Search results for: image gradients
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2912

Search results for: image gradients

2282 Circular Polarized and Surface Compatible Microstrip Array Antenna Design for Image and Telemetric Data Transfer in UAV and Armed UAV Systems

Authors: Kübra Taşkıran, Bahattin Türetken

Abstract:

In this paper, a microstrip array antenna with circular polarization at 2.4 GHz frequency has been designed using the in order to provide image and telemetric data transmission in Unmanned Aerial Vehicle and Armed Unmanned Aerial Vehicle Systems. In addition to the antenna design, the power divider design was made and the antennas were fed in phase. As a result of the analysis, it was observed that the antenna operates at a frequency of 2.4016 GHz with 12.2 dBi directing gain. In addition, this designed array antenna was transformed into a form compatible with the rocket surface used in A-UAV Systems, and analyzes were made. As a result of these analyzes, it has been observed that the antenna operates on the surface of the missile at a frequency of 2.372 GHz with a directivity gain of 10.2 dBi.

Keywords: cicrostrip array antenna, circular polarization, 2.4 GHz, image and telemetric data, transmission, surface compatible, UAV and armed UAV

Procedia PDF Downloads 102
2281 Assisted Video Colorization Using Texture Descriptors

Authors: Andre Peres Ramos, Franklin Cesar Flores

Abstract:

Colorization is the process of add colors to a monochromatic image or video. Usually, the process involves to segment the image in regions of interest and then apply colors to each one, for videos, this process is repeated for each frame, which makes it a tedious and time-consuming job. We propose a new assisted method for video colorization; the user only has to colorize one frame, and then the colors are propagated to following frames. The user can intervene at any time to correct eventual errors in color assignment. The method consists of to extract intensity and texture descriptors from the frames and then perform a feature matching to determine the best color for each segment. To reduce computation time and give a better spatial coherence we narrow the area of search and give weights for each feature to emphasize texture descriptors. To give a more natural result, we use an optimization algorithm to make the color propagation. Experimental results in several image sequences, compared to others existing methods, demonstrates that the proposed method perform a better colorization with less time and user interference.

Keywords: colorization, feature matching, texture descriptors, video segmentation

Procedia PDF Downloads 160
2280 The Taste of Macau: An Exploratory Study of Destination Food Image

Authors: Jianlun Zhang, Christine Lim

Abstract:

Local food is one of the most attractive elements to tourists. The role of local cuisine in destination branding is very important because it is the distinctive identity that helps tourists remember the destination. The objectives of this study are: (1) Test the direct relation between the cognitive image of destination food and tourists’ intention to eat local food. (2) Examine the mediating effect of tourists’ desire to try destination food on the relationship between the cognitive image of local food and tourists’ intention to eat destination food. (3) Study the moderating effect of tourists’ perceived difficulties in finding local food on the relationship between tourists’ desire to try destination food and tourists’ intention to eat local food. To achieve the goals of this study, Macanese cuisine is selected as the destination food. Macau is located in Southeastern China and is a former colonial city of Portugal. The taste and texture of Macanese cuisine are unique because it is a fusion of cuisine from many countries and regions of mainland China. As people travel to seek authentically exotic experience, it is important to investigate if the food image of Macau leaves a good impression on tourists and motivate them to try local cuisine. A total of 449 Chinese tourists were involved in this study. To analyze the data collected, partial least square-structural equation modelling (PLS-SEM) technique is employed. Results suggest that the cognitive image of Macanese cuisine has a direct effect on tourists’ intention to eat Macanese cuisine. Tourists’ desire to try Macanese cuisine mediates the cognitive image-intention relationship. Tourists’ perceived difficulty of finding Macanese cuisine moderates the desire-intention relationship. The lower tourists’ perceived difficulty in finding Macanese cuisine is, the stronger the desire-intention relationship it will be. There are several practical implications of this study. First, the government tourism website can develop an authentic storyline about the evolvement of local cuisine, which provides an opportunity for tourists to taste the history of the destination and create a novel experience for them. Second, the government should consider the development of food events, restaurants, and hawker businesses. Third, to lower tourists’ perceived difficulty in finding local cuisine, there should be locations of restaurants and hawker stalls with clear instructions for finding them on the websites of the government tourism office, popular tourism sites, and public transportation stations in the destination. Fourth, in the post-COVID-19 era, travel risk will be a major concern for tourists. Therefore, when promoting local food, the government tourism website should post images that show food safety and hygiene.

Keywords: cognitive image of destination food, desire to try destination food, intention to eat food in the destination, perceived difficulties of finding local cuisine, PLS-SEM

Procedia PDF Downloads 189
2279 Scene Classification Using Hierarchy Neural Network, Directed Acyclic Graph Structure, and Label Relations

Authors: Po-Jen Chen, Jian-Jiun Ding, Hung-Wei Hsu, Chien-Yao Wang, Jia-Ching Wang

Abstract:

A more accurate scene classification algorithm using label relations and the hierarchy neural network was developed in this work. In many classification algorithms, it is assumed that the labels are mutually exclusive. This assumption is true in some specific problems, however, for scene classification, the assumption is not reasonable. Because there are a variety of objects with a photo image, it is more practical to assign multiple labels for an image. In this paper, two label relations, which are exclusive relation and hierarchical relation, were adopted in the classification process to achieve more accurate multiple label classification results. Moreover, the hierarchy neural network (hierarchy NN) is applied to classify the image and the directed acyclic graph structure is used for predicting a more reasonable result which obey exclusive and hierarchical relations. Simulations show that, with these techniques, a much more accurate scene classification result can be achieved.

Keywords: convolutional neural network, label relation, hierarchy neural network, scene classification

Procedia PDF Downloads 455
2278 Image Processing of Scanning Electron Microscope Micrograph of Ferrite and Pearlite Steel for Recognition of Micro-Constituents

Authors: Subir Gupta, Subhas Ganguly

Abstract:

In this paper, we demonstrate the new area of application of image processing in metallurgical images to develop the more opportunity for structure-property correlation based approaches of alloy design. The present exercise focuses on the development of image processing tools suitable for phrase segmentation, grain boundary detection and recognition of micro-constituents in SEM micrographs of ferrite and pearlite steels. A comprehensive data of micrographs have been experimentally developed encompassing the variation of ferrite and pearlite volume fractions and taking images at different magnification (500X, 1000X, 15000X, 2000X, 3000X and 5000X) under scanning electron microscope. The variation in the volume fraction has been achieved using four different plain carbon steel containing 0.1, 0.22, 0.35 and 0.48 wt% C heat treated under annealing and normalizing treatments. The obtained data pool of micrographs arbitrarily divided into two parts to developing training and testing sets of micrographs. The statistical recognition features for ferrite and pearlite constituents have been developed by learning from training set of micrographs. The obtained features for microstructure pattern recognition are applied to test set of micrographs. The analysis of the result shows that the developed strategy can successfully detect the micro constitutes across the wide range of magnification and variation of volume fractions of the constituents in the structure with an accuracy of about +/- 5%.

Keywords: SEM micrograph, metallurgical image processing, ferrite pearlite steel, microstructure

Procedia PDF Downloads 197
2277 A Nonlinear Feature Selection Method for Hyperspectral Image Classification

Authors: Pei-Jyun Hsieh, Cheng-Hsuan Li, Bor-Chen Kuo

Abstract:

For hyperspectral image classification, feature reduction is an important pre-processing for avoiding the Hughes phenomena due to the difficulty for collecting training samples. Hence, lots of researches developed feature selection methods such as F-score, HSIC (Hilbert-Schmidt Independence Criterion), and etc., to improve hyperspectral image classification. However, most of them only consider the class separability in the original space, i.e., a linear class separability. In this study, we proposed a nonlinear class separability measure based on kernel trick for selecting an appropriate feature subset. The proposed nonlinear class separability was formed by a generalized RBF kernel with different bandwidths with respect to different features. Moreover, it considered the within-class separability and the between-class separability. A genetic algorithm was applied to tune these bandwidths such that the smallest with-class separability and the largest between-class separability simultaneously. This indicates the corresponding feature space is more suitable for classification. In addition, the corresponding nonlinear classification boundary can separate classes very well. These optimal bandwidths also show the importance of bands for hyperspectral image classification. The reciprocals of these bandwidths can be viewed as weights of bands. The smaller bandwidth, the larger weight of the band, and the more importance for classification. Hence, the descending order of the reciprocals of the bands gives an order for selecting the appropriate feature subsets. In the experiments, three hyperspectral image data sets, the Indian Pine Site data set, the PAVIA data set, and the Salinas A data set, were used to demonstrate the selected feature subsets by the proposed nonlinear feature selection method are more appropriate for hyperspectral image classification. Only ten percent of samples were randomly selected to form the training dataset. All non-background samples were used to form the testing dataset. The support vector machine was applied to classify these testing samples based on selected feature subsets. According to the experiments on the Indian Pine Site data set with 220 bands, the highest accuracies by applying the proposed method, F-score, and HSIC are 0.8795, 0.8795, and 0.87404, respectively. However, the proposed method selects 158 features. F-score and HSIC select 168 features and 217 features, respectively. Moreover, the classification accuracies increase dramatically only using first few features. The classification accuracies with respect to feature subsets of 10 features, 20 features, 50 features, and 110 features are 0.69587, 0.7348, 0.79217, and 0.84164, respectively. Furthermore, only using half selected features (110 features) of the proposed method, the corresponding classification accuracy (0.84168) is approximate to the highest classification accuracy, 0.8795. For other two hyperspectral image data sets, the PAVIA data set and Salinas A data set, we can obtain the similar results. These results illustrate our proposed method can efficiently find feature subsets to improve hyperspectral image classification. One can apply the proposed method to determine the suitable feature subset first according to specific purposes. Then researchers can only use the corresponding sensors to obtain the hyperspectral image and classify the samples. This can not only improve the classification performance but also reduce the cost for obtaining hyperspectral images.

Keywords: hyperspectral image classification, nonlinear feature selection, kernel trick, support vector machine

Procedia PDF Downloads 262
2276 Introduction of Digital Radiology to Improve the Timeliness in Availability of Radiological Diagnostic Images for Trauma Care

Authors: Anuruddha Jagoda, Samiddhi Samarakoon, Anil Jasinghe

Abstract:

In an emergency department ‘where every second count for patient’s management’ timely availability of X- rays play a vital role in early diagnosis and management of patients. Trauma care centers rely heavily on timely radiologic imaging for patient care and radiology plays a crucial role in the emergency department (ED) operations. A research study was carried out to assess timeliness of availability of X-rays and total turnaround time at the Accident Service of National Hospital of Sri Lanka which is the premier trauma center in the country. Digital Radiology system was implemented as an intervention to improve the timeliness of availability of X-rays. Post-implementation assessment was carried out to assess the effectiveness of the intervention. Reduction in all three aspects of waiting times namely waiting for initial examination by doctors, waiting until X –ray is performed and waiting for image availability was observed after implementation of the intervention. However, the most significant improvement was seen in waiting time for image availability and reduction in time for image availability had indirect impact on reducing waiting time for initial examination by doctors and waiting until X –ray is performed. The most significant reduction in time for image availability was observed when performing 4-5 X rays with DR system. The least improvement in timeliness was seen in patients who are categorized as critical.

Keywords: emergency department, digital radilogy, timeliness, trauma care

Procedia PDF Downloads 264
2275 The Image of Polish Society in the Cinematography of the People’s Republic of Poland

Authors: Radoslaw Domke

Abstract:

The social history of Poland in the years 1945-1990 has already been thoroughly researched based on the so-called Classical sources. Many types of archival and press sources, diaries, memoirs, and literature on the subject were analyzed. It turns out, however, that the fictional film material remains an unknown source. In the paper, the author intends to focus on the image of Polish society that emerges from the analysis of cinematography produced by the Polish People's Republic. The conclusions presented in the paper can be the basis for further research on the visual history of post-war societies.

Keywords: visual history, history of Poland, social history, cinematography

Procedia PDF Downloads 91
2274 Optical Imaging Based Detection of Solder Paste in Printed Circuit Board Jet-Printing Inspection

Authors: D. Heinemann, S. Schramm, S. Knabner, D. Baumgarten

Abstract:

Purpose: Applying solder paste to printed circuit boards (PCB) with stencils has been the method of choice over the past years. A new method uses a jet printer to deposit tiny droplets of solder paste through an ejector mechanism onto the board. This allows for more flexible PCB layouts with smaller components. Due to the viscosity of the solder paste, air blisters can be trapped in the cartridge. This can lead to missing solder joints or deviations in the applied solder volume. Therefore, a built-in and real-time inspection of the printing process is needed to minimize uncertainties and increase the efficiency of the process by immediate correction. The objective of the current study is the design of an optimal imaging system and the development of an automatic algorithm for the detection of applied solder joints from optical from the captured images. Methods: In a first approach, a camera module connected to a microcomputer and LED strips are employed to capture images of the printed circuit board under four different illuminations (white, red, green and blue). Subsequently, an improved system including a ring light, an objective lens, and a monochromatic camera was set up to acquire higher quality images. The obtained images can be divided into three main components: the PCB itself (i.e., the background), the reflections induced by unsoldered positions or screw holes and the solder joints. Non-uniform illumination is corrected by estimating the background using a morphological opening and subtraction from the input image. Image sharpening is applied in order to prevent error pixels in the subsequent segmentation. The intensity thresholds which divide the main components are obtained from the multimodal histogram using three probability density functions. Determining the intersections delivers proper thresholds for the segmentation. Remaining edge gradients produces small error areas which are removed by another morphological opening. For quantitative analysis of the segmentation results, the dice coefficient is used. Results: The obtained PCB images show a significant gradient in all RGB channels, resulting from ambient light. Using different lightings and color channels 12 images of a single PCB are available. A visual inspection and the investigation of 27 specific points show the best differentiation between those points using a red lighting and a green color channel. Estimating two thresholds from analyzing the multimodal histogram of the corrected images and using them for segmentation precisely extracts the solder joints. The comparison of the results to manually segmented images yield high sensitivity and specificity values. Analyzing the overall result delivers a Dice coefficient of 0.89 which varies for single object segmentations between 0.96 for a good segmented solder joints and 0.25 for single negative outliers. Conclusion: Our results demonstrate that the presented optical imaging system and the developed algorithm can robustly detect solder joints on printed circuit boards. Future work will comprise a modified lighting system which allows for more precise segmentation results using structure analysis.

Keywords: printed circuit board jet-printing, inspection, segmentation, solder paste detection

Procedia PDF Downloads 334
2273 Analysis of Histogram Asymmetry for Waste Recognition

Authors: Janusz Bobulski, Kamila Pasternak

Abstract:

Despite many years of effort and research, the problem of waste management is still current. So far, no fully effective waste management system has been developed. Many programs and projects improve statistics on the percentage of waste recycled every year. In these efforts, it is worth using modern Computer Vision techniques supported by artificial intelligence. In the article, we present a method of identifying plastic waste based on the asymmetry analysis of the histogram of the image containing the waste. The method is simple but effective (94%), which allows it to be implemented on devices with low computing power, in particular on microcomputers. Such de-vices will be used both at home and in waste sorting plants.

Keywords: waste management, environmental protection, image processing, computer vision

Procedia PDF Downloads 117
2272 Enhancement of X-Rays Images Intensity Using Pixel Values Adjustments Technique

Authors: Yousif Mohamed Y. Abdallah, Razan Manofely, Rajab M. Ben Yousef

Abstract:

X-Ray images are very popular as a first tool for diagnosis. Automating the process of analysis of such images is important in order to help physician procedures. In this practice, teeth segmentation from the radiographic images and feature extraction are essential steps. The main objective of this study was to study correction preprocessing of x-rays images using local adaptive filters in order to evaluate contrast enhancement pattern in different x-rays images such as grey color and to evaluate the usage of new nonlinear approach for contrast enhancement of soft tissues in x-rays images. The data analyzed by using MatLab program to enhance the contrast within the soft tissues, the gray levels in both enhanced and unenhanced images and noise variance. The main techniques of enhancement used in this study were contrast enhancement filtering and deblurring images using the blind deconvolution algorithm. In this paper, prominent constraints are firstly preservation of image's overall look; secondly, preservation of the diagnostic content in the image and thirdly detection of small low contrast details in diagnostic content of the image.

Keywords: enhancement, x-rays, pixel intensity values, MatLab

Procedia PDF Downloads 481
2271 Content-Aware Image Augmentation for Medical Imaging Applications

Authors: Filip Rusak, Yulia Arzhaeva, Dadong Wang

Abstract:

Machine learning based Computer-Aided Diagnosis (CAD) is gaining much popularity in medical imaging and diagnostic radiology. However, it requires a large amount of high quality and labeled training image datasets. The training images may come from different sources and be acquired from different radiography machines produced by different manufacturers, digital or digitized copies of film radiographs, with various sizes as well as different pixel intensity distributions. In this paper, a content-aware image augmentation method is presented to deal with these variations. The results of the proposed method have been validated graphically by plotting the removed and added seams of pixels on original images. Two different chest X-ray (CXR) datasets are used in the experiments. The CXRs in the datasets defer in size, some are digital CXRs while the others are digitized from analog CXR films. With the proposed content-aware augmentation method, the Seam Carving algorithm is employed to resize CXRs and the corresponding labels in the form of image masks, followed by histogram matching used to normalize the pixel intensities of digital radiography, based on the pixel intensity values of digitized radiographs. We implemented the algorithms, resized the well-known Montgomery dataset, to the size of the most frequently used Japanese Society of Radiological Technology (JSRT) dataset and normalized our digital CXRs for testing. This work resulted in the unified off-the-shelf CXR dataset composed of radiographs included in both, Montgomery and JSRT datasets. The experimental results show that even though the amount of augmentation is large, our algorithm can preserve the important information in lung fields, local structures, and global visual effect adequately. The proposed method can be used to augment training and testing image data sets so that the trained machine learning model can be used to process CXRs from various sources, and it can be potentially used broadly in any medical imaging applications.

Keywords: computer-aided diagnosis, image augmentation, lung segmentation, medical imaging, seam carving

Procedia PDF Downloads 220
2270 Automated Localization of Palpebral Conjunctiva and Hemoglobin Determination Using Smart Phone Camera

Authors: Faraz Tahir, M. Usman Akram, Albab Ahmad Khan, Mujahid Abbass, Ahmad Tariq, Nuzhat Qaiser

Abstract:

The objective of this study was to evaluate the Degree of anemia by taking the picture of the palpebral conjunctiva using Smartphone Camera. We have first localized the region of interest from the image and then extracted certain features from that Region of interest and trained SVM classifier on those features and then, as a result, our system classifies the image in real-time on their level of hemoglobin. The proposed system has given an accuracy of 70%. We have trained our classifier on a locally gathered dataset of 30 patients.

Keywords: anemia, palpebral conjunctiva, SVM, smartphone

Procedia PDF Downloads 503
2269 SEM Image Classification Using CNN Architectures

Authors: Güzi̇n Ti̇rkeş, Özge Teki̇n, Kerem Kurtuluş, Y. Yekta Yurtseven, Murat Baran

Abstract:

A scanning electron microscope (SEM) is a type of electron microscope mainly used in nanoscience and nanotechnology areas. Automatic image recognition and classification are among the general areas of application concerning SEM. In line with these usages, the present paper proposes a deep learning algorithm that classifies SEM images into nine categories by means of an online application to simplify the process. The NFFA-EUROPE - 100% SEM data set, containing approximately 21,000 images, was used to train and test the algorithm at 80% and 20%, respectively. Validation was carried out using a separate data set obtained from the Middle East Technical University (METU) in Turkey. To increase the accuracy in the results, the Inception ResNet-V2 model was used in view of the Fine-Tuning approach. By using a confusion matrix, it was observed that the coated-surface category has a negative effect on the accuracy of the results since it contains other categories in the data set, thereby confusing the model when detecting category-specific patterns. For this reason, the coated-surface category was removed from the train data set, hence increasing accuracy by up to 96.5%.

Keywords: convolutional neural networks, deep learning, image classification, scanning electron microscope

Procedia PDF Downloads 124
2268 Influence of the Paint Coating Thickness in Digital Image Correlation Experiments

Authors: Jesús A. Pérez, Sam Coppieters, Dimitri Debruyne

Abstract:

In the past decade, the use of digital image correlation (DIC) techniques has increased significantly in the area of experimental mechanics, especially for materials behavior characterization. This non-contact tool enables full field displacement and strain measurements over a complete region of interest. The DIC algorithm requires a random contrast pattern on the surface of the specimen in order to perform properly. To create this pattern, the specimen is usually first coated using a white matt paint. Next, a black random speckle pattern is applied using any suitable method. If the applied paint coating is too thick, its top surface may not be able to exactly follow the deformation of the specimen, and consequently, the strain measurement might be underestimated. In the present article, a study of the influence of the paint thickness on the strain underestimation is performed for different strain levels. The results are then compared to typical paint coating thicknesses applied by experienced DIC users. A slight strain underestimation was observed for paint coatings thicker than about 30μm. On the other hand, this value was found to be uncommonly high compared to coating thicknesses applied by DIC users.

Keywords: digital image correlation, paint coating thickness, strain

Procedia PDF Downloads 512
2267 The Relationship between Body Image, Eating Behavior and Nutritional Status for Female Athletes

Authors: Selen Muftuoglu, Dilara Kefeli

Abstract:

The present study was conducted by using the cross-sectional study design and to determine the relationship between body image, eating behavior and nutritional status in 80 female athletes who were basketball, volleyball, flag football, indoor soccer, and ice hockey players. This study demonstrated that 70.0% of the female athletes had skipped meal. Also, female athletes had a normal body mass index (BMI), but 65.0% of them indicated that want to be thinner. On the other hand, we analyzed that their daily nutrients intake, so we observed that 43.4% of the energy was from the fatty acids, especially saturated fatty acids, and they had lower fiber, calcium and iron intake. Also, we found that BMI, waist circumference, waist to hip ratio were negatively correlated with Multidimensional Body-Self Relations Questionnaire and The Dutch Eating Behavior Questionnaire score and they were lower in who had meal skipped or not received diet therapy. As a conclusion, nutrition education is frequently neglected in sports programs. There is a paucity of nutrition education interventions among different sports.

Keywords: body image, eating behavior, eating disorders, female athletes, nutritional status

Procedia PDF Downloads 161
2266 Lacunarity measures on Mammographic Image Applying Fractal Dimension and Lacunarity Measures

Authors: S. Sushma, S. Balasubramanian, K. C. Latha, R. Sridhar

Abstract:

Structural texture measures are used to address the aspect of breast cancer risk assessment in screening mammograms. The current study investigates whether texture properties characterized by local Fractal Dimension (FD) and lacunarity contribute to assess breast cancer risk. Fractal Dimension represents the complexity while the lacunarity characterize the gap of a fractal dimension. In this paper, we present our result confirming that the lacunarity value resulted in algorithm using mammogram images states that level of lacunarity will be low when the Fractal Dimension value will be high.

Keywords: breast cancer, fractal dimension, image analysis, lacunarity, mammogram

Procedia PDF Downloads 387
2265 Recognition of Gene Names from Gene Pathway Figures Using Siamese Network

Authors: Muhammad Azam, Micheal Olaolu Arowolo, Fei He, Mihail Popescu, Dong Xu

Abstract:

The number of biological papers is growing quickly, which means that the number of biological pathway figures in those papers is also increasing quickly. Each pathway figure shows extensive biological information, like the names of genes and how the genes are related. However, manually annotating pathway figures takes a lot of time and work. Even though using advanced image understanding models could speed up the process of curation, these models still need to be made more accurate. To improve gene name recognition from pathway figures, we applied a Siamese network to map image segments to a library of pictures containing known genes in a similar way to person recognition from photos in many photo applications. We used a triple loss function and a triplet spatial pyramid pooling network by combining the triplet convolution neural network and the spatial pyramid pooling (TSPP-Net). We compared VGG19 and VGG16 as the Siamese network model. VGG16 achieved better performance with an accuracy of 93%, which is much higher than OCR results.

Keywords: biological pathway, image understanding, gene name recognition, object detection, Siamese network, VGG

Procedia PDF Downloads 287
2264 Characterization of Optical Systems for Intraocular Projection

Authors: Charles Q. Yu, Victoria H. Fan, Ahmed F. Al-Qahtani, Ibraim Viera

Abstract:

Introduction: Over 12 million people are blind due to opacity of the cornea, the clear tissue forming the front of the eye. Current methods use plastic implants to produce a clear optical pathway into the eye but are limited by a high rate of complications. New implants utilizing completely inside-the-eye projection technology can overcome blindness due to scarring of the eye by producing images on the retina without need for a clear optical pathway into the eye and may be free of the complications of traditional treatments. However, the interior of the eye is a challenging location for the design of optical focusing systems which can produce a sufficiently high quality image. No optical focusing systems have previously been characterized for this purpose. Methods: 3 optical focusing systems for intraocular (inside the eye) projection were designed and then modeled with ray tracing software, including a pinhole system, a planoconvex, and an achromatic system. These were then constructed using off-the-shelf components and tested in the laboratory. Weight, size, magnification, depth of focus, image quality and brightness were characterized. Results: Image quality increased with complexity of system design, as did weight and size. A dual achromatic doublet optical system produced the highest image quality. The visual acuity equivalent achieved with this system was better than 20/200. Its weight was less than that of the natural human crystalline lens. Conclusions: We demonstrate for the first time that high quality images can be produced by optical systems sufficiently small and light to be implanted within the eye.

Keywords: focusing, projection, blindness, cornea , achromatic, pinhole

Procedia PDF Downloads 130
2263 A Robust Spatial Feature Extraction Method for Facial Expression Recognition

Authors: H. G. C. P. Dinesh, G. Tharshini, M. P. B. Ekanayake, G. M. R. I. Godaliyadda

Abstract:

This paper presents a new spatial feature extraction method based on principle component analysis (PCA) and Fisher Discernment Analysis (FDA) for facial expression recognition. It not only extracts reliable features for classification, but also reduces the feature space dimensions of pattern samples. In this method, first each gray scale image is considered in its entirety as the measurement matrix. Then, principle components (PCs) of row vectors of this matrix and variance of these row vectors along PCs are estimated. Therefore, this method would ensure the preservation of spatial information of the facial image. Afterwards, by incorporating the spectral information of the eigen-filters derived from the PCs, a feature vector was constructed, for a given image. Finally, FDA was used to define a set of basis in a reduced dimension subspace such that the optimal clustering is achieved. The method of FDA defines an inter-class scatter matrix and intra-class scatter matrix to enhance the compactness of each cluster while maximizing the distance between cluster marginal points. In order to matching the test image with the training set, a cosine similarity based Bayesian classification was used. The proposed method was tested on the Cohn-Kanade database and JAFFE database. It was observed that the proposed method which incorporates spatial information to construct an optimal feature space outperforms the standard PCA and FDA based methods.

Keywords: facial expression recognition, principle component analysis (PCA), fisher discernment analysis (FDA), eigen-filter, cosine similarity, bayesian classifier, f-measure

Procedia PDF Downloads 423
2262 Development of Star Image Simulator for Star Tracker Algorithm Validation

Authors: Zoubida Mahi

Abstract:

A successful satellite mission in space requires a reliable attitude and orbit control system to command, control and position the satellite in appropriate orbits. Several sensors are used for attitude control, such as magnetic sensors, earth sensors, horizon sensors, gyroscopes, and solar sensors. The star tracker is the most accurate sensor compared to other sensors, and it is able to offer high-accuracy attitude control without the need for prior attitude information. There are mainly three approaches in star sensor research: digital simulation, hardware in the loop simulation, and field test of star observation. In the digital simulation approach, all of the processes are done in software, including star image simulation. Hence, it is necessary to develop star image simulation software that could simulate real space environments and various star sensor configurations. In this paper, we present a new stellar image simulation tool that is used to test and validate the stellar sensor algorithms; the developed tool allows to simulate of stellar images with several types of noise, such as background noise, gaussian noise, Poisson noise, multiplicative noise, and several scenarios that exist in space such as the presence of the moon, the presence of optical system problem, illumination and false objects. On the other hand, we present in this paper a new star extraction algorithm based on a new centroid calculation method. We compared our algorithm with other star extraction algorithms from the literature, and the results obtained show the star extraction capability of the proposed algorithm.

Keywords: star tracker, star simulation, star detection, centroid, noise, scenario

Procedia PDF Downloads 94
2261 Imperial/Royal Renewal in Byzantium and Medieval Georgia: Case of Alexios I Komnenos (r. 1081–1118) and Davit IV the Builder (r. 1089–1125)

Authors: Sandro Nikolaishvili

Abstract:

The end of the eleventh and the beginning of the twelfth century was a transitional period for the Byzantine empire as well as for the Caucasus. The empire was struggling for its survival under Alexios I Komnenos while Medieval Georgia was emerging as a dominant player in the Caucasus under Davit IV the Builder. The reigns of these two rulers were periods of renewal and transformation. I aim to compare the imperial image of Alexios I Komnenos with the renewed kingship ideology under Davit IV. I will hypothesize about the possible translation of the Byzantine political culture into the Medieval Georgia.

Keywords: Byzantium, Georgia, imperial, image

Procedia PDF Downloads 416
2260 An Examination of the Relationship between Adolescents' Social Media Use and Social Appearance Anxiety

Authors: Aynur Bütün Ayhan, Utku Beyazıt

Abstract:

Adolescents can be heavily influenced by social media content as they develop their identities and body images. Therefore, the intensive use of social media platforms may have important effects on their body image beliefs. In this context, the objective of the present study was to assess the relationship between adolescents' social media use and their body image concerns. The study included 265 adolescents (133 girls and 132 boys) between the ages of 15 and 17 who were attending a high school in Ankara, Türkiye. In the study, the adolescents were administered the Social Media Addiction Scale to assess their level of social media use and the Social Appearance Anxiety Scale to assess their social appearance anxiety. Prior to analysis, a normality test was applied, and it was determined that the data displayed a non-parametric distribution. As a result, a significant positive relationship (r=.322, p<.01) was found between adolescents' level of social use and social appearance anxiety. It was also determined that social media addiction and social appearance anxiety significantly differed (p<.05) according to adolescents' opinions about their own bodies, being influenced by body images they see on social media and weight perceptions. The findings suggest that social media use should be managed carefully for adolescents to develop a healthy body image.

Keywords: social media, adolescent, social appearence, anxiety

Procedia PDF Downloads 19
2259 Implementation of Edge Detection Based on Autofluorescence Endoscopic Image of Field Programmable Gate Array

Authors: Hao Cheng, Zhiwu Wang, Guozheng Yan, Pingping Jiang, Shijia Qin, Shuai Kuang

Abstract:

Autofluorescence Imaging (AFI) is a technology for detecting early carcinogenesis of the gastrointestinal tract in recent years. Compared with traditional white light endoscopy (WLE), this technology greatly improves the detection accuracy of early carcinogenesis, because the colors of normal tissues are different from cancerous tissues. Thus, edge detection can distinguish them in grayscale images. In this paper, based on the traditional Sobel edge detection method, optimization has been performed on this method which considers the environment of the gastrointestinal, including adaptive threshold and morphological processing. All of the processes are implemented on our self-designed system based on the image sensor OV6930 and Field Programmable Gate Array (FPGA), The system can capture the gastrointestinal image taken by the lens in real time and detect edges. The final experiments verified the feasibility of our system and the effectiveness and accuracy of the edge detection algorithm.

Keywords: AFI, edge detection, adaptive threshold, morphological processing, OV6930, FPGA

Procedia PDF Downloads 228
2258 Self-serving Anchoring of Self-judgments

Authors: Elitza Z. Ambrus, Bjoern Hartig, Ryan McKay

Abstract:

Individuals’ self-judgments might be malleable and influenced by comparison with a random value. On the one hand, self-judgments reflect our self-image, which is typically considered to be stable in adulthood. Indeed, people also strive hard to maintain a fixed, positive moral image of themselves. On the other hand, research has shown the robustness of the so-called anchoring effect on judgments and decisions. The anchoring effect refers to the influence of a previously considered comparative value (anchor) on a consecutive absolute judgment and reveals that individuals’ estimates of various quantities are flexible and can be influenced by a salient random value. The present study extends the anchoring paradigm to the domain of the self. We also investigate whether participants are more susceptible to self-serving anchors, i.e., anchors that enhance participant’s self-image, especially their moral self-image. In a pre-reregistered study via the online platform Prolific, 249 participants (156 females, 89 males, 3 other and 1 who preferred not to specify their gender; M = 35.88, SD = 13.91) ranked themselves on eight personality characteristics. However, in the anchoring conditions, respondents were asked to first indicate whether they thought they would rank higher or lower than a given anchor value before providing their estimated rank in comparison to 100 other anonymous participants. A high and a low anchor value were employed to differentiate between anchors in a desirable (self-serving) direction and anchors in an undesirable (self-diminishing) direction. In the control treatment, there was no comparison question. Subsequently, participants provided their self-rankings on the eight personality traits with two personal characteristics for each combination of the factors desirable/undesirable and moral/non-moral. We found evidence of an anchoring effect for self-judgments. Moreover, anchoring was more efficient when people were anchored in a self-serving direction: the anchoring effect was enhanced when supporting a more favorable self-view and mitigated (even reversed) when implying a deterioration of the self-image. The self-serving anchoring was more pronounced for moral than for non-moral traits. The data also provided evidence in support of a better-than-average effect in general as well as a magnified better-than-average effect for moral traits. Taken together, these results suggest that self-judgments might not be as stable in adulthood as previously thought. In addition, considerations of constructing and maintaining a positive self-image might interact with the anchoring effect on self-judgments. Potential implications of our results concern the construction and malleability of self-judgments as well as the psychological mechanism shaping anchoring.

Keywords: anchoring, better-than-average effect, self-judgments, self-serving anchoring

Procedia PDF Downloads 179
2257 Digital Image Correlation: Metrological Characterization in Mechanical Analysis

Authors: D. Signore, M. Ferraiuolo, P. Caramuta, O. Petrella, C. Toscano

Abstract:

The Digital Image Correlation (DIC) is a newly developed optical technique that is spreading in all engineering sectors because it allows the non-destructive estimation of the entire surface deformation without any contact with the component under analysis. These characteristics make the DIC very appealing in all the cases the global deformation state is to be known without using strain gages, which are the most used measuring device. The DIC is applicable to any material subjected to distortion caused by either thermal or mechanical load, allowing to obtain high-definition mapping of displacements and deformations. That is why in the civil and the transportation industry, DIC is very useful for studying the behavior of metallic materials as well as of composite materials. DIC is also used in the medical field for the characterization of the local strain field of the vascular tissues surface subjected to uniaxial tensile loading. DIC can be carried out in the two dimension mode (2D DIC) if a single camera is used or in a three dimension mode (3D DIC) if two cameras are involved. Each point of the test surface framed by the cameras can be associated with a specific pixel of the image, and the coordinates of each point are calculated knowing the relative distance between the two cameras together with their orientation. In both arrangements, when a component is subjected to a load, several images related to different deformation states can be are acquired through the cameras. A specific software analyzes the images via the mutual correlation between the reference image (obtained without any applied load) and those acquired during the deformation giving the relative displacements. In this paper, a metrological characterization of the digital image correlation is performed on aluminum and composite targets both in static and dynamic loading conditions by comparison between DIC and strain gauges measures. In the static test, interesting results have been obtained thanks to an excellent agreement between the two measuring techniques. In addition, the deformation detected by the DIC is compliant with the result of a FEM simulation. In the dynamic test, the DIC was able to follow with a good accuracy the periodic deformation of the specimen giving results coherent with the ones given by FEM simulation. In both situations, it was seen that the DIC measurement accuracy depends on several parameters such as the optical focusing, the parameters chosen to perform the mutual correlation between the images and, finally, the reference points on image to be analyzed. In the future, the influence of these parameters will be studied, and a method to increase the accuracy of the measurements will be developed in accordance with the requirements of the industries especially of the aerospace one.

Keywords: accuracy, deformation, image correlation, mechanical analysis

Procedia PDF Downloads 310
2256 The Need for Career Education Based on Self-Esteem in Japanese Youths

Authors: Kumiko Inagaki

Abstract:

Because of the rapidly changing social and industrial world, career education in Japan has recently gained in popularity with the government’s support. However, it has not fostered proactive mindsets and attitudes in the youths. This paper first provides a background of career education in Japan. Next, based on the International Survey of Youth Attitude, Japanese youths’ views of themselves and their future were identified and then compared to the views of youths in six other countries. Assessments of the feelings of self-satisfaction and future hopes of Japanese youths returned very low scores. Suggestions were offered on career education in order to promote a positive self-image.

Keywords: career education, self-esteem, self-image, youth attitude

Procedia PDF Downloads 477
2255 Numerical Solution to Coupled Heat and Moisture Diffusion in Bio-Sourced Composite Materials

Authors: Mnasri Faiza, El Ganaoui Mohammed, Khelifa Mourad, Gabsi Slimane

Abstract:

The main objective of this paper is to describe the hydrothermal behavior through porous material of construction due to temperature gradient. The construction proposed a bi-layer structure which composed of two different materials. The first is a bio-sourced panel named IBS-AKU (inertia system building), the second is the Neopor material. This system (IBS-AKU Neopor) is developed by a Belgium company (Isohabitat). The study suggests a multi-layer structure of the IBS-AKU panel in one dimension. A numerical method was proposed afterwards, by using the finite element method and a refined mesh area to strong gradients. The evolution of temperature fields and the moisture content has been processed.

Keywords: heat transfer, moisture diffusion, porous media, composite IBS-AKU, simulation

Procedia PDF Downloads 504
2254 A Pragmatic Approach of Memes Created in Relation to the COVID-19 Pandemic

Authors: Alexandra-Monica Toma

Abstract:

Internet memes are an element of computer mediated communication and an important part of online culture that combines text and image in order to generate meaning. This term coined by Richard Dawkings refers to more than a mere way to briefly communicate ideas or emotions, thus naming a complex and an intensely perpetuated phenomenon in the virtual environment. This paper approaches memes as a cultural artefact and a virtual trope that mirrors societal concerns and issues, and analyses the pragmatics of their use. Memes have to be analysed in series, usually relating to some image macros, which is proof of the interplay between imitation and creativity in the memes’ writing process. We believe that their potential to become viral relates to three key elements: adaptation to context, reference to a successful meme series, and humour (jokes, irony, sarcasm), with various pragmatic functions. The study also uses the concept of multimodality and stresses how the memes’ text interacts with the image, discussing three types of relations: symmetry, amplification, and contradiction. Moreover, the paper proves that memes could be employed as speech acts with illocutionary force, when the interaction between text and image is enriched through the connection to a specific situation. The features mentioned above are analysed in a corpus that consists of memes related to the COVID-19 pandemic. This corpus shows them to be highly adaptable to context, which helps build the feeling of connection and belonging in an otherwise tremendously fragmented world. Some of them are created based on well-known image macros, and their humour results from an intricate dialogue between texts and contexts. Memes created in relation to the COVID-19 pandemic can be considered speech acts and are often used as such, as proven in the paper. Consequently, this paper tackles the key features of memes, makes a thorough analysis of the memes sociocultural, linguistic, and situational context, and emphasizes their intertextuality, with special accent on their illocutionary potential.

Keywords: context, memes, multimodality, speech acts

Procedia PDF Downloads 197
2253 Image Segmentation: New Methods

Authors: Flaurence Benjamain, Michel Casperance

Abstract:

We present in this paper, first, a comparative study of three mathematical theories to achieve the fusion of information sources. This study aims to identify the characteristics inherent in theories of possibilities, belief functions (DST) and plausible and paradoxical reasoning to establish a strategy of choice that allows us to adopt the most appropriate theory to solve a problem of fusion in order, taking into account the acquired information and imperfections that accompany them. Using the new theory of plausible and paradoxical reasoning, also called Dezert-Smarandache Theory (DSmT), to fuse information multi-sources needs, at first step, the generation of the composites events witch is, in general, difficult. Thus, we present in this paper a new approach to construct pertinent paradoxical classes based on gray levels histograms, which also allows to reduce the cardinality of the hyper-powerset. Secondly, we developed a new technique for order and coding generalized focal elements. This method is exploited, in particular, to calculate the cardinality of Dezert and Smarandache. Then, we give an experimentation of classification of a remote sensing image that illustrates the given methods and we compared the result obtained by the DSmT with that resulting from the use of the DST and theory of possibilities.

Keywords: segmentation, image, approach, vision computing

Procedia PDF Downloads 272