Search results for: maintenance optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4677

Search results for: maintenance optimization

4047 Model Updating-Based Approach for Damage Prognosis in Frames via Modal Residual Force

Authors: Gholamreza Ghodrati Amiri, Mojtaba Jafarian Abyaneh, Ali Zare Hosseinzadeh

Abstract:

This paper presents an effective model updating strategy for damage localization and quantification in frames by defining damage detection problem as an optimization issue. A generalized version of the Modal Residual Force (MRF) is employed for presenting a new damage-sensitive cost function. Then, Grey Wolf Optimization (GWO) algorithm is utilized for solving suggested inverse problem and the global extremums are reported as damage detection results. The applicability of the presented method is investigated by studying different damage patterns on the benchmark problem of the IASC-ASCE, as well as a planar shear frame structure. The obtained results emphasize good performance of the method not only in free-noise cases, but also when the input data are contaminated with different levels of noises.

Keywords: frame, grey wolf optimization algorithm, modal residual force, structural damage detection

Procedia PDF Downloads 387
4046 Improving Overall Equipment Effectiveness of CNC-VMC by Implementing Kobetsu Kaizen

Authors: Nakul Agrawal, Y. M. Puri

Abstract:

TPM methodology is a proven approach to increase Overall Equipment Effectiveness (OEE) of machine. OEE is an established method to monitor and improve the effectiveness of manufacturing process. OEE is a product of equipment availability, performance efficiency and quality performance of manufacturing operations. The paper presents a project work for improving OEE of CNC-VMC in a manufacturing industry with the help of TPM tools Kaizen and Autonomous Maintenance. The aim of paper is to enhance OEE by minimizing the breakdown and re-work, increase availability, performance and quality. The calculated OEE of bottle necking machines for 4 months is lower of 53.3%. Root Cause Analysis RCA tools like fishbone diagram, Pareto chart are used for determining the reasons behind low OEE. While Tool like Why-Why analysis is use for determining the basis reasons for low OEE. Tools like Kaizen and Autonomous Maintenance are effectively implemented on CNC-VMC which eliminate the causes of breakdown and prevent from reoccurring. The result obtains from approach shows that OEE of CNC-VMC improved from 53.3% to 73.7% which saves an average sum of Rs.3, 19,000.

Keywords: OEE, TPM, Kaizen, CNC-VMC, why-why analysis, RCA

Procedia PDF Downloads 392
4045 Portfolio Risk Management Using Quantum Annealing

Authors: Thomas Doutre, Emmanuel De Meric De Bellefon

Abstract:

This paper describes the application of local-search metaheuristic quantum annealing to portfolio opti- mization. Heuristic technics are particularly handy when Markowitz’ classical Mean-Variance problem is enriched with additional realistic constraints. Once tailored to the problem, computational experiments on real collected data have shown the superiority of quantum annealing over simulated annealing for this constrained optimization problem, taking advantages of quantum effects such as tunnelling.

Keywords: optimization, portfolio risk management, quantum annealing, metaheuristic

Procedia PDF Downloads 381
4044 Multi-Criteria Test Case Selection Using Ant Colony Optimization

Authors: Niranjana Devi N.

Abstract:

Test case selection is to select the subset of only the fit test cases and remove the unfit, ambiguous, redundant, unnecessary test cases which in turn improve the quality and reduce the cost of software testing. Test cases optimization is the problem of finding the best subset of test cases from a pool of the test cases to be audited. It will meet all the objectives of testing concurrently. But most of the research have evaluated the fitness of test cases only on single parameter fault detecting capability and optimize the test cases using a single objective. In the proposed approach, nine parameters are considered for test case selection and the best subset of parameters for test case selection is obtained using Interval Type-2 Fuzzy Rough Set. Test case selection is done in two stages. The first stage is the fuzzy entropy-based filtration technique, used for estimating and reducing the ambiguity in test case fitness evaluation and selection. The second stage is the ant colony optimization-based wrapper technique with a forward search strategy, employed to select test cases from the reduced test suite of the first stage. The results are evaluated using the Coverage parameters, Precision, Recall, F-Measure, APSC, APDC, and SSR. The experimental evaluation demonstrates that by this approach considerable computational effort can be avoided.

Keywords: ant colony optimization, fuzzy entropy, interval type-2 fuzzy rough set, test case selection

Procedia PDF Downloads 667
4043 Algorithm for Information Retrieval Optimization

Authors: Kehinde K. Agbele, Kehinde Daniel Aruleba, Eniafe F. Ayetiran

Abstract:

When using Information Retrieval Systems (IRS), users often present search queries made of ad-hoc keywords. It is then up to the IRS to obtain a precise representation of the user’s information need and the context of the information. This paper investigates optimization of IRS to individual information needs in order of relevance. The study addressed development of algorithms that optimize the ranking of documents retrieved from IRS. This study discusses and describes a Document Ranking Optimization (DROPT) algorithm for information retrieval (IR) in an Internet-based or designated databases environment. Conversely, as the volume of information available online and in designated databases is growing continuously, ranking algorithms can play a major role in the context of search results. In this paper, a DROPT technique for documents retrieved from a corpus is developed with respect to document index keywords and the query vectors. This is based on calculating the weight (

Keywords: information retrieval, document relevance, performance measures, personalization

Procedia PDF Downloads 239
4042 Production and Distribution Network Planning Optimization: A Case Study of Large Cement Company

Authors: Lokendra Kumar Devangan, Ajay Mishra

Abstract:

This paper describes the implementation of a large-scale SAS/OR model with significant pre-processing, scenario analysis, and post-processing work done using SAS. A large cement manufacturer with ten geographically distributed manufacturing plants for two variants of cement, around 400 warehouses serving as transshipment points, and several thousand distributor locations generating demand needed to optimize this multi-echelon, multi-modal transport supply chain separately for planning and allocation purposes. For monthly planning as well as daily allocation, the demand is deterministic. Rail and road networks connect any two points in this supply chain, creating tens of thousands of such connections. Constraints include the plant’s production capacity, transportation capacity, and rail wagon batch size constraints. Each demand point has a minimum and maximum for shipments received. Price varies at demand locations due to local factors. A large mixed integer programming model built using proc OPTMODEL decides production at plants, demand fulfilled at each location, and the shipment route to demand locations to maximize the profit contribution. Using base SAS, we did significant pre-processing of data and created inputs for the optimization. Using outputs generated by OPTMODEL and other processing completed using base SAS, we generated several reports that went into their enterprise system and created tables for easy consumption of the optimization results by operations.

Keywords: production planning, mixed integer optimization, network model, network optimization

Procedia PDF Downloads 66
4041 Neuroevolution Based on Adaptive Ensembles of Biologically Inspired Optimization Algorithms Applied for Modeling a Chemical Engineering Process

Authors: Sabina-Adriana Floria, Marius Gavrilescu, Florin Leon, Silvia Curteanu, Costel Anton

Abstract:

Neuroevolution is a subfield of artificial intelligence used to solve various problems in different application areas. Specifically, neuroevolution is a technique that applies biologically inspired methods to generate neural network architectures and optimize their parameters automatically. In this paper, we use different biologically inspired optimization algorithms in an ensemble strategy with the aim of training multilayer perceptron neural networks, resulting in regression models used to simulate the industrial chemical process of obtaining bricks from silicone-based materials. Installations in the raw ceramics industry, i.e., bricks, are characterized by significant energy consumption and large quantities of emissions. In addition, the initial conditions that were taken into account during the design and commissioning of the installation can change over time, which leads to the need to add new mixes to adjust the operating conditions for the desired purpose, e.g., material properties and energy saving. The present approach follows the study by simulation of a process of obtaining bricks from silicone-based materials, i.e., the modeling and optimization of the process. Optimization aims to determine the working conditions that minimize the emissions represented by nitrogen monoxide. We first use a search procedure to find the best values for the parameters of various biologically inspired optimization algorithms. Then, we propose an adaptive ensemble strategy that uses only a subset of the best algorithms identified in the search stage. The adaptive ensemble strategy combines the results of selected algorithms and automatically assigns more processing capacity to the more efficient algorithms. Their efficiency may also vary at different stages of the optimization process. In a given ensemble iteration, the most efficient algorithms aim to maintain good convergence, while the less efficient algorithms can improve population diversity. The proposed adaptive ensemble strategy outperforms the individual optimizers and the non-adaptive ensemble strategy in convergence speed, and the obtained results provide lower error values.

Keywords: optimization, biologically inspired algorithm, neuroevolution, ensembles, bricks, emission minimization

Procedia PDF Downloads 114
4039 Piezo-Extracted Model Based Chloride/ Carbonation Induced Corrosion Assessment in Reinforced Concrete Structures

Authors: Gupta. Ashok, V. talakokula, S. bhalla

Abstract:

Rebar corrosion is one of the main causes of damage and premature failure of the reinforced concrete (RC) structures worldwide, causing enormous costs for inspection, maintenance, restoration and replacement. Therefore, early detection of corrosion and timely remedial action on the affected portion can facilitate an optimum utilization of the structure, imparting longevity to it. The recent advent of the electro-mechanical impedance (EMI) technique using piezo sensors (PZT) for structural health monitoring (SHM) has provided a new paradigm to the maintenance engineers to diagnose the onset of the damage at the incipient stage itself. This paper presents a model based approach for corrosion assessment based on the equivalent parameters extracted from the impedance spectrum of concrete-rebar system using the EMI technique via the PZT sensors.

Keywords: impedance, electro-mechanical, stiffness, mass, damping, equivalent parameters

Procedia PDF Downloads 542
4038 Pareto System of Optimal Placement and Sizing of Distributed Generation in Radial Distribution Networks Using Particle Swarm Optimization

Authors: Sani M. Lawal, Idris Musa, Aliyu D. Usman

Abstract:

The Pareto approach of optimal solutions in a search space that evolved in multi-objective optimization problems is adopted in this paper, which stands for a set of solutions in the search space. This paper aims at presenting an optimal placement of Distributed Generation (DG) in radial distribution networks with an optimal size for minimization of power loss and voltage deviation as well as maximizing voltage profile of the networks. And these problems are formulated using particle swarm optimization (PSO) as a constraint nonlinear optimization problem with both locations and sizes of DG being continuous. The objective functions adopted are the total active power loss function and voltage deviation function. The multiple nature of the problem, made it necessary to form a multi-objective function in search of the solution that consists of both the DG location and size. The proposed PSO algorithm is used to determine optimal placement and size of DG in a distribution network. The output indicates that PSO algorithm technique shows an edge over other types of search methods due to its effectiveness and computational efficiency. The proposed method is tested on the standard IEEE 34-bus and validated with 33-bus test systems distribution networks. Results indicate that the sizing and location of DG are system dependent and should be optimally selected before installing the distributed generators in the system and also an improvement in the voltage profile and power loss reduction have been achieved.

Keywords: distributed generation, pareto, particle swarm optimization, power loss, voltage deviation

Procedia PDF Downloads 364
4037 Building Information Management in Context of Urban Spaces, Analysis of Current Use and Possibilities

Authors: Lucie Jirotková, Daniel Macek, Andrea Palazzo, Veronika Malinová

Abstract:

Currently, the implementation of 3D models in the construction industry is gaining popularity. Countries around the world are developing their own modelling standards and implement the use of 3D models into their individual permitting processes. Another theme that needs to be addressed are public building spaces and their subsequent maintenance, where the usage of BIM methodology is directly offered. The significant benefit of the implementation of Building Information Management is the information transfer. The 3D model contains not only the spatial representation of the item shapes but also various parameters that are assigned to the individual elements, which are easily traceable, mainly because they are all stored in one place in the BIM model. However, it is important to keep the data in the models up to date to achieve useability of the model throughout the life cycle of the building. It is now becoming standard practice to use BIM models in the construction of buildings, however, the building environment is very often neglected. Especially in large-scale development projects, the public space of buildings is often forwarded to municipalities, which obtains the ownership and are in charge of its maintenance. A 3D model of the building surroundings would include both the above-ground visible elements of the development as well as the underground parts, such as the technological facilities of water features, electricity lines for public lighting, etc. The paper shows the possibilities of a model in the field of information for the handover of premises, the following maintenance and decision making. The attributes and spatial representation of the individual elements make the model a reliable foundation for the creation of "Smart Cities". The paper analyses the current use of the BIM methodology and presents the state-of-the-art possibilities of development.

Keywords: BIM model, urban space, BIM methodology, facility management

Procedia PDF Downloads 123
4036 Aerodynamic Design an UAV with Application on the Spraying Agricola with Method of Genetic Algorithm Optimization

Authors: Saul A. Torres Z., Eduardo Liceaga C., Alfredo Arias M.

Abstract:

Agriculture in the world falls within the main sources of economic and global needs, so care of crop is extremely important for owners and workers; one of the major causes of loss of product is the pest infection of different types of organisms. We seek to develop a UAV for agricultural spraying at a maximum altitude of 5000 meters above sea level, with a payload of 100 liters of fumigant. For the developing the aerodynamic design of the aircraft is using computational tools such as the "Vortex Lattice Athena" software, "MATLAB"," ANSYS FLUENT"," XFoil " package among others. Also methods are being used structured programming, exhaustive analysis of optimization methods and search. The results have a very low margin of error, and the multi- objective problems can be helpful for future developments. The program has 10 functions developed in MATLAB, these functions are related to each other to enable the development of design, and all these functions are controlled by the principal code "Master.m".

Keywords: aerodynamics design, optimization, algorithm genetic, multi-objective problem, stability, vortex

Procedia PDF Downloads 531
4035 Reliable Soup: Reliable-Driven Model Weight Fusion on Ultrasound Imaging Classification

Authors: Shuge Lei, Haonan Hu, Dasheng Sun, Huabin Zhang, Kehong Yuan, Jian Dai, Yan Tong

Abstract:

It remains challenging to measure reliability from classification results from different machine learning models. This paper proposes a reliable soup optimization algorithm based on the model weight fusion algorithm Model Soup, aiming to improve reliability by using dual-channel reliability as the objective function to fuse a series of weights in the breast ultrasound classification models. Experimental results on breast ultrasound clinical datasets demonstrate that reliable soup significantly enhances the reliability of breast ultrasound image classification tasks. The effectiveness of the proposed approach was verified via multicenter trials. The results from five centers indicate that the reliability optimization algorithm can enhance the reliability of the breast ultrasound image classification model and exhibit low multicenter correlation.

Keywords: breast ultrasound image classification, feature attribution, reliability assessment, reliability optimization

Procedia PDF Downloads 83
4034 Continuous FAQ Updating for Service Incident Ticket Resolution

Authors: Kohtaroh Miyamoto

Abstract:

As enterprise computing becomes more and more complex, the costs and technical challenges of IT system maintenance and support are increasing rapidly. One popular approach to managing IT system maintenance is to prepare and use an FAQ (Frequently Asked Questions) system to manage and reuse systems knowledge. Such an FAQ system can help reduce the resolution time for each service incident ticket. However, there is a major problem where over time the knowledge in such FAQs tends to become outdated. Much of the knowledge captured in the FAQ requires periodic updates in response to new insights or new trends in the problems addressed in order to maintain its usefulness for problem resolution. These updates require a systematic approach to define the exact portion of the FAQ and its content. Therefore, we are working on a novel method to hierarchically structure the FAQ and automate the updates of its structure and content. We use structured information and the unstructured text information with the timelines of the information in the service incident tickets. We cluster the tickets by structured category information, by keywords, and by keyword modifiers for the unstructured text information. We also calculate an urgency score based on trends, resolution times, and priorities. We carefully studied the tickets of one of our projects over a 2.5-year time period. After the first 6 months, we started to create FAQs and confirmed they improved the resolution times. We continued observing over the next 2 years to assess the ongoing effectiveness of our method for the automatic FAQ updates. We improved the ratio of tickets covered by the FAQ from 32.3% to 68.9% during this time. Also, the average time reduction of ticket resolution was between 31.6% and 43.9%. Subjective analysis showed more than 75% reported that the FAQ system was useful in reducing ticket resolution times.

Keywords: FAQ system, resolution time, service incident tickets, IT system maintenance

Procedia PDF Downloads 338
4033 Improving the Penalty-free Multi-objective Evolutionary Design Optimization of Water Distribution Systems

Authors: Emily Kambalame

Abstract:

Water distribution networks necessitate many investments for construction, prompting researchers to seek cost reduction and efficient design solutions. Optimization techniques are employed in this regard to address these challenges. In this context, the penalty-free multi-objective evolutionary algorithm (PFMOEA) coupled with pressure-dependent analysis (PDA) was utilized to develop a multi-objective evolutionary search for the optimization of water distribution systems (WDSs). The aim of this research was to find out if the computational efficiency of the PFMOEA for WDS optimization could be enhanced. This was done by applying real coding representation and retaining different percentages of feasible and infeasible solutions close to the Pareto front in the elitism step of the optimization. Two benchmark network problems, namely the Two-looped and Hanoi networks, were utilized in the study. A comparative analysis was then conducted to assess the performance of the real-coded PFMOEA in relation to other approaches described in the literature. The algorithm demonstrated competitive performance for the two benchmark networks by implementing real coding. The real-coded PFMOEA achieved the novel best-known solutions ($419,000 and $6.081 million) and a zero-pressure deficit for the two networks, requiring fewer function evaluations than the binary-coded PFMOEA. In previous PFMOEA studies, elitism applied a default retention of 30% of the least cost-feasible solutions while excluding all infeasible solutions. It was found in this study that by replacing 10% and 15% of the feasible solutions with infeasible ones that are close to the Pareto front with minimal pressure deficit violations, the computational efficiency of the PFMOEA was significantly enhanced. The configuration of 15% feasible and 15% infeasible solutions outperformed other retention allocations by identifying the optimal solution with the fewest function evaluation

Keywords: design optimization, multi-objective evolutionary, penalty-free, water distribution systems

Procedia PDF Downloads 59
4032 Efficient Computer-Aided Design-Based Multilevel Optimization of the LS89

Authors: A. Chatel, I. S. Torreguitart, T. Verstraete

Abstract:

The paper deals with a single point optimization of the LS89 turbine using an adjoint optimization and defining the design variables within a CAD system. The advantage of including the CAD model in the design system is that higher level constraints can be imposed on the shape, allowing the optimized model or component to be manufactured. However, CAD-based approaches restrict the design space compared to node-based approaches where every node is free to move. In order to preserve a rich design space, we develop a methodology to refine the CAD model during the optimization and to create the best parameterization to use at each time. This study presents a methodology to progressively refine the design space, which combines parametric effectiveness with a differential evolutionary algorithm in order to create an optimal parameterization. In this manuscript, we show that by doing the parameterization at the CAD level, we can impose higher level constraints on the shape, such as the axial chord length, the trailing edge radius and G2 geometric continuity between the suction side and pressure side at the leading edge. Additionally, the adjoint sensitivities are filtered out and only smooth shapes are produced during the optimization process. The use of algorithmic differentiation for the CAD kernel and grid generator allows computing the grid sensitivities to machine accuracy and avoid the limited arithmetic precision and the truncation error of finite differences. Then, the parametric effectiveness is computed to rate the ability of a set of CAD design parameters to produce the design shape change dictated by the adjoint sensitivities. During the optimization process, the design space is progressively enlarged using the knot insertion algorithm which allows introducing new control points whilst preserving the initial shape. The position of the inserted knots is generally assumed. However, this assumption can hinder the creation of better parameterizations that would allow producing more localized shape changes where the adjoint sensitivities dictate. To address this, we propose using a differential evolutionary algorithm to maximize the parametric effectiveness by optimizing the location of the inserted knots. This allows the optimizer to gradually explore larger design spaces and to use an optimal CAD-based parameterization during the course of the optimization. The method is tested on the LS89 turbine cascade and large aerodynamic improvements in the entropy generation are achieved whilst keeping the exit flow angle fixed. The trailing edge and axial chord length, which are kept fixed as manufacturing constraints. The optimization results show that the multilevel optimizations were more efficient than the single level optimization, even though they used the same number of design variables at the end of the multilevel optimizations. Furthermore, the multilevel optimization where the parameterization is created using the optimal knot positions results in a more efficient strategy to reach a better optimum than the multilevel optimization where the position of the knots is arbitrarily assumed.

Keywords: adjoint, CAD, knots, multilevel, optimization, parametric effectiveness

Procedia PDF Downloads 109
4031 Intelligent Electric Vehicle Charging System (IEVCS)

Authors: Prateek Saxena, Sanjeev Singh, Julius Roy

Abstract:

The security of the power distribution grid remains a paramount to the utility professionals while enhancing and making it more efficient. The most serious threat to the system can be maintaining the transformers, as the load is ever increasing with the addition of elements like electric vehicles. In this paper, intelligent transformer monitoring and grid management has been proposed. The engineering is done to use the evolving data from the smart meter for grid analytics and diagnostics for preventive maintenance. The two-tier architecture for hardware and software integration is coupled to form a robust system for the smart grid. The proposal also presents interoperable meter standards for easy integration. Distribution transformer analytics based on real-time data benefits utilities preventing outages, protects the revenue loss, improves the return on asset and reduces overall maintenance cost by predictive monitoring.

Keywords: electric vehicle charging, transformer monitoring, data analytics, intelligent grid

Procedia PDF Downloads 789
4030 Production Optimization under Geological Uncertainty Using Distance-Based Clustering

Authors: Byeongcheol Kang, Junyi Kim, Hyungsik Jung, Hyungjun Yang, Jaewoo An, Jonggeun Choe

Abstract:

It is important to figure out reservoir properties for better production management. Due to the limited information, there are geological uncertainties on very heterogeneous or channel reservoir. One of the solutions is to generate multiple equi-probable realizations using geostatistical methods. However, some models have wrong properties, which need to be excluded for simulation efficiency and reliability. We propose a novel method of model selection scheme, based on distance-based clustering for reliable application of production optimization algorithm. Distance is defined as a degree of dissimilarity between the data. We calculate Hausdorff distance to classify the models based on their similarity. Hausdorff distance is useful for shape matching of the reservoir models. We use multi-dimensional scaling (MDS) to describe the models on two dimensional space and group them by K-means clustering. Rather than simulating all models, we choose one representative model from each cluster and find out the best model, which has the similar production rates with the true values. From the process, we can select good reservoir models near the best model with high confidence. We make 100 channel reservoir models using single normal equation simulation (SNESIM). Since oil and gas prefer to flow through the sand facies, it is critical to characterize pattern and connectivity of the channels in the reservoir. After calculating Hausdorff distances and projecting the models by MDS, we can see that the models assemble depending on their channel patterns. These channel distributions affect operation controls of each production well so that the model selection scheme improves management optimization process. We use one of useful global search algorithms, particle swarm optimization (PSO), for our production optimization. PSO is good to find global optimum of objective function, but it takes too much time due to its usage of many particles and iterations. In addition, if we use multiple reservoir models, the simulation time for PSO will be soared. By using the proposed method, we can select good and reliable models that already matches production data. Considering geological uncertainty of the reservoir, we can get well-optimized production controls for maximum net present value. The proposed method shows one of novel solutions to select good cases among the various probabilities. The model selection schemes can be applied to not only production optimization but also history matching or other ensemble-based methods for efficient simulations.

Keywords: distance-based clustering, geological uncertainty, particle swarm optimization (PSO), production optimization

Procedia PDF Downloads 142
4029 Structural Design Optimization of Reinforced Thin-Walled Vessels under External Pressure Using Simulation and Machine Learning Classification Algorithm

Authors: Lydia Novozhilova, Vladimir Urazhdin

Abstract:

An optimization problem for reinforced thin-walled vessels under uniform external pressure is considered. The conventional approaches to optimization generally start with pre-defined geometric parameters of the vessels, and then employ analytic or numeric calculations and/or experimental testing to verify functionality, such as stability under the projected conditions. The proposed approach consists of two steps. First, the feasibility domain will be identified in the multidimensional parameter space. Every point in the feasibility domain defines a design satisfying both geometric and functional constraints. Second, an objective function defined in this domain is formulated and optimized. The broader applicability of the suggested methodology is maximized by implementing the Support Vector Machines (SVM) classification algorithm of machine learning for identification of the feasible design region. Training data for SVM classifier is obtained using the Simulation package of SOLIDWORKS®. Based on the data, the SVM algorithm produces a curvilinear boundary separating admissible and not admissible sets of design parameters with maximal margins. Then optimization of the vessel parameters in the feasibility domain is performed using the standard algorithms for the constrained optimization. As an example, optimization of a ring-stiffened closed cylindrical thin-walled vessel with semi-spherical caps under high external pressure is implemented. As a functional constraint, von Mises stress criterion is used but any other stability constraint admitting mathematical formulation can be incorporated into the proposed approach. Suggested methodology has a good potential for reducing design time for finding optimal parameters of thin-walled vessels under uniform external pressure.

Keywords: design parameters, feasibility domain, von Mises stress criterion, Support Vector Machine (SVM) classifier

Procedia PDF Downloads 326
4028 Multi-Objective Exergy Optimization of an Organic Rankine Cycle with Cyclohexane as Working Fluid

Authors: Touil Djamal, Fergani Zineb

Abstract:

In this study, an Organic Rankine Cycle (ORC) with Cyclohexane working fluid is proposed for cogeneration in the cement industry. In this regard: first, a parametric study is conducted to evaluate the effects of some key parameters on the system performances. Next, single and multi-objective optimizations are performed to achieve the system optimal design. The optimization considers the exergy efficiency, the cost per exergy unit and the environmental impact of the net produced power as objective functions. Finally, exergy, exergoeconomic and exergoenvironmental analysis of the cycle is carried out at the optimum operating conditions. The results show that the turbine inlet pressure, the pinch point temperature difference and the heat transfer fluid temperature have significant effects on the performances of the ORC system.

Keywords: organic rankine cycle, multi-objective optimization, exergy, exergoeconomic, exergoenvironmental, multi-objective optimisation, organic rankine cycle, cement plant

Procedia PDF Downloads 278
4027 A Teaching Learning Based Optimization for Optimal Design of a Hybrid Energy System

Authors: Ahmad Rouhani, Masood Jabbari, Sima Honarmand

Abstract:

This paper introduces a method to optimal design of a hybrid Wind/Photovoltaic/Fuel cell generation system for a typical domestic load that is not located near the electricity grid. In this configuration the combination of a battery, an electrolyser, and a hydrogen storage tank are used as the energy storage system. The aim of this design is minimization of overall cost of generation scheme over 20 years of operation. The Matlab/Simulink is applied for choosing the appropriate structure and the optimization of system sizing. A teaching learning based optimization is used to optimize the cost function. An overall power management strategy is designed for the proposed system to manage power flows among the different energy sources and the storage unit in the system. The results have been analyzed in terms of technics and economics. The simulation results indicate that the proposed hybrid system would be a feasible solution for stand-alone applications at remote locations.

Keywords: hybrid energy system, optimum sizing, power management, TLBO

Procedia PDF Downloads 574
4026 Improving the Performance of Gas Turbine Power Plant by Modified Axial Turbine

Authors: Hakim T. Kadhim, Faris A. Jabbar, Aldo Rona, Audrius Bagdanaviciu

Abstract:

Computer-based optimization techniques can be employed to improve the efficiency of energy conversions processes, including reducing the aerodynamic loss in a thermal power plant turbomachine. In this paper, towards mitigating secondary flow losses, a design optimization workflow is implemented for the casing geometry of a 1.5 stage axial flow turbine that improves the turbine isentropic efficiency. The improved turbine is used in an open thermodynamic gas cycle with regeneration and cogeneration. Performance estimates are obtained by the commercial software Cycle – Tempo. Design and off design conditions are considered as well as variations in inlet air temperature. Reductions in both the natural gas specific fuel consumption and in CO2 emissions are predicted by using the gas turbine cycle fitted with the new casing design. These gains are attractive towards enhancing the competitiveness and reducing the environmental impact of thermal power plant.

Keywords: axial flow turbine, computational fluid dynamics, gas turbine power plant, optimization

Procedia PDF Downloads 159
4025 Optimization of Supercritical CO2 Power Cycle for Waste Heat Recovery from Gas Turbine with Respect to Cooling Condition

Authors: Young Min Kim, Jeong Lak Sohn, Eui Soo Yoon

Abstract:

This study describes the optimization of supercritical carbon dioxide (S-CO2) power cycle for recovering waste heat from a gas turbine. An S-CO2 cycle that recovers heat from small industrial and aeroderivative gas turbines can outperform a steam-bottoming cycle despite its simplicity and compactness. In using S-CO2 power cycles for waste heat recovery, a split cycle was studied to maximize the net output power by incorporating the utilization efficiency of the waste heat (lowering the temperature of the exhaust gas through the heater) along with the thermal efficiency of the cycle (minimizing the temperature difference for the heat transfer, exergy loss). The cooling condition of the S-CO2 WHR system has a great impact on the performance and the optimum low pressure of the system. Furthermore, the optimum high pressure of the S-CO2 WHR systems for the maximum power from the given heat sources is dependent on the temperature of the waste heat source.

Keywords: exergy loss, gas turbine, optimization, supercritical CO2 power cycle, split cycle, waste heat recovery

Procedia PDF Downloads 348
4024 Multi-Response Optimization of EDM for Ti-6Al-4V Using Taguchi-Grey Relational Analysis

Authors: Ritesh Joshi, Kishan Fuse, Gopal Zinzala, Nishit Nirmal

Abstract:

Ti-6Al-4V is a titanium alloy having high strength, low weight and corrosion resistant which is a required characteristic for a material to be used in aerospace industry. Titanium, being a hard alloy is difficult to the machine via conventional methods, so it is a call to use non-conventional processes. In present work, the effects on Ti-6Al-4V by drilling a hole of Ø 6 mm using copper (99%) electrode in Electric Discharge Machining (EDM) process is analyzed. Effect of various input parameters like peak current, pulse-on time and pulse-off time on output parameters viz material removal rate (MRR) and electrode wear rate (EWR) is studied. Multi-objective optimization technique Grey relational analysis is used for process optimization. Experiments are designed using an L9 orthogonal array. ANOVA is used for finding most contributing parameter followed by confirmation tests for validating the results. Improvement of 7.45% in gray relational grade is observed.

Keywords: ANOVA, electric discharge machining, grey relational analysis, Ti-6Al-4V

Procedia PDF Downloads 362
4023 Benefits of Monitoring Acid Sulfate Potential of Coffee Rock (Indurated Sand) across Entire Dredge Cycle in South East Queensland

Authors: S. Albert, R. Cossu, A. Grinham, C. Heatherington, C. Wilson

Abstract:

Shipping trends suggest increasing vessel size and draught visiting Australian ports highlighting potential challenges to port infrastructure and requiring optimization of shipping channels to ensure safe passage for vessels. The Port of Brisbane in Queensland, Australia has an 80 km long access shipping channel which vessels must transit 15 km of relatively shallow coffee rock (generic class of indurated sands where sand grains are bound within an organic clay matrix) outcrops towards the northern passage in Moreton Bay. This represents a risk to shipping channel deepening and maintenance programs as the dredgeability of this material is more challenging due to its high cohesive strength compared with the surrounding marine sands and potential higher acid sulfate risk. In situ assessment of acid sulfate sediment for dredge spoil control is an important tool in mitigating ecological harm. The coffee rock in an anoxic undisturbed state does not pose any acid sulfate risk, however when disturbed via dredging it’s vital to ensure that any present iron sulfides are either insignificant or neutralized. To better understand the potential risk we examined the reduction potential of coffee rock across the entire dredge cycle in order to accurately portray the true outcome of disturbed acid sulfate sediment in dredging operations in Moreton Bay. In December 2014 a dredge trial was undertaken with a trailing suction hopper dredger. In situ samples were collected prior to dredging revealed acid sulfate potential above threshold guidelines which could lead to expensive dredge spoil management. However, potential acid sulfate risk was then monitored in the hopper and subsequent discharge, both showing a significant reduction in acid sulfate potential had occurred. Additionally, the acid neutralizing capacity significantly increased due to the inclusion of shell fragments (calcium carbonate) from the dredge target areas. This clearly demonstrates the importance of assessing potential acid sulfate risk across the entire dredging cycle and highlights the need to carefully evaluate sources of acidity.

Keywords: acid sulfate, coffee rock, indurated sand, dredging, maintenance dredging

Procedia PDF Downloads 366
4022 A Multi-Population DE with Adaptive Mutation and Local Search for Global Optimization

Authors: Zhoucheng Bao, Haiyan Zhu, Tingting Pang, Zuling Wang

Abstract:

This paper proposes a multi-population DE with adaptive mutation and local search for global optimization, named AMMADE. In order to better coordinate the cooperation between the populations and the rational use of resources. In AMMADE, the population is divided based on the Euclidean distance sorting method at each generation to appropriately coordinate the cooperation between subpopulations and the usage of resources, such that the best-performed subpopulation will get more computing resources in the next generation. Further, an adaptive local search strategy is employed on the best-performed subpopulation to achieve a balanced search. The proposed algorithm has been tested by solving optimization problems taken from CEC2014 benchmark problems. Experimental results show that our algorithm can achieve a competitive or better than related methods. The results also confirm the significance of devised strategies in the proposed algorithm.

Keywords: differential evolution, multi-mutation strategies, memetic algorithm, adaptive local search

Procedia PDF Downloads 155
4021 Application of Grey Theory in the Forecast of Facility Maintenance Hours for Office Building Tenants and Public Areas

Authors: Yen Chia-Ju, Cheng Ding-Ruei

Abstract:

This study took case office building as subject and explored the responsive work order repair request of facilities and equipment in offices and public areas by gray theory, with the purpose of providing for future related office building owners, executive managers, property management companies, mechanical and electrical companies as reference for deciding and assessing forecast model. Important conclusions of this study are summarized as follows according to the study findings: 1. Grey Relational Analysis discusses the importance of facilities repair number of six categories, namely, power systems, building systems, water systems, air conditioning systems, fire systems and manpower dispatch in order. In terms of facilities maintenance importance are power systems, building systems, water systems, air conditioning systems, manpower dispatch and fire systems in order. 2. GM (1,N) and regression method took maintenance hours as dependent variables and repair number, leased area and tenants number as independent variables and conducted single month forecast based on 12 data from January to December 2011. The mean absolute error and average accuracy of GM (1,N) from verification results were 6.41% and 93.59%; the mean absolute error and average accuracy of regression model were 4.66% and 95.34%, indicating that they have highly accurate forecast capability.

Keywords: rey theory, forecast model, Taipei 101, office buildings, property management, facilities, equipment

Procedia PDF Downloads 443
4020 Approaching the Spatial Multi-Objective Land Use Planning Problems at Mountain Areas by a Hybrid Meta-Heuristic Optimization Technique

Authors: Konstantinos Tolidis

Abstract:

The mountains are amongst the most fragile environments in the world. The world’s mountain areas cover 24% of the Earth’s land surface and are home to 12% of the global population. A further 14% of the global population is estimated to live in the vicinity of their surrounding areas. As urbanization continues to increase in the world, the mountains are also key centers for recreation and tourism; their attraction is often heightened by their remarkably high levels of biodiversity. Due to the fact that the features in mountain areas vary spatially (development degree, human geography, socio-economic reality, relations of dependency and interaction with other areas-regions), the spatial planning on these areas consists of a crucial process for preserving the natural, cultural and human environment and consists of one of the major processes of an integrated spatial policy. This research has been focused on the spatial decision problem of land use allocation optimization which is an ordinary planning problem on the mountain areas. It is a matter of fact that such decisions must be made not only on what to do, how much to do, but also on where to do, adding a whole extra class of decision variables to the problem when combined with the consideration of spatial optimization. The utility of optimization as a normative tool for spatial problem is widely recognized. However, it is very difficult for planners to quantify the weights of the objectives especially when these are related to mountain areas. Furthermore, the land use allocation optimization problems at mountain areas must be addressed not only by taking into account the general development objectives but also the spatial objectives (e.g. compactness, compatibility and accessibility, etc). Therefore, the main research’s objective was to approach the land use allocation problem by utilizing a hybrid meta-heuristic optimization technique tailored to the mountain areas’ spatial characteristics. The results indicates that the proposed methodological approach is very promising and useful for both generating land use alternatives for further consideration in land use allocation decision-making and supporting spatial management plans at mountain areas.

Keywords: multiobjective land use allocation, mountain areas, spatial planning, spatial decision making, meta-heuristic methods

Procedia PDF Downloads 345
4019 Intelligent Algorithm-Based Tool-Path Planning and Optimization for Additive Manufacturing

Authors: Efrain Rodriguez, Sergio Pertuz, Cristhian Riano

Abstract:

Tool-path generation is an essential step in the FFF (Fused Filament Fabrication)-based Additive Manufacturing (AM) process planning. In the manufacture of a mechanical part by using additive processes, high resource consumption and prolonged production times are inherent drawbacks of these processes mainly due to non-optimized tool-path generation. In this work, we propose a heuristic-search intelligent algorithm-based approach for optimized tool-path generation for FFF-based AM. The main benefit of this approach is a significant reduction of travels without material deposition when the AM machine performs moves without any extrusion. The optimization method used reduces the number of travels without extrusion in comparison with commercial software as Slic3r or Cura Engine, which means a reduction of production time.

Keywords: additive manufacturing, tool-path optimization, fused filament fabrication, process planning

Procedia PDF Downloads 441
4018 Comparative Study of Radiation Protection in a Hospital Environment

Authors: Lahoucine Zaama, Sanae Douama

Abstract:

In this work, we present the results of a dosimetry study in a Moroccan radiology department . The results are compared with those of a similar study in France. Furthermore, it determines the coefficient of transmission of the lead sheets of different thicknesses depending on the voltage (KV) in a direct exposure. The objective of this study is to choose the thickness of the radiation means to determine the leaf sample sealed with the smallest percentage value radiation transmission, and that in the context of optimization. Thus the comparison among the studies is essential to consider conduct studies and research in this framework to achieve the goal of optimization.

Keywords: radiology, dosimetry, radiation, dose, transmission

Procedia PDF Downloads 493