Search results for: physicochemical constants
277 Impact of Agriculture on the Groundwater Quality: Case of the Alluvial Plain of Nil River (North-Eastern Algerian)
Authors: S. Benessam, T. H. Debieche, A. Drouiche, F. Zahi, S. Mahdid
Abstract:
The intensive use of the chemical fertilizers and the pesticides in agriculture often produces a contamination of the groundwater by organic pollutants. The irrigation and/or rainwater transport the pollutants towards groundwater or water surface. Among these pollutants, one finds the nitrogen, often observed in the agricultural zones in the nitrate form. In order to understand the form and chemical mobility of nitrogen in groundwater, this study was conducted. A two-monthly monitoring of the parameters physicochemical and chemistry of water of the alluvial plain of Nil river (North-eastern Algerian) were carried out during the period from November 2013 to January 2015 as well as an in-situ investigation of the various chemical products used by the farmers. The results show a raise concentration of nitrates in the wells (depth < 20 m) of the plain, which the concentrations arrive at 50 mg/L (standard of potable water). On the other hand in drillings (depth > 20 m), one observes two behaviors. The first in the upstream part, where the aquifer is unconfined and the medium is oxidizing, one observes the weak nitrate concentrations, indicating its absorption by the ground during the infiltration of water towards the groundwater. The second in the central and downstream parts, where the groundwater is locally confined and the reducing medium, one observes an absence of nitrates and the appearance of nitrites and ammonium, indicating the reduction of nitrates. The projection of the analyses on diagrams Eh-pH of nitrogen has enabled to us to determine the intervals of variation of the nitrogen forms. This study also highlighted the effect of the rains, the pumping and the nature of the geological formations in the form and the mobility of nitrogen in the plain.Keywords: groundwater, nitrogen, mobility, speciation
Procedia PDF Downloads 248276 Exponential Stabilization of a Flexible Structure via a Delayed Boundary Control
Authors: N. Smaoui, B. Chentouf
Abstract:
The boundary stabilization problem of the rotating disk-beam system is a topic of interest in research studies. This system involves a flexible beam attached to the center of a disk, and the control and stabilization of this system have been extensively studied. This research focuses on the case where the center of mass is fixed in an inertial frame, and the rotation of the center is non-uniform. The system is represented by a set of nonlinear coupled partial differential equations and ordinary differential equations. The boundary stabilization problem of this system via a delayed boundary control is considered. We assume that the boundary control is either of a force type control or a moment type control and is subject to the presence of a constant time-delay. The aim of this research is threefold: First, we demonstrate that the rotating disk-beam system is well-posed in an appropriate functional space. Then, we establish the exponential stability property of the system. Finally, we provide numerical simulations that illustrate the theoretical findings. The research utilizes the semigroup theory to establish the well-posedness of the system. The resolvent method is then employed to prove the exponential stability property. Finally, the finite element method is used to demonstrate the theoretical results through numerical simulations. The research findings indicate that the rotating disk-beam system can be stabilized using a boundary control with a time delay. The proof of stability is based on the resolvent method and a variation of constants formula. The numerical simulations further illustrate the theoretical results. The findings have potential implications for the design and implementation of control strategies in similar systems. In conclusion, this research demonstrates that the rotating disk-beam system can be stabilized using a boundary control with time delay. The well-posedness and exponential stability properties are established through theoretical analysis, and these findings are further supported by numerical simulations. The research contributes to the understanding and practical application of control strategies for flexible structures, providing insights into the stability of rotating disk-beam systems.Keywords: rotating disk-beam, delayed force control, delayed moment control, torque control, exponential stability
Procedia PDF Downloads 75275 Removal of Bulk Parameters and Chromophoric Fractions of Natural Organic Matter by Porous Kaolin/Fly Ash Ceramic Membrane at South African Drinking Water Treatment Plants
Authors: Samkeliso S. Ndzimandze, Welldone Moyo, Oranso T. Mahlangu, Adolph A. Muleja, Alex T. Kuvarega, Thabo T. I. Nkambule
Abstract:
The high cost of precursor materials has hindered the commercialization of ceramic membrane technology in water treatment. In this work, a ceramic membrane disc (approximately 50 mm in diameter and 4 mm thick) was prepared from low-cost starting materials, kaolin, and fly ash by pressing at 200 bar and calcining at 900 °C. The fabricated membrane was characterized for various physicochemical properties, natural organic matter (NOM) removal as well as fouling propensity using several techniques. Further, the ceramic membrane was tested on samples collected from four drinking water treatment plants in KwaZulu-Natal, South Africa (named plants 1-4). The membrane achieved 48.6%, 54.6%, 57.4%, and 76.4% bulk UV254 reduction for raw water at plants 1, 2, 3, and 4, respectively. These removal rates were comparable to UV254 reduction achieved by coagulation/flocculation steps at the respective plants. Further, the membrane outperformed sand filtration steps in plants 1-4 in removing disinfection by-product precursors (8%-32%) through size exclusion. Fluorescence excitation-emission matrices (FEEM) studies showed the removal of fluorescent NOM fractions present in the water samples by the membrane. The membrane was fabricated using an up-scalable facile method, and it has the potential for application as a polishing step to complement conventional processes in water treatment for drinking purposes.Keywords: crossflow filtration, drinking water treatment plants, fluorescence excitation-emission matrices, ultraviolet 254 (UV₂₅₄)
Procedia PDF Downloads 43274 Spatio-temporal Variations in Heavy Metal Concentrations in Sediment of Qua Iboe River Estuary, Nigeria
Authors: Justina I. R. Udotong, Ime R. Udotong, Offiong U. Eka
Abstract:
The concentrations of heavy metals in sediments of Qua Iboe River Estuary (QIRE) were monitored at four different sampling locations in wet and dry seasons. A preliminary survey to determine the four sampling stations along the river continuum showed that the area spanned between < 0.1% salinity at the control station and 21.5‰ at the fourth station along the river continuum. A preliminary survey to determine the four sampling locations along the river estuary showed variations in salinity and other physicochemical parameters. The estuary was found to be polluted with heavy metals from point and nonpoint sources at varying degrees. Mean values of 7.80 mg/kg, 4.97 mg/kg and 2.80 mg/kg of nickel were obtained for sediment samples from Douglas creek, Qua Iboe and Atlantic sampling locations, respectively in the dry season. The wet season nickel concentrations were however lower. The entire study area was grossly contaminated by iron. At Douglas creek, the concentration of iron in sediment was 9274 ± 9.54 mg/kg while copper, nickel, lead and vanadium were <0.5 mg/kg each as compared to iron. Bioaccumulation was therefore suspected within the study area as values of 31.00 ± 0.79, 36.00 ± 0.10 and 55.00 ± 0.05 mg/kg of zinc were recorded in sediment at Douglas creek, Atlantic and the control sampling locations. The results from this study showed that the source of these heavy metals were from point sources like the corrosion of metal steel pipes from old bridges as well as oily sludge wastes from the Qua Iboe Terminal / tank farm located within the vicinity of the study area.Keywords: heavy metal, Qua Iboe River estuary, seasonal variations, Sediment
Procedia PDF Downloads 370273 Study of Pipes Scaling of Purified Wastewater Intended for the Irrigation of Agadir Golf Grass
Authors: A. Driouiche, S. Mohareb, A. Hadfi
Abstract:
In Morocco’s Agadir region, the reuse of treated wastewater for irrigation of green spaces has faced the problem of scaling of the pipes of these waters. This research paper aims at studying the phenomenon of scaling caused by the treated wastewater from the Mzar sewage treatment plant. These waters are used in the irrigation of golf turf for the Ocean Golf Resort. Ocean Golf, located about 10 km from the center of the city of Agadir, is one of the most important recreation centers in Morocco. The course is a Belt Collins design with 27 holes, and is quite open with deep challenging bunkers. The formation of solid deposits in the irrigation systems has led to a decrease in their lifetime and, consequently, a loss of load and performance. Thus, the sprinklers used in golf turf irrigation are plugged in the first weeks of operation. To study this phenomenon, the wastewater used for the irrigation of the golf turf was taken and analyzed at various points, and also samples of scale formed in the circuits of the passage of these waters were characterized. This characterization of the scale was performed by X-ray fluorescence spectrometry, X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential thermal analysis (DTA), and scanning electron microscopy (SEM). The results of the physicochemical analysis of the waters show that they are full of bicarbonates (653 mg/L), chloride (478 mg/L), nitrate (412 mg/L), sodium (425 mg/L) and calcium (199mg/L). Their pH is slightly alkaline. The analysis of the scale reveals that it is rich in calcium and phosphorus. It is formed of calcium carbonate (CaCO₃), silica (SiO₂), calcium silicate (Ca₂SiO₄), hydroxylapatite (Ca₁₀P₆O₂₆), calcium carbonate and phosphate (Ca₁₀(PO₄) 6CO₃) and silicate calcium and magnesium (Ca₅MgSi₃O₁₂).Keywords: Agadir, irrigation, scaling water, wastewater
Procedia PDF Downloads 120272 Unveiling the Reaction Mechanism of N-Nitroso Dimethyl Amine Formation from Substituted Hydrazine Derivatives During Ozonation: A Computational Study
Authors: Rehin Sulay, Anandhu Krishna, Jintumol Mathew, Vibin Ipe Thomas
Abstract:
N-Nitrosodimethyl amine, the simplest member of the N-Nitrosoamine family, is a carcinogenic and mutagenic agent that has gained considerable research interest owing to its toxic nature. Ozonation of industrially important hydrazines such as unsymmetrical dimethylhydrazine (UDMH) or monomethylhydrazine (MMH) has been associated with NDMA formation and accumulation in the environment. UDMH/MMH - ozonation also leads to several other transformation products such as acetaldehyde dimethyl hydrazone (ADMH), tetramethyl tetra azene (TMT), diazomethane, methyl diazene, etc, which can be either precursors or competitors for NDMA formation.In this work, we explored the formation mechanism of ADMH and TMT from UDMH-ozonation and their further oxidation to NDMA using the second-order Moller Plesset perturbation theory employing the 6-311G(d) basis set. We have also investigated how MMH selectively forms methyl diazene and diazomethane under normal conditions and NDMA in the presence of excess ozone. Our calculations indicate that the reactions proceed via an initial H abstraction from the hydrazine –NH2 group followed by the oxidation of the generated N-radical species. The formation of ADMH from the UDMH-ozone reaction involves an acetaldehyde intermediate, which then reacts with a second UDMH molecule to generate ADMH. The preferable attack of ozone molecule on N=C bond of ADMH generates DMAN intermediate, which subsequently undergoes oxidation to form NDMA. Unlike other transformation products, TMT formation occurs via the dimerization of DMAN. Though there exist a N=N bonds in the TMT, which are preferable attacking sites for ozone, experimental studies show the lower yields of NDMA formation, which corroborates with the high activation barrier required for the process(42kcal/mol).Overall, our calculated results agree well with the experimental observations and rate constants. Computational calculations bring insights into the electronic nature and kinetics of the elementary reactions of this pathway, enabled by computed energies of structures that are not possible to access experimentally.Keywords: reaction mechanism, ozonation, substituted hydrazine, transition state
Procedia PDF Downloads 81271 Formulation and Evaluation of TDDS for Sustained Release Ondansetron HCL Patches
Authors: Baljinder Singh, Navneet Sharma
Abstract:
The skin can be used as the site for drug administration for continuous transdermal drug infusion into the systemic circulation. For the continuous diffusion/penetration of the drugs through the intact skin surface membrane-moderated systems, matrix dispersion type systems, adhesive diffusion controlled systems and micro reservoir systems have been developed. Various penetration enhancers are used for the drug diffusion through skin. In matrix dispersion type systems, the drug is dispersed in the solvent along with the polymers and solvent allowed to evaporate forming a homogeneous drug-polymer matrix. Matrix type systems were developed in the present study. In the present work, an attempt has been made to develop a matrix-type transdermal therapeutic system comprising of ondansetron-HCl with different ratios of hydrophilic and hydrophobic polymeric combinations using solvent evaporation technique. The physicochemical compatibility of the drug and the polymers was studied by infrared spectroscopy. The results obtained showed no physical-chemical incompatibility between the drug and the polymers. The patches were further subjected to various physical evaluations along with the in-vitro permeation studies using rat skin. On the basis of results obtained form the in vitro study and physical evaluation, the patches containing hydrophilic polymers i.e. polyvinyl alcohol and poly vinyl pyrrolidone with oleic acid as the penetration enhancer(5%) were considered as suitable for large scale manufacturing with a backing layer and a suitable adhesive membrane.Keywords: transdermal drug delivery, penetration enhancers, hydrophilic and hydrophobic polymers, ondansetron HCl
Procedia PDF Downloads 322270 H₆P₂W₁₈O₆₂.14H₂O Catalyzed Synthesis and X-Ray Study of α-Aminophosphonates
Authors: Sarra Boughaba
Abstract:
The α-aminophosphonates have received considerable attention in organic and medicinal chemistry because of their structural resemblance with α-amino acids. They are used as antitumor agents, anti-inflammatory and antibiotics. As a result, a number of procedures have been developed for their synthesis. However, many of these methods suffer from some disadvantages such as long reaction times, environmental pollution caused by utilization of organic solvents, and expensive catalyst. On the other hand, thiazole components, particularly 2-aminothiazole is an important class of heterocyclic compounds. They appear in the structure of natural products and biologically actives compounds, thiamine (vitamin-B), and some antibiotics drugs (penicillin, micrococcin). In the past few years, heteropolyacids have received great attention as environmentally benign catalysts for organic synthetic processes, they possess unique physicochemical properties, such as super-acidity, high thermal and chemical stability, ability to accept and release electrons and high proton mobility, and the possibility of varying their acidity and oxidizing potential. In this study, an efficient and eco-friendly process has been developed for the synthesis of α-aminophosphonates containing aminothiazole moiety via Kabachnik-Field reaction catalyzed by H₆P₂W₁₈O₆₂.14H₂O as reusable catalyst, by condensation of aromatic aldehydes, 2-aminothiazole and triethylphosphite under free conditions. The X-ray crystallographic data of obtained compounds were provided. The main advantages of our protocol include the absence of solvent in the reaction, easy work-up, short reaction time, atom-economy and reusability of catalyst without significant loss of its activity.Keywords: aminophosphonates, green synthesis, H₆P₂W₁₈O₆₂.14H₂O catalyst, x-ray study
Procedia PDF Downloads 113269 A Study on the Effect of Cod to Sulphate Ratio on Performance of Lab Scale Upflow Anaerobic Sludge Blanket Reactor
Authors: Neeraj Sahu, Ahmad Saadiq
Abstract:
Anaerobic sulphate reduction has the potential for being effective and economically viable over conventional treatment methods for the treatment of sulphate-rich wastewater. However, a major challenge in anaerobic sulphate reduction is the diversion of a fraction of organic carbon towards methane production and some minor problem such as odour problems, corrosion, and increase of effluent chemical oxygen demand. A high-rate anaerobic technology has encouraged researchers to extend its application to the treatment of complex wastewaters with relatively low cost and energy consumption compared to physicochemical methods. Therefore, the aim of this study was to investigate the effects of COD/SO₄²⁻ ratio on the performance of lab scale UASB reactor. A lab-scale upflow anaerobic sludge blanket (UASB) reactor was operated for 170 days. In which first 60 days, for successful start-up with acclimation under methanogenesis and sulphidogenesis at COD/SO₄²⁻ of 18 and were operated at COD/SO₄²⁻ ratios of 12, 8, 4 and 1 to evaluate the effects of the presence of sulfate on the reactor performance. The reactor achieved maximum COD removal efficiency and biogas evolution at the end of acclimation (control). This phase lasted 53 days with 89.5% efficiency. The biogas was 0.6 L/d at (OLR) of 1.0 kg COD/m³d when it was treating synthetic wastewater with effective volume of reactor as 2.8 L. When COD/SO₄²⁻ ratio changed from 12 to 1, slight decrease in COD removal efficiencies (76.8–87.4%) was observed, biogas production decreased from 0.58 to 0.32 L/d, while the sulfate removal efficiency increased from 42.5% to 72.7%.Keywords: anaerobic, chemical oxygen demand, organic loading rate, sulphate, up-flow anaerobic sludge blanket reactor
Procedia PDF Downloads 218268 Preparation and Functional Properties of Synbiotic Yogurt Fermented with Lactobacillus brevis PML1 Derived from a Fermented Cereal-Dairy Product
Authors: Farideh Tabatabei-Yazdi, Fereshteh Falah, Alireza Vasiee
Abstract:
Nowadays, production of functional foods has become very essential. Inulin is one of the most functional hydrocolloid compounds used in such products. In the present study, the production of a synbiotic yogurt containing 1, 2.5, and 5% (w/v) inulin has been investigated. The yogurt was fermented with Lactobacillus brevis PML1 derived from Tarkhineh, an Iranian cereal-dairy fermented food. Furthermore, the physicochemical properties, antioxidant activity, sensory attributes, and microbial viability properties were investigated on the 0th, 7th, and 14th days of storage after fermentation. The viable cells of L. brevis PML1 reached 108 CFU/g, and the product resisted to simulated digestive juices. Moreover, the synbiotic yogurt impressively increased the production of antimicrobial compounds and had the most profound antimicrobial effect on S. typhimurium. The physiochemical properties were in the normal range, and the fat content of the synbiotic yogurt was reduced remarkably. The antioxidant capacity of the fermented yogurt was significantly increased (p<0:05), which was equal to those of DPPH (69:18±1:00%) and BHA (89:16±2:00%). The viability of L. brevis PML1 was increased during storage. Sensory analysis showed that there were significant differences in terms of the impressive parameters between the samples and the control (p<0:05). Addition of 2.5% inulin not only improved the physical properties but also retained the viability of the probiotic after 14 days of storage, in addition to the viability of L. brevis with a viability count above 6 log CFU/g in the yogurt. Therefore, a novel synbiotic product containing L. brevis PML1, which can exert the desired properties, can be used as a suitable carrier for the delivery of the probiotic strain, exerting its beneficial health effects.Keywords: functional food, lactobacillus brevis, symbiotic yogurt, physiochemical properties
Procedia PDF Downloads 91267 Characterisation of Fractions Extracted from Sorghum Byproducts
Authors: Prima Luna, Afroditi Chatzifragkou, Dimitris Charalampopoulos
Abstract:
Sorghum byproducts, namely bran, stalk, and panicle are examples of lignocellulosic biomass. These raw materials contain large amounts of polysaccharides, in particular hemicelluloses, celluloses, and lignins, which if efficiently extracted, can be utilised for the development of a range of added value products with potential applications in agriculture and food packaging sectors. The aim of this study was to characterise fractions extracted from sorghum bran and stalk with regards to their physicochemical properties that could determine their applicability as food-packaging materials. A sequential alkaline extraction was applied for the isolation of cellulosic, hemicellulosic and lignin fractions from sorghum stalk and bran. Lignin content, phenolic content and antioxidant capacity were also investigated in the case of the lignin fraction. Thermal analysis using differential scanning calorimetry (DSC) and X-Ray Diffraction (XRD) revealed that the glass transition temperature (Tg) of cellulose fraction of the stalk was ~78.33 oC at amorphous state (~65%) and water content of ~5%. In terms of hemicellulose, the Tg value of stalk was slightly lower compared to bran at amorphous state (~54%) and had less water content (~2%). It is evident that hemicelluloses generally showed a lower thermal stability compared to cellulose, probably due to their lack of crystallinity. Additionally, bran had higher arabinose-to-xylose ratio (0.82) than the stalk, a fact that indicated its low crystallinity. Furthermore, lignin fraction had Tg value of ~93 oC at amorphous state (~11%). Stalk-derived lignin fraction contained more phenolic compounds (mainly consisting of p-coumaric and ferulic acid) and had higher lignin content and antioxidant capacity compared to bran-derived lignin fraction.Keywords: alkaline extraction, bran, cellulose, hemicellulose, lignin, stalk
Procedia PDF Downloads 299266 Devulcanization of Waste Rubber Tyre Utilizing Deep Eutectic Solvents and Ultrasonic Energy
Authors: Ricky Saputra, Rashmi Walvekar, Mohammad Khalid, Kaveh Shahbaz, Suganti Ramarad
Abstract:
This particular study of interest aims to study the effect of coupling ultrasonic treatment with eutectic solvents in devulcanization process of waste rubber tyre. Specifically, three different types of Deep Eutectic Solvents (DES) were utilized, namely ChCl:Urea (1:2), ChCl:ZnCl₂ (1:2) and ZnCl₂:urea (2:7) in which their physicochemical properties were analysed and proven to have permissible water content that is less than 3.0 wt%, degradation temperature below 200ᵒC and freezing point below 60ᵒC. The mass ratio of rubber to DES was varied from 1:20-1:40, sonicated for 1 hour at 37 kHz and heated at variable time of 5-30 min at 180ᵒC. Energy dispersive x-rays (EDX) results revealed that the first two DESs give the highest degree of sulphur removal at 74.44 and 76.69% respectively with optimum heating time at 15 minutes whereby if prolonged, reformation of crosslink network would be experienced. Such is supported by the evidence shown by both FTIR and FESEM results where di-sulfide peak reappears at 30 minutes and morphological structures from 15 to 30 minutes change from smooth with high voidage to rigid with low voidage respectively. Furthermore, TGA curve reveals similar phenomena whereby at 15 minutes thermal decomposition temperature is at the lowest due to the decrease of molecular weight as a result of sulphur removal but increases back at 30 minutes. Type of bond change was also analysed whereby it was found that only di-sulphide bond was cleaved and which indicates partial-devulcanization. Overall, the results show that DES has a great potential to be used as devulcanizing solvent.Keywords: crosslink network, devulcanization, eutectic solvents, reformation, ultrasonic
Procedia PDF Downloads 173265 In Vitro Digestibility of Grains and Straw of Seventeen Ecotypes of Bitter Vetch (Vicia ervilia) in the North of Morocco
Authors: Boukrouh Soumaya, Cabaraux Jean-François, Avril Claire, Noutfia Ali, Chentouf Mouad
Abstract:
The introduction of marginal leguminous forage species in the diet of ruminants are of great importance. Bitter vetch is a good source of proteins, highly resistant against drought and poor soil conditions. Accordingly; two years field trials (2018/2019 and 2019-2020) were conducted to determine the digestibility of straw and grains of 17 promising bitter vetch ecotypes(Vicia ervilia) in the north of Morocco. In vitro dry and organic matter digestibility, gas production, and kinetics of fermentation of grains and straw were evaluated using gas production technique, pepsin-cellulase enzymatic digestibility of DM (CDDM)and OM (CDOM), as well as protease enzymatic CP degradation (CPD) and in vitro true digestibility, were performed using DAISYII Incubator. In vitro digestibility was performed using gas production method of (Menke et al., 1979) improved by Menke and Steingass (1988). Samples were incubated in glass syringes that contained rumen fluid and incubation solution that conserved in water bath in 39°C during 72 hours. Gas production was recorded after 2, 4, 8, 12, 24, 48, and 72 hours. Studied digestibility parameters were dry and organic matter digestibility, microbial biomass production, partitioning factor, and volatile fatty acids. Enzymatic dry matter digestibility was different (p < 0.05) among grains and straw for all ecotypes. It varied from 804.1 to 957.7 g/kg DM and 270.4 to 412.3 g/kg DM for grains and straw, respectively. Metabolizable energy varied between 11.7 to 14.3 MJ/kg DM and 2.6 to 5.0 MJ/kg DM for grains and straw, respectively. Potential gas production (A), the rate constants (c and d), and lag times of grains and straws from different bitter vetch ecotypes were different (p > 0.05). The results emphasized that in any evaluation of bitter vetch ecotypes, where straw of this legume seed is used as an animal feed, not only seed yield but also yield and quality of straw should be taken into consideration, particularly in areas where straw from this legume is considered as an important feedstuff for ruminants. Enzymatic digestibility was lower than in vitro digestibility by gaz production and by the DAISYII method because rumen fluid contains bacteria than increase digestibility. There was no difference between in vitro digestibility by gaz production and the DAISY II method. The DAISY II method can be used to increase labor efficiency in the in vitro DM digestibility analysis if gaz production is not necessary for analysis.Keywords: bitter vetch, grains, straw, ecotype, in vitro digestibility, gaz production, enzymatic digestibility
Procedia PDF Downloads 177264 Evaluation of Limestone as Self-Curing Aggregate for Concretes in the Southeast of Yucatan Peninsula
Authors: D. G. Rejon-Parra, B. Escobar-Morales, Romeli Barbosa, J. C. Cruz
Abstract:
In the southeast of Yucatan Peninsula, sedimentary limestone has different degrees of compaction. Due to its recent geological formation (Quaternary) and weathering effects causing an affordable aggregate for local manufacturers of concrete. It is characterized as lightweight aggregates (average density of 2,50), susceptible to abrasion and varying porosities (water content exceeding 7,50 % of its mass, in saturated condition). In this study, local aggregates with two moisture conditions (saturated and dry), have been examined in order to compare them for optimizing the performance of concrete. It is possible that these aggregates favour a phenomenon of mass transport (self-curing by porous aggregate); influencing the water reactions to form crystalline and gel hydration products. Based on the ACI methodology, a concrete mixture of 250 kg/cm2 was designed, with portland blended cement 30R. The bond between the mortar and the coarse aggregate was characterized as physicochemical based on trials which were carefully observed during time span of 28 days. The BET technique was used to analyse the micro porosity and surface areas of contact of the different crystalline phases of the limestone. Its chemical composition and crystal structures were verified with scanning electron microscopy SEM-EDS. On the third day, the samples with saturated aggregate reached 237 kg/cm2 of resistence, nearly the design strength; while samples with dry aggregate, exceeded the design strength, with a capacity of 308 kg/cm2. Aggregates in dry conditions demand a high quantity of water in the initial mixture, causing high resistance at the early stages. In saturated conditions, the development of resistance is progressive but constant.Keywords: concrete, internal curing, limestone aggregate, porosity
Procedia PDF Downloads 389263 The Role of Long-Chain Ionic Surfactants on Extending Drug Delivery from Contact Lenses
Authors: Cesar Torres, Robert Briber, Nam Sun Wang
Abstract:
Eye drops are the most commonly used treatment for short-term and long-term ophthalmic diseases. However, eye drops could deliver only about 5% of the functional ingredients contained in a burst dosage. To address the limitations of eye drops, the use of therapeutic contact lenses has been introduced. Drug-loaded contact lenses provide drugs a longer residence time in the tear film and hence, decrease the potential risk of side effects. Nevertheless, a major limitation of contact lenses as drug delivery devices is that most of the drug absorbed is released within the first few hours. This fact limits their use for extended release. The present study demonstrates the application of long-alkyl chain ionic surfactants on extending drug release kinetics from commercially available silicone hydrogel contact lenses. In vitro release experiments were carried by immersing drug-containing contact lenses in phosphate buffer saline at physiological pH. The drug concentration as a function of time was monitored using ultraviolet-visible spectroscopy. The results of the study demonstrate that release kinetics is dependent on the ionic surfactant weight percent in the contact lenses, and on the length of the hydrophobic alkyl chain of the ionic surfactants. The use of ionic surfactants in contact lenses can extend the delivery of drugs from a few hours to a few weeks, depending on the physicochemical properties of the drugs. Contact lenses embedded with ionic surfactants could be potential biomaterials to be used for extended drug delivery and in the treatment of ophthalmic diseases. However, ocular irritation and toxicity studies would be needed to evaluate the safety of the approach.Keywords: contact lenses, drug delivery, controlled release, ionic surfactant
Procedia PDF Downloads 143262 Composition, Abundance and Diversity of Zooplankton in Sarangani Bay, Sarangani Province, Philippines
Authors: Jeter Canete, Noreen Joyce Estrella, Yedda Sachi Patrice Madelo
Abstract:
Zooplankton plays a crucial role in aquatic ecosystems and a number of water parameters involved in it. Despite their relevance, there is inadequate information about zooplankton communities in Sarangani Bay, Sarangani Province: one of the most essential waterbodies in Mindanao. The aim of the present study was to determine the composition, abundance, and diversity of zooplankton as well as to provide more recent data about the physico-chemical characteristics of Sarangani Bay. Zooplankton samples were collected by vertical hauls using a zooplankton net (mouth diameter: 0.5m; mesh size opening: round, 350μm) in three stations in the coastal waters of Alabel, Malapatan, and Maasim during November 2018. A total of 74 species of zooplankton belonging mainly to Kingdom Protozoa, Phylum Arthropoda, Chaetognatha, and Chordata were identified. Results showed a total zooplankton abundance of 1,984,166 ind/m³ with the highest count recorded at Malapatan (717,169 ind/m³) and the lowest at Maasim (624,411 ind/m³). Among 22 zooplankton groups identified, subclass Copepoda was found to be the most dominant (73.10%), followed by Appendicularia (12.18%) and Vertebrata (3.54%). Diversity analysis revealed an even distribution of species and a diverse ecosystem in all stations sampled. Correlation analysis indicated a strong relationship between zooplankton abundance and physico-chemical parameters. Overall, the physico-chemical profile of Sarangani Bay did not differ from the standards set by DENR, and analysis of the zooplankton communities revealed that Sarangani Bay favorably supports marine organisms to flourish. The findings of this study provide useful knowledge on zooplankton communities and can be used to create management strategies to protect the aquatic biodiversity in Sarangani Bay.Keywords: aquatic biomonitoring, biodiversity, physicochemical analysis, population survey, Sarangani Bay, Sarangani Province, zooplankton
Procedia PDF Downloads 326261 Prediction of Antibacterial Peptides against Propionibacterium acnes from the Peptidomes of Achatina fulica Mucus Fractions
Authors: Suwapitch Chalongkulasak, Teerasak E-Kobon, Pramote Chumnanpuen
Abstract:
Acne vulgaris is a common skin disease mainly caused by the Gram–positive pathogenic bacterium, Propionibacterium acnes. This bacterium stimulates inflammation process in human sebaceous glands. Giant African snail (Achatina fulica) is alien species that rapidly reproduces and seriously damages agricultural products in Thailand. There were several research reports on the medical and pharmaceutical benefits of this snail mucus peptides and proteins. This study aimed to in silico predict multifunctional bioactive peptides from A. fulica mucus peptidome using several bioinformatic tools for determination of antimicrobial (iAMPpred), anti–biofilm (dPABBs), cytotoxic (Toxinpred), cell membrane penetrating (CPPpred) and anti–quorum sensing (QSPpred) peptides. Three candidate peptides with the highest predictive score were selected and re-designed/modified to improve the required activities. Structural and physicochemical properties of six anti–P. acnes (APA) peptide candidates were performed by PEP–FOLD3 program and the five aforementioned tools. All candidates had random coiled structure and were named as APA1–ori, APA2–ori, APA3–ori, APA1–mod, APA2–mod and APA3–mod. To validate the APA activity, these peptide candidates were synthesized and tested against six isolates of P. acnes. The modified APA peptides showed high APA activity on some isolates. Therefore, our biomimetic mucus peptides could be useful for preventing acne vulgaris and further examined on other activities important to medical and pharmaceutical applications.Keywords: Propionibacterium acnes, Achatina fulica, peptidomes, antibacterial peptides, snail mucus
Procedia PDF Downloads 133260 Evaluation of Two Functional Food Products: Tortillas and Yogurt Based on Spirulina platensis and Haematococcus pluvialis
Authors: Raul Alexis Sanchez Cornejo, Elena Ivonne Mancera Andrade, Gibran Sidney Aleman Nava, Angel Josue Arteaga Garces, Roberto Parra Saldivar
Abstract:
An unhealthy diet is one of the main factors for a wide range of chronical diseases such as diabetes, obesity, cancer, cardiovascular diseases, among others. Nowadays, there is a current need to provide innovate healthy products to people in order to decrease the number of people with unhealthy diet. This study focuses on the production of two food products based on two microalgae strains: Tortillas with powder of Haematococcus pluvialis and Spirulina platensis biomass and yogurt with microencapsulated biomass of the same strains. S. platensis has been used widely as food supplements in a form of powder and pills due to its high content in proteins and fatty acids. Haematococcus pluvialis has been recognized for its ability to produce high-added value products under stressful conditions such as antioxidants (astaxanthin). Despite the benefits that those microalgae have, few efforts have been done to use them in food products. The main objective of this work is to evaluate the nutritional properties such as protein content, lipid fraction, carbohydrates, antioxidants,, and vitamins, that these microalgae strains provide to the food product. Additionally, physicochemical, and sensory evaluation were assessed to evaluate the quality of the product. The results obtained will dictate the feasibility of the product to be commercialized. These novel products will have the ability to change the nutritional intake and strength the health of the consumers.Keywords: functional food, Haematococcus pluvialis, microalgae, Spirulina platensis, tortilla, yogurt
Procedia PDF Downloads 313259 Application of New Sprouted Wheat Brine for Delicatessen Products From Horse Meat, Beef and Pork
Authors: Gulmira Kenenbay, Urishbay Chomanov, Aruzhan Shoman, Rabiga Kassimbek
Abstract:
The main task of the meat-processing industry is the production of meat products as the main source of animal protein, ensuring the vital activity of the human body, in the required volumes, high quality, diverse assortment. Providing the population with high-quality food products what are biologically full, balanced in composition of basic nutrients and enriched by targeted physiologically active components, is one of the highest priority scientific and technical problems to be solved. In this regard, the formulation of a new brine from sprouted wheat for meat delicacies from horse meat, beef and pork has been developed. The new brine contains flavored aromatic ingredients, juice of the germinated wheat and vegetable juice. The viscosity of meat of horse meat, beef and pork were studied during massaging. Thermodynamic indices, water activity and binding energy of horse meat, beef and pork with application of new brine are investigated. A recipe for meat products with vegetable additives has been developed. Organoleptic evaluation of meat products was carried out. Physicochemical parameters of meat products with vegetable additives are carried out. Analysis of the obtained data shows that the values of the index aw (water activity) and the binding energy of moisture in the experimental samples of meat products are higher than in the control samples. It has been established by investigations that with increasing water activity and the binding energy of moisture, the tenderness of ready meat delicacies increases with the use of a new brine.Keywords: compounding, functional products, delicatessen products, brine, vegetable additives
Procedia PDF Downloads 178258 Electrospun Fibers Made from Biopolymers (Cellulose Acetate/Chitosan) for Metals Recovery
Authors: Mauricio Gómez, Esmeralda López, Ian Becar, Jaime Pizarro, Paula A. Zapata
Abstract:
A biodegradable material is developed with adsorptive capacity for metals ion for intended use in mining tailings mitigating the environmental impact with economic retribution, two types of fibers were elaborated by electrospinning: (1) a cellulose acetate (CA) matrix and (2) a cellulose acetate (CA)/chitosan (CH) matrix evaluating the effect of CH in CA on its physicochemical properties. Through diffuse reflectance infrared fourier transform spectroscopy (DRIFTS) the incorporation of chitosan in the matrix was identified, observing the band of the amino group at 1500 - 1600 [cm-1]. By scanning electron microscopy (SEM), Hg porosimetry, and CO2 isotherm at 273 [K], the intrafiber microporosity and interfiber macroporosity were identified, with an increase in the distribution of macropores for CA/CH fibers. In the tensile test, CH into the matrix produces a more ductile and tenacious behavior, where the % elongation at break increased by 33% with the other parameters constant. Thermal analysis by differential scanning calorimetry (DSC) and Thermogravimetric Analysis (TGA) showed that the incorporation of chitosan produces higher retention of water molecules due to the functional groups (amino groups (- NH3)), but there is a decrease in the specific heat and thermoplastic properties of the matrix since the glass transition temperature and softening temperature disappear. The effect of the optimum pH for CA and CA/CH fibers were studied in a batch system. In the adsorption kinetic study, the best isotherm model adapted to the experimental results corresponds to the Sips model and the kinetics corresponds to pseudo-second orderKeywords: environmental materials, wastewater treatment, electrospun fibers, biopolymers (cellulose acetate/chitosan), metals recovery
Procedia PDF Downloads 80257 Irrigation Challenges, Climate Change Adaptation and Sustainable Water Usage in Developing Countries. A Case Study, Nigeria
Authors: Faith Eweluegim Enahoro-Ofagbe
Abstract:
Worldwide, every nation is experiencing the effects of global warming. In developing countries, due to the heavy reliance on agriculture for socioeconomic growth and security, among other things, these countries are more affected by climate change, particularly with the availability of water. Floods, droughts, rising temperatures, saltwater intrusion, groundwater depletion, and other severe environmental alterations are all brought on by climatic change. Life depends on water, a vital resource; these ecological changes affect all water use, including agriculture and household water use. Therefore adequate and adaptive water usage strategies for sustainability are essential in developing countries. Therefore, this paper investigates Nigeria's challenges due to climate change and adaptive techniques that have evolved in response to such issues to ensure water management and sustainability for irrigation and provide quality water to residents. Questionnaires were distributed to respondents in the study area, central Nigeria, for quantitative evaluation of sustainable water resource management techniques. Physicochemical analysis was done, collecting soil and water samples from several locations under investigation. Findings show that farmers use different methods, ranging from intelligent technologies to traditional strategies for water resource management. Also, farmers need to learn better water resource management techniques for sustainability. Since more residents obtain their water from privately held sources, the government should enforce legislation to ensure that private borehole construction businesses treat water sources of poor quality before the general public uses them.Keywords: developing countries, irrigation, strategies, sustainability, water resource management, water usage
Procedia PDF Downloads 115256 Determination of Cyclic Citrullinated Peptide Antibodies on Quartz Crystal Microbalance Based Nanosensors
Authors: Y. Saylan, F. Yılmaz, A. Denizli
Abstract:
Rheumatoid arthritis (RA) which is the most common autoimmune disorder of the body's own immune system attacking healthy cells. RA has both articular and systemic effects.Until now romatiod factor (RF) assay is used the most commonly diagnosed RA but it is not specific. Anti-cyclic citrullinated peptide (anti-CCP) antibodies are IgG autoantibodies which recognize citrullinated peptides and offer improved specificity in early diagnosis of RA compared to RF. Anti-CCP antibodies have specificity for the diagnosis of RA from 91 to 98% and the sensitivity rate of 41-68%. Molecularly imprinted polymers (MIP) are materials that are easy to prepare, less expensive, stable have a talent for molecular recognition and also can be manufactured in large quantities with good reproducibility. Molecular recognition-based adsorption techniques have received much attention in several fields because of their high selectivity for target molecules. Quartz crystal microbalance (QCM) is an effective, simple, inexpensive approach mass changes that can be converted into an electrical signal. The applications for specific determination of chemical substances or biomolecules, crystal electrodes, cover by the thin films for bind or adsorption of molecules. In this study, we have focused our attention on combining of molecular imprinting into nanofilms and QCM nanosensor approaches and producing QCM nanosensor for anti-CCP, chosen as a model protein, using anti-CCP imprinted nanofilms. For this aim, anti-CCP imprinted QCM nanosensor was characterized by Fourier transform infrared spectroscopy, atomic force microscopy, contact angle measurements and ellipsometry. The non-imprinted nanosensor was also prepared to evaluate the selectivity of the imprinted nanosensor. Anti-CCP imprinted QCM nanosensor was tested for real-time detection of anti-CCP from aqueous solution. The kinetic and affinity studies were determined by using anti-CCP solutions with different concentrations. The responses related with mass shifts (Δm) and frequency shifts (Δf) were used to evaluate adsorption properties and to calculate binding (Ka) and dissociation (Kd) constants. To show the selectivity of the anti-CCP imprinted QCM nanosensor, competitive adsorption of anti-CCP and IgM was investigated.The results indicate that anti-CCP imprinted QCM nanosensor has a higher adsorption capabilities for anti-CCP than for IgM, due to selective cavities in the polymer structure.Keywords: anti-CCP, molecular imprinting, nanosensor, rheumatoid arthritis, QCM
Procedia PDF Downloads 362255 Removal of Diesel by Soil Washing Technologies Using a Non-Ionic Surfactant
Authors: Carolina Guatemala, Josefina Barrera
Abstract:
A large number of soils highly polluted with recalcitrant hydrocarbons and the limitation of the current bioremediation methods continue being the drawback for an efficient recuperation of these under safe conditions. In this regard, soil washing by degradable surfactants is an alternative option knowing the capacity of surfactants to desorb oily organic compounds. The aim of this study was the establishment of the washing conditions of a soil polluted with diesel, using a nonionic surfactant. A soil polluted with diesel was used. This was collected near to a polluted railway station zone. The soil was dried at room temperature and sieved to a mesh size 10 for its physicochemical and biological characterization. Washing of the polluted soil was performed with surfactant solutions in a 1:5 ratio (5g of soil per 25 mL of the surfactant solution). This was carried out at 28±1 °C and 150 rpm for 72 hours. The factors tested were the Tween 80 surfactant concentration (1, 2, 5 and 10%) and the treatment time. Residual diesel concentration was determined every 24 h. The soil was of a sandy loam texture with a low concentration of organic matter (3.68%) and conductivity (0.016 dS.m- 1). The soil had a pH of 7.63 which was slightly alkaline and a Total Petroleum Hydrocarbon content (TPH) of 11,600 ± 1058.38 mg/kg. The high TPH content could explain the low microbial count of 1.1105 determined as UFC per gram of dried soil. Within the range of the surfactant concentration tested for washing the polluted soil under study, TPH removal increased proportionally with the surfactant concentration. 5080.8 ± 422.2 ppm (43.8 ± 3.64 %) was the maximal concentration of TPH removed after 72 h of contact with surfactant pollution at 10%. Despite the high percentage of hydrocarbons removed, it is assumed that a higher concentration of these could be removed if the washing process is extended or is carried out by stages. Soil washing through the use of surfactants as a desorbing agent was found to be a viable and effective technology for the rapid recovery of soils highly polluted with recalcitrant hydrocarbons.Keywords: diesel, hydrocarbons, soil washing, tween 80
Procedia PDF Downloads 142254 Rare-Earth Ions Doped Lithium Niobate Crystals: Luminescence and Raman Spectroscopy
Authors: Ninel Kokanyan, Edvard Kokanyan, Anush Movsesyan, Marc D. Fontana
Abstract:
Lithium Niobate (LN) is one of the widely used ferroelectrics having a wide number of applications such as phase-conjugation, holographic storage, frequency doubling, SAW sensors. Furthermore, the possibility of doping with rare-earth ions leads to new laser applications. Ho and Tm dopants seem interesting due to laser emission obtained at around 2 µm. Raman spectroscopy is a powerful spectroscopic technique providing a possibility to obtain a number of information about physicochemical and also optical properties of a given material. Polarized Raman measurements were carried out on Ho and Tm doped LN crystals with excitation wavelengths of 532nm and 785nm. In obtained Raman anti-Stokes spectra, we detect expected modes according to Raman selection rules. In contrast, Raman Stokes spectra are significantly different compared to what is expected by selection rules. Additional forbidden lines are detected. These lines have quite high intensity and are well defined. Moreover, the intensity of mentioned additional lines increases with an increase of Ho or Tm concentrations in the crystal. These additional lines are attributed to emission lines reflecting the photoluminescence spectra of these crystals. It means that in our case we were able to detect, within a very good resolution, in the same Stokes spectrum, the transitions between the electronic states, and the vibrational states as well. The analysis of these data is reported as a function of Ho and Tm content, for different polarizations and wavelengths, of the incident laser beam. Results also highlight additional information about π and σ polarizations of crystals under study.Keywords: lithium niobate, Raman spectroscopy, luminescence, rare-earth ions doped lithium niobate
Procedia PDF Downloads 221253 Application of Microparticulated Whey Proteins in Reduced-Fat Yogurt through Hot-Extrusion: Influence on Physicochemical and Sensory Properties
Authors: M. K. Hossain, J. Keidel, O. Hensel, M. Diakite
Abstract:
Fat reduced dairy products are holding a potential market due to health reason. Due to less creamy, and pleasantness, reduced and/or low-fat dairy products are getting less consumer acceptance whereas the fat molecule provides smooth, creamy and a pleasant mouthfeel in dairy products especially yogurt & ice cream. This study was aimed to investigate whether the application of microparticulated whey proteins (MWPs) processed by extrusion cooking, the reduced fat yogurt can achieve similar or higher creaminess compared to whole milk (3.8% fat) and skimmed milk (0.5% fat) yogurt. Full cream and skimmed milk were used to prepare natural stirred yogurt, as well as the dry matter content, also adjusted up to 16% with skimmed milk powder. Whey protein concentrates (WPC80) were used to produce MWPs in particle size of d50 > 5 µm, d50 3<5 µm and d50 < 3 µm through the hot-extrusion process with a screw speed of 400, 600 and 1000 rpm respectively. Furthermore, the commercially available microparticulated whey protein called Simplesse® was also applied in order to compare with extruded MWPs. The rheological and sensory properties of yogurt were assessed, and data were analyzed statistically. The applications of extruded MWPs with 600 and 1000 rpm were achieved significantly (p < 0.05) higher creaminess and preference compared to the whole and skimmed milk yogurt whereas, 400 rpm got lower preference. On the other hand, Simplesse® obtained the lowest creaminess and preference compared to other yogurts, although the contribution of dry matter in yogurt was same as extruded MWPs. The creaminess and viscosities were strongly (r = 0.62) correlated, furthermore, the viscosity from sensory evaluation and the dynamic viscosity of yogurt was also significantly (r = 0.72) correlated which clarifies that the performance of sensory panelists as well as the quality of the products.Keywords: microparticulation, hot-extrusion, reduced-fat yogurt, whey protein concentrate
Procedia PDF Downloads 130252 Enhancing Vehicle Efficiency Through Vapor Absorption Refrigeration Systems
Authors: Yoftahe Nigussie Worku
Abstract:
This paper explores the utilization of vapor absorption refrigeration systems (VARS) as an alternative to the conventional vapor compression refrigerant systems (VCRS) in vehicle air conditioning (AC) systems. Currently, most vehicles employ VCRS, which relies on engine power to drive the compressor, leading to additional fuel consumption. In contrast, VARS harnesses low-grade heat, specifically from the exhaust of high-power internal combustion engines, reducing the burden on the vehicle's engine. The historical development of vapor absorption technology is outlined, dating back to Michael Faraday's discovery in 1824 and the subsequent creation of the first vapor absorption refrigeration machine by Ferdinand Carre in 1860. The paper delves into the fundamental principles of VARS, emphasizing the replacement of mechanical processes with physicochemical interactions, utilizing heat rather than mechanical work. The study compares the basic concepts of the current vapor compression systems with the proposed vapor absorption systems, highlighting the efficiency gains achieved by eliminating the need for engine-driven compressors. The vapor absorption refrigeration cycle (VARC) is detailed, focusing on the generator's role in separating and vaporizing ammonia, chosen for its low-temperature evaporation characteristics. The project's statement underscores the need for increased efficiency in vehicle AC systems beyond the limitations of VCRS. By introducing VARS, driven by low-grade heat, the paper advocates for a reduction in engine power consumption and, consequently, a decrease in fuel usage. This research contributes to the ongoing efforts to enhance sustainability and efficiency in automotive climate control systems.Keywords: VCRS, VARS, efficiency, sustainability
Procedia PDF Downloads 74251 Evaluation of Central Nervous System Activity of Synthesized 5, 5-Diphenylimidazolidine-2, 4-Dione Derivatives
Authors: Shweta Verma
Abstract:
Background: Epilepsy is a chronic non-communicable central nervous system (CNS) disorder which affects a large population of all ages. Different classes of drugs are used for the treatment of this neurological disorder, but due to augmented drug resistance and side effects, these drugs become incompetent. Therefore, we design the synthesis of ten new derivatives of Phenytoin. The moiety of Phenytoin was hybridized with different phenols by using three step approach. The synthesized molecules were then investigated for different physicochemical parameters, such as Log P values using diverse software programs and to predict the potential to cross the blood-brain barrier. Objective: The Phenytoin derivatives were designed, synthesized, and characterized to meet the structural necessities indispensable for antiepileptic activity. Method: Firstly, the chloroacetylation of the 5,5-diphenyl hydantoin was carried out, and then various substituted phenols were added to it. The synthesized compounds were characterized and evaluated for antianxiety activity by elevated plus maze method and antiepileptic activity by using subcutaneous pentylenetetrazole (scPTZ) and maximal electroshock (MES) models and neurotoxicity. Result: The number of derivatives of 5,5-diphenyl hydantoin was developed and optimized. The number of parameters was optimized which reveal that the compound containing chloro group such as C3 and C6 showed imperative potential when compared with the standard drug Diazepam. Other compounds containing nitro and methyl group were also found to possess activity. Conclusion: It was summarized that the new compounds of 5,5-diphenyl hydantoin derivatives were synthesized. The results of the data show that the compound containing chloro group is more potent for CNS activity. The new compounds have the probability of being optimized further to engender new scaffolds to treat various CNS disorders.Keywords: phenytoin, parameters, CNS activity, blood-brain barrier, Log P, CNS active
Procedia PDF Downloads 72250 Optimization, Characterization and Stability of Trachyspermum copticum Essential Oil Loaded in Niosome Nanocarriers
Authors: Mohadese Hashemi, Elham Akhoundi Kharanaghi, Fatemeh Haghiralsadat, Mojgan Yazdani, Omid Javani, Mahboobe Sharafodini, Davood Rajabi
Abstract:
Niosomes are non-ionic surfactant vesicles in aqueous media resulting in closed bilayer structures that can be used as carriers of hydrophilic and hydrophobic compounds. The use of niosomes for encapsulation of essential oils (EOs) is an attractive new approach to overcome their physicochemical stability concerns include sensibility to oxygen, light, temperature, and volatility, and their reduced bioavailability which is due to low solubility in water. EOs are unstable and fragile volatile compounds which have strong interest in pharmaceutical due to their medicinal properties such as antiviral, anti-inflammatory, antifungal, and antioxidant activities without side effects. Trachyspermum copticum (ajwain) is an annual aromatic plant with important medicinal properties that grows widely around Mediterranean region and south-west Asian countries. The major components of the ajwain oil were reported as thymol, γ-terpinene, p-cymene, and carvacrol which provide antimicrobial and antioxidant activity. The aim of this work was to formulate ajwain essential oil-loaded niosomes to improve water solubility of natural product and evaluate its physico-chemical features and stability. Ajwain oil was obtained through steam distillation using a clevenger-type apparatus and GC/MS was applied to identify the main components of the essential oil. Niosomes were prepared by using thin film hydration method and nanoparticles were characterized for particle size, dispersity index, zeta potential, encapsulation efficiency, in vitro release, and morphology.Keywords: trachyspermum copticum, ajwain, niosome, essential oil, encapsulation
Procedia PDF Downloads 481249 Comparison of Physicochemical Properties of Catfish Myofibrillar and Sarcoplasmic Protein Hydrolysates and Characterization of Their Bioactive Peptides
Authors: Leila Najafian
Abstract:
Sarcoplasmic protein hydrolysates (SPHs) and myofibrillar protein hydrolysates (MPHs) from patin (Pangasius sutchi) were produced using two types of proteases: Papain and Alcalase. 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS) radical scavenging activities and metal chelating activity assays for antioxidant activities were carried out on the SPHs and MPHs. The hydrolysates were isolated and purified by ultrafiltration, gel filtration and reverse phase high-performance liquid chromatography (RP-HPLC) and liquid chromatography with tandem mass spectrometry detection (LC-MS/MS) was used in identifying peptide sequences. The results showed that when the DH of MPHs increased, the protein solubility increased, while the highest amount of the protein solubility of SPHs was after 60 min incubation. The effect of DH on antioxidant activities of SPHs and MPHs was investigated. Among the hydrolysates, papain-MPH and Alcalase-SPH, which had the highest antioxidant activities, were purified. The potent fractions obtained from RP-HPLC of sarcoplasmic (SI 3 fraction) and myofibrillar (MI 4 fraction) hydrolysates showed the highest DPPH radical scavenging activity. The FVNQPYLLYSVHMK peptide for MPH and the LVVDIPAALQHA peptide for SPH exhibited the highest antioxidant activity. The presence of hydrophobic and hydrophilic amino acids, namely leucine (L), valine (V), phenylalanine (F), histidine (H) and proline (P), in the peptide sequences of SPH and MPH are believed to contribute to high antioxidant activity. Hence, SPH and MPH from patin have the potential as a natural functional ingredient in food and pharmaceutical industry.Keywords: patin (Pangasius sutchi), protein hydrolysates, antioxidative peptides, mass spectrometry
Procedia PDF Downloads 260248 Design and Characterization of Ecological Materials Based on Demolition and Concrete Waste, Casablanca (Morocco)
Authors: Mourad Morsli, Mohamed Tahiri, Azzedine Samdi
Abstract:
The Cities are the urbanized territories most favorable to the consumption of resources (materials, energy). In Morocco, the economic capital Casablanca is one of them, with its 4M inhabitants and its 60% share in the economic and industrial activity of the kingdom. In the absence of legal status in force, urban development has favored the generation of millions of tons of demolition and construction waste scattered in open spaces causing a significant nuisance to the environment and citizens. Hence the main objective of our work is to valorize concrete waste. The representative wastes are mainly concrete, concrete, and fired clay bricks, ceramic tiles, marble panels, gypsum, and scrap metal. The work carried out includes: geolocation with a combination of artificial intelligence, GIS, and Google Earth, which allowed the estimation of the quantity of these wastes per site; then the sorting, crushing, grinding, and physicochemical characterization of the collected samples allowed the definition of the exploitation ways for each extracted fraction for integrated management of the said wastes. In the present work, we proceeded to the exploitation of the fractions obtained after sieving the representative samples to incorporate them in the manufacture of new ecological materials for construction. These formulations prepared studies have been tested and characterized: physical criteria (specific surface, resistance to flexion and compression) and appearance (cracks, deformation). We will present in detail the main results of our research work and also describe the specific properties of each material developed.Keywords: demolition and construction waste, GIS combination software, inert waste recovery, ecological materials, Casablanca, Morocco
Procedia PDF Downloads 134