumbs tended to decrease the shrinkage and even caused expansion when the tyre content was over 15 wt.%. The research also found that there was a significant reduction in compressive strength for the samples after water absorption tests. In conclusion, the tyre crumbs have the potential to be used as a filler material in brick manufacturing, but more research needs to be done to tackle the durability problem in the future.

Keywords: bricks, mill waste, tyre crumbs, waste recycling

Procedia PDF Downloads 119
5266 Analysis of the Impact and Effectiveness of Government Funded Small-Scale Biogas Projects in Giyani Municipality, Limpopo

Authors: Lindiwe Ngcobo

Abstract:

The aim of the study is to describe and understand the benefits and costs of having biogas digesters at both household and society level. On a household level, the purpose is to understand how rural households benefit from the biogas digesters, for example, by converting animal and human waste through biogas digesters, and at what costs the benefits are realized. At a societal level, the purpose is to understand the costs and benefits of biogas digesters relative to the situation of rural communities who do not have flush toilets and have no appropriate waste disposal services while they incur electricity costs. Multiple regression analysis was used to determine the effect of biogas digesters on electricity availability and waste management. The results showed that beneficiaries spent less on electricity using household waste, and also waste disposal costs were eliminated from household expenses. A move to biogas energy production can be beneficial to rural households. It is economically and environmentally friendly. Small-scale farmers need to be introduced to agricultural innovations that can assist them in producing nutritious crops at a low cost. This can be a good opportunity to start an agribusiness that focuses on organic crops. Extensions and training institutions have to play a part in supporting households to develop entrepreneurial skills. Cost-benefit analysis showed that the benefits of biogas exceed the costs of the biogas projects. This implies that this technology should be promoted in rural households. Government financial incentives must be put in place to motivate a generation of organic Agri-prenuers.

Keywords: Agri-prenuers, biogas digester, biogas energy, disposal costs

Procedia PDF Downloads 129