Search results for: fuzzy page identification
3208 An Integrated Label Propagation Network for Structural Condition Assessment
Authors: Qingsong Xiong, Cheng Yuan, Qingzhao Kong, Haibei Xiong
Abstract:
Deep-learning-driven approaches based on vibration responses have attracted larger attention in rapid structural condition assessment while obtaining sufficient measured training data with corresponding labels is relevantly costly and even inaccessible in practical engineering. This study proposes an integrated label propagation network for structural condition assessment, which is able to diffuse the labels from continuously-generating measurements by intact structure to those of missing labels of damage scenarios. The integrated network is embedded with damage-sensitive features extraction by deep autoencoder and pseudo-labels propagation by optimized fuzzy clustering, the architecture and mechanism which are elaborated. With a sophisticated network design and specified strategies for improving performance, the present network achieves to extends the superiority of self-supervised representation learning, unsupervised fuzzy clustering and supervised classification algorithms into an integration aiming at assessing damage conditions. Both numerical simulations and full-scale laboratory shaking table tests of a two-story building structure were conducted to validate its capability of detecting post-earthquake damage. The identifying accuracy of a present network was 0.95 in numerical validations and an average 0.86 in laboratory case studies, respectively. It should be noted that the whole training procedure of all involved models in the network stringently doesn’t rely upon any labeled data of damage scenarios but only several samples of intact structure, which indicates a significant superiority in model adaptability and feasible applicability in practice.Keywords: autoencoder, condition assessment, fuzzy clustering, label propagation
Procedia PDF Downloads 983207 Analysis of Critical Success Factors for Implementing Industry 4.0 and Circular Economy to Enhance Food Traceability
Authors: Mahsa Pishdar
Abstract:
Food traceability through the supply chain is facing increased demand. IoT and blockchain are among the tools under consideration in the Industry 4.0 era that could be integrated to help implementation of the Circular Economy (CE) principles while enhancing food traceability solutions. However, such tools need intellectual system, and infrastructureto be settled as guidance through the way, helping overcoming obstacles. That is why the critical success factors for implementing Industry 4.0 and circular economy principles in food traceability concept are analyzed in this paper by combination of interval type 2 fuzzy Worst Best Method and Measurement Alternatives and Ranking according to Compromise Solution (Interval Type 2 fuzzy WBM-MARCOS). Results indicate that “Knowledge of Industry 4.0 obligations and CE principle” is the most important factor that is the basis of success following by “Management commitment and support”. This will assist decision makers to seize success in gaining a competitive advantage while reducing costs through the supply chain.Keywords: food traceability, industry 4.0, internet of things, block chain, best worst method, marcos
Procedia PDF Downloads 2073206 Large-Scale Electroencephalogram Biometrics through Contrastive Learning
Authors: Mostafa ‘Neo’ Mohsenvand, Mohammad Rasool Izadi, Pattie Maes
Abstract:
EEG-based biometrics (user identification) has been explored on small datasets of no more than 157 subjects. Here we show that the accuracy of modern supervised methods falls rapidly as the number of users increases to a few thousand. Moreover, supervised methods require a large amount of labeled data for training which limits their applications in real-world scenarios where acquiring data for training should not take more than a few minutes. We show that using contrastive learning for pre-training, it is possible to maintain high accuracy on a dataset of 2130 subjects while only using a fraction of labels. We compare 5 different self-supervised tasks for pre-training of the encoder where our proposed method achieves the accuracy of 96.4%, improving the baseline supervised models by 22.75% and the competing self-supervised model by 3.93%. We also study the effects of the length of the signal and the number of channels on the accuracy of the user-identification models. Our results reveal that signals from temporal and frontal channels contain more identifying features compared to other channels.Keywords: brainprint, contrastive learning, electroencephalo-gram, self-supervised learning, user identification
Procedia PDF Downloads 1573205 Identification of Individuals in Forensic Situations after Allo-Hematopoietic Stem Cell Transplantation
Authors: Anupuma Raina, Ajay Parkash
Abstract:
In forensic investigation, DNA analysis helps in the identification of a particular individual under investigation. A set of Short Tandem Repeats loci are widely used for individualization at a molecular level in forensic testing. STRs with tetrameric repeats of DNA are highly polymorphic and widely used for forensic DNA analysis. Identification of an individual became challenging for forensic examiners after Hematopoietic Stem Cell Transplantation. HSCT is a well-accepted and life-saving treatment to treat malignant and nonmalignant diseases. It involves the administration of healthy donor stem cells to replace the patient’s own unhealthy stem cells. A successful HSCT results in complete donor-derived cells in a patient’s hematopoiesis and hence have the capability to change the genetic makeup of the patient. Although an individual who has undergone HSCT and then committed a crime is a very rare situation, but not impossible. Keeping such a situation in mind, various biological samples like blood, buccal swab, and hair follicle were collected and studied after a certain interval of time after HSCT. Blood was collected from both the patient and the donor before the transplant. The DNA profile of both was analyzed using a short tandem repeat kit for autosomal chromosomes. Among all exhibits studied, only hair follicles were found to be the most suitable biological exhibit, as no donor DNA profile was observed for up to 90 days of study.Keywords: chimerism, HSCT, STRs analysis, forensic identification
Procedia PDF Downloads 653204 Post-Earthquake Damage Detection Using System Identification with a Pair of Seismic Recordings
Authors: Lotfi O. Gargab, Ruichong R. Zhang
Abstract:
A wave-based framework is presented for modeling seismic motion in multistory buildings and using measured response for system identification which can be utilized to extract important information regarding structure integrity. With one pair of building response at two locations, a generalized model response is formulated based on wave propagation features and expressed as frequency and time response functions denoted, respectively, as GFRF and GIRF. In particular, GIRF is fundamental in tracking arrival times of impulsive wave motion initiated at response level which is dependent on local model properties. Matching model and measured-structure responses can help in identifying model parameters and infer building properties. To show the effectiveness of this approach, the Millikan Library in Pasadena, California is identified with recordings of the Yorba Linda earthquake of September 3, 2002.Keywords: system identification, continuous-discrete mass modeling, damage detection, post-earthquake
Procedia PDF Downloads 3703203 Leveraging SHAP Values for Effective Feature Selection in Peptide Identification
Authors: Sharon Li, Zhonghang Xia
Abstract:
Post-database search is an essential phase in peptide identification using tandem mass spectrometry (MS/MS) to refine peptide-spectrum matches (PSMs) produced by database search engines. These engines frequently face difficulty differentiating between correct and incorrect peptide assignments. Despite advances in statistical and machine learning methods aimed at improving the accuracy of peptide identification, challenges remain in selecting critical features for these models. In this study, two machine learning models—a random forest tree and a support vector machine—were applied to three datasets to enhance PSMs. SHAP values were utilized to determine the significance of each feature within the models. The experimental results indicate that the random forest model consistently outperformed the SVM across all datasets. Further analysis of SHAP values revealed that the importance of features varies depending on the dataset, indicating that a feature's role in model predictions can differ significantly. This variability in feature selection can lead to substantial differences in model performance, with false discovery rate (FDR) differences exceeding 50% between different feature combinations. Through SHAP value analysis, the most effective feature combinations were identified, significantly enhancing model performance.Keywords: peptide identification, SHAP value, feature selection, random forest tree, support vector machine
Procedia PDF Downloads 303202 Material Parameter Identification of Modified AbdelKarim-Ohno Model
Authors: Martin Cermak, Tomas Karasek, Jaroslav Rojicek
Abstract:
The key role in phenomenological modelling of cyclic plasticity is good understanding of stress-strain behaviour of given material. There are many models describing behaviour of materials using numerous parameters and constants. Combination of individual parameters in those material models significantly determines whether observed and predicted results are in compliance. Parameter identification techniques such as random gradient, genetic algorithm, and sensitivity analysis are used for identification of parameters using numerical modelling and simulation. In this paper genetic algorithm and sensitivity analysis are used to study effect of 4 parameters of modified AbdelKarim-Ohno cyclic plasticity model. Results predicted by Finite Element (FE) simulation are compared with experimental data from biaxial ratcheting test with semi-elliptical loading path.Keywords: genetic algorithm, sensitivity analysis, inverse approach, finite element method, cyclic plasticity, ratcheting
Procedia PDF Downloads 4543201 Influence of Transportation Mode to the Deterioration Rate: Case Study of Food Transport by Ship
Authors: Danijela Tuljak-Suban, Valter Suban
Abstract:
Food as perishable goods represents a specific and sensitive part in the supply chain theory, since changing of its physical or chemical characteristics considerably influences the approach to stock management. The most delicate phase of this process is transportation, where it becomes difficult to ensure stability conditions that limit the deterioration, since the value of the deterioration rate could be easily influenced by the transportation mode. Fuzzy definition of variables allows taking into account these variations. Furthermore an appropriate choice of the defuzzification method permits to adapt results, as much as possible, to real conditions. In the article will be applied the those methods to the relationship between the deterioration rate of perishable goods and transportation by ship, with the aim: (a) to minimize the total costs function, defined as the sum of the ordering cost, holding cost, disposing cost and transportation costs, and (b) to improve supply chain sustainability by reducing the environmental impact and waste disposal costs.Keywords: perishable goods, fuzzy reasoning, transport by ship, supply chain sustainability
Procedia PDF Downloads 5443200 Coupling Fuzzy Analytic Hierarchy Process with Storm Water Management Model for Site Selection of Appropriate Adaptive Measures
Authors: Negin Binesh, Mohammad Hossein Niksokhan, Amin Sarang
Abstract:
Best Management Practices (BMPs) are considered as one of the most important structural adaptive measures to climate change and urban development challenges in recent decades. However, not every location is appropriate for applying BMPs in the watersheds. In this paper, location prioritization of two kinds of BMPs was done: Pourous pavement and Detention pond. West Flood-Diversion (WFD) catchment in northern parts of Tehran, Iran, was considered as the case study. The methodology includes integrating the results of Storm Water Management Model (SWMM) into Fuzzy Analytic Hierarchy Process (FAHP) method using Geographic Information System (GIS). The results indicate that mostly suburban areas of the watershed in northern parts are appropriate for applying detention basin, and downstream high-density urban areas are more suitable for using permeable pavement.Keywords: adaptive measures, BMPs, location prioritization, urban flooding
Procedia PDF Downloads 3663199 Plant Leaf Recognition Using Deep Learning
Authors: Aadhya Kaul, Gautam Manocha, Preeti Nagrath
Abstract:
Our environment comprises of a wide variety of plants that are similar to each other and sometimes the similarity between the plants makes the identification process tedious thus increasing the workload of the botanist all over the world. Now all the botanists cannot be accessible all the time for such laborious plant identification; therefore, there is an urge for a quick classification model. Also, along with the identification of the plants, it is also necessary to classify the plant as healthy or not as for a good lifestyle, humans require good food and this food comes from healthy plants. A large number of techniques have been applied to classify the plants as healthy or diseased in order to provide the solution. This paper proposes one such method known as anomaly detection using autoencoders using a set of collections of leaves. In this method, an autoencoder model is built using Keras and then the reconstruction of the original images of the leaves is done and the threshold loss is found in order to classify the plant leaves as healthy or diseased. A dataset of plant leaves is considered to judge the reconstructed performance by convolutional autoencoders and the average accuracy obtained is 71.55% for the purpose.Keywords: convolutional autoencoder, anomaly detection, web application, FLASK
Procedia PDF Downloads 1643198 Damage Identification in Reinforced Concrete Beams Using Modal Parameters and Their Formulation
Authors: Ali Al-Ghalib, Fouad Mohammad
Abstract:
The identification of damage in reinforced concrete structures subjected to incremental cracking performance exploiting vibration data is recognized as a challenging topic in the published and heavily cited literature. Therefore, this paper attempts to shine light on the extent of dynamic methods when applied to reinforced concrete beams simulated with various scenarios of defects. For this purpose, three different reinforced concrete beams are tested through the course of the study. The three beams are loaded statically to failure in incremental successive load cycles and later rehabilitated. After each static load stage, the beams are tested under free-free support condition using experimental modal analysis. The beams were all of the same length and cross-sectional area (2.0x0.14x0.09)m, but they were different in concrete compressive strength and the type of damage presented. The experimental modal parameters as damage identification parameters were showed computationally expensive, time consuming and require substantial inputs and considerable expertise. Nonetheless, they were proved plausible for the condition monitoring of the current case study as well as structural changes in the course of progressive loads. It was accentuated that a satisfactory localization and quantification for structural changes (Level 2 and Level 3 of damage identification problem) can only be achieved reasonably through considering frequencies and mode shapes of a system in a proper analytical model. A convenient post analysis process for various datasets of vibration measurements for the three beams is conducted in order to extract, check and correlate the basic modal parameters; namely, natural frequency, modal damping and mode shapes. The results of the extracted modal parameters and their combination are utilized and discussed in this research as quantification parameters.Keywords: experimental modal analysis, damage identification, structural health monitoring, reinforced concrete beam
Procedia PDF Downloads 2643197 Prevalence and Risk Factors of Faecal Carriage Fluoroquinolone-Resistant Escherichia coli among Hospitalized Patients in Ado-Ekiti, Nigeria
Authors: C. A. Ologunde
Abstract:
Escherichia coli have been a major microorganisms associated with, and isolated from feacal samples either in adult or children all over the world. Strains of these organisms are resistant to cephalosporins and fluoroquinolone (FQ) antimicrobial agents among hospitalized patients and FQs are the most frequently prescribed antimicrobial class in hospitals, and the level of resistant of E. coli to these antimicrobial agents is a risk factor that should be assessed. Hence, this study was conducted to determine the prevalence and risk factors for colonization with fluoroquinolone (FQ)-resistant E. coli in hospitalized patients in Ado-Ekiti. Rectal swabs were obtained from patients in hospitals in the study area and FQ-resistant E. coli were isolated and identified by means of Nalidixic acid multi-disk and a 1-step screening procedure. Species identification and FQ resistance were confirmed by automated testing (Vitek, bioMerieux, USA). Individual colonies were subjected to pulse-field gel electrophoresis (PAGE) to determine macro-restriction polymorphism after digestion of chromosomal DNA. FQ-resistant E. coli was detected in the stool sample of 37(62%) hospitalized patient. With multivariable analyses, the use of FQ before hospitalization was the only independent risk factor for FQ-resistant E. coli carriage and was consistent for FQ exposures for the 3-12 months of study. Pulsed-field gel electrophoresis of FQ-resistant E. coli identified conal spread of 1(one) strain among 18 patients. Loss (9 patients) or acquisition (10 residents) of FQ-resistant E. coli was documented and was associated with de novo colonization with genetically distinct strains. It was concluded that FQ-resistant E. coli carriage was associated with clonal spread. The differential effects of individual fluoroquinolone on antimicrobial drug resistance are an important area for future study, as hospitals manipulate their formularies with regard to use of individual fluoroquinolone, often for economic reasons.Keywords: E. coli, fluoroquinolone, risk factors, feacal carriage, hospitalized patients, Ado-Ekiti
Procedia PDF Downloads 2473196 Low Cost Real Time Robust Identification of Impulsive Signals
Authors: R. Biondi, G. Dys, G. Ferone, T. Renard, M. Zysman
Abstract:
This paper describes an automated implementable system for impulsive signals detection and recognition. The system uses a Digital Signal Processing device for the detection and identification process. Here the system analyses the signals in real time in order to produce a particular response if needed. The system analyses the signals in real time in order to produce a specific output if needed. Detection is achieved through normalizing the inputs and comparing the read signals to a dynamic threshold and thus avoiding detections linked to loud or fluctuating environing noise. Identification is done through neuronal network algorithms. As a setup our system can receive signals to “learn” certain patterns. Through “learning” the system can recognize signals faster, inducing flexibility to new patterns similar to those known. Sound is captured through a simple jack input, and could be changed for an enhanced recording surface such as a wide-area recorder. Furthermore a communication module can be added to the apparatus to send alerts to another interface if needed.Keywords: sound detection, impulsive signal, background noise, neural network
Procedia PDF Downloads 3223195 A Closed-Loop Design Model for Sustainable Manufacturing by Integrating Forward Design and Reverse Design
Authors: Yuan-Jye Tseng, Yi-Shiuan Chen
Abstract:
In this paper, a new concept of closed-loop design model is presented. The closed-loop design model is developed by integrating forward design and reverse design. Based on this new concept, a closed-loop design model for sustainable manufacturing by integrated evaluation of forward design, reverse design, and green manufacturing using a fuzzy analytic network process is developed. In the design stage of a product, with a given product requirement and objective, there can be different ways to design the detailed components and specifications. Therefore, there can be different design cases to achieve the same product requirement and objective. Thus, in the design evaluation stage, it is required to analyze and evaluate the different design cases. The purpose of this research is to develop a model for evaluating the design cases by integrated evaluation of forward design, reverse design, and green manufacturing models. A fuzzy analytic network process model is presented for integrated evaluation of the criteria in the three models. The comparison matrices for evaluating the criteria in the three groups are established. The total relational values among the three groups represent the total relational effects. In application, a super matrix can be created and the total relational values can be used to evaluate the design cases for decision-making to select the final design case. An example product is demonstrated in this presentation. It shows that the model is useful for integrated evaluation of forward design, reverse design, and green manufacturing to achieve a closed-loop design for sustainable manufacturing objective.Keywords: design evaluation, forward design, reverse design, closed-loop design, supply chain management, closed-loop supply chain, fuzzy analytic network process
Procedia PDF Downloads 6763194 Clustering Based Level Set Evaluation for Low Contrast Images
Authors: Bikshalu Kalagadda, Srikanth Rangu
Abstract:
The important object of images segmentation is to extract objects with respect to some input features. One of the important methods for image segmentation is Level set method. Generally medical images and synthetic images with low contrast of pixel profile, for such images difficult to locate interested features in images. In conventional level set function, develops irregularity during its process of evaluation of contour of objects, this destroy the stability of evolution process. For this problem a remedy is proposed, a new hybrid algorithm is Clustering Level Set Evolution. Kernel fuzzy particles swarm optimization clustering with the Distance Regularized Level Set (DRLS) and Selective Binary, and Gaussian Filtering Regularized Level Set (SBGFRLS) methods are used. The ability of identifying different regions becomes easy with improved speed. Efficiency of the modified method can be evaluated by comparing with the previous method for similar specifications. Comparison can be carried out by considering medical and synthetic images.Keywords: segmentation, clustering, level set function, re-initialization, Kernel fuzzy, swarm optimization
Procedia PDF Downloads 3523193 Uncertain Time-Cost Trade off Problems of Construction Projects Using Fuzzy Set Theory
Authors: V. S. S. Kumar, B. Vikram
Abstract:
The development of effective decision support tools that adopted in the construction industry is vital in the world we live in today, since it can lead to substantial cost reduction and efficient resource consumption. Solving the time-cost trade off problems and its related variants is at the heart of scientific research for optimizing construction planning problems. In general, the classical optimization techniques have difficulties in dealing with TCT problems. One of the main reasons of their failure is that they can easily be entrapped in local minima. This paper presents an investigation on the application of meta-heuristic techniques to two particular variants of the time-cost trade of analysis, the time-cost trade off problem (TCT), and time-cost trade off optimization problem (TCO). In first problem, the total project cost should be minimized, and in the second problem, the total project cost and total project duration should be minimized simultaneously. Finally it is expected that, the optimization models developed in this paper will contribute significantly for efficient planning and management of construction project.Keywords: fuzzy sets, uncertainty, optimization, time cost trade off problems
Procedia PDF Downloads 3573192 A Supply Chain Traceability Improvement Using RFID
Authors: Yaser Miaji, Mohammad Sabbagh
Abstract:
Radio Frequency Identification (RFID) is a technology which shares a similar concept with bar code. With RFID, the electromagnetic or electrostatic coupling in the RF portion of the electromagnetic spectrum is used to transmit signals. Supply chain management is aimed to keep going long-term performance of individual companies and the overall supply chain by maximizing customer satisfaction with minimum costs. One of the major issues in the supply chain management is product loss or shrinkage. In order to overcome this problem, this system which uses Radio Frequency Identification (RFID) technology will be able to RFID track and identify where losses are occurring and enable effective traceability. RFID brings a new dimension to supply chain management by providing a more efficient way of being able to identify and track items at the various stages throughout the supply chain. This system has been developed and tested to prove that RFID technology can be used to improve traceability in supply chain at low cost. Due to its simplicity in interface program and database management system using Visual Basic and MS Excel or MS Access the system can be more affordable and implemented even by small and medium scale industries.Keywords: supply chain, RFID, tractability, radio frequency identification
Procedia PDF Downloads 4893191 Musical Education of Preschool Children: From the Average to the Gifted
Authors: Eudjen Cinc
Abstract:
The contemporary society, which is, whether we like it or not, oriented towards utilitarianism, pragmatics and professional flexibility, lives in a certain paradox. On the one hand, at least declaratively, the accent of modern society is on knowledge; knowledge is even considered to be a commodity, the popularity of education is increased as the only means of survival in the market-oriented world, while on the other hand modern society is moving towards simplification and decreasing the amount of information and areas which are considered necessary in the generally excepted concept of education. We cannot talk about the preschool teacher profession without mentioning work with gifted children. The preschool teacher knowing the characteristics of gifted children is of utmost importance because their early identification and professional guidance are of cardinal importance for the direction in which the children will develop. When we talk about musical ability, in the first phase, the role of preschool teachers in the identification and stimulation of gifted children naturally refers to monitoring children’s musical manifestation. The identification process and work with the gifted presupposes a good relationship with the family, synergy of these two important influences in the child’s education and upbringing.Keywords: music education, gifted children, methodology, kindergarten
Procedia PDF Downloads 2763190 A Non-Destructive TeraHertz System and Method for Capsule and Liquid Medicine Identification
Authors: Ke Lin, Steve Wu Qing Yang, Zhang Nan
Abstract:
The medicine and drugs has in the past been manufactured to the final products and then used laboratory analysis to verify their quality. However the industry needs crucially a monitoring technique for the final batch to batch quality check. The introduction of process analytical technology (PAT) provides an incentive to obtain real-time information about drugs on the production line, with the following optical techniques being considered: near-infrared (NIR) spectroscopy, Raman spectroscopy and imaging, mid-infrared spectroscopy with the use of chemometric techniques to quantify the final product. However, presents problems in that the spectra obtained will consist of many combination and overtone bands of the fundamental vibrations observed, making analysis difficult. In this work, we describe a non-destructive system and method for capsule and liquid medicine identification, more particularly, using terahertz time-domain spectroscopy and/or designed terahertz portable system for identifying different types of medicine in the package of capsule or in liquid medicine bottles. The target medicine can be detected directly, non-destructively and non-invasively.Keywords: terahertz, non-destructive, non-invasive, chemical identification
Procedia PDF Downloads 1323189 Artificial Neural Networks Face to Sudden Load Change for Shunt Active Power Filter
Authors: Dehini Rachid, Ferdi Brahim
Abstract:
The shunt active power filter (SAPF) is not destined only to improve the power factor, but also to compensate the unwanted harmonic currents produced by nonlinear loads. This paper presents a SAPF with identification and control method based on artificial neural network (ANN). To identify harmonics, many techniques are used, among them the conventional p-q theory and the relatively recent one the artificial neural network method. It is difficult to get satisfied identification and control characteristics by using a normal (ANN) due to the nonlinearity of the system (SAPF + fast nonlinear load variations). This work is an attempt to undertake a systematic study of the problem to equip the (SAPF) with the harmonics identification and DC link voltage control method based on (ANN). The latter has been applied to the (SAPF) with fast nonlinear load variations. The results of computer simulations and experiments are given, which can confirm the feasibility of the proposed active power filter.Keywords: artificial neural networks (ANN), p-q theory, harmonics, total harmonic distortion
Procedia PDF Downloads 3873188 A Geospatial Consumer Marketing Campaign Optimization Strategy: Case of Fuzzy Approach in Nigeria Mobile Market
Authors: Adeolu O. Dairo
Abstract:
Getting the consumer marketing strategy right is a crucial and complex task for firms with a large customer base such as mobile operators in a competitive mobile market. While empirical studies have made efforts to identify key constructs, no geospatial model has been developed to comprehensively assess the viability and interdependency of ground realities regarding the customer, competition, channel and the network quality of mobile operators. With this research, a geo-analytic framework is proposed for strategy formulation and allocation for mobile operators. Firstly, a fuzzy analytic network using a self-organizing feature map clustering technique based on inputs from managers and literature, which depicts the interrelationships amongst ground realities is developed. The model is tested with a mobile operator in the Nigeria mobile market. As a result, a customer-centric geospatial and visualization solution is developed. This provides a consolidated and integrated insight that serves as a transparent, logical and practical guide for strategic, tactical and operational decision making.Keywords: geospatial, geo-analytics, self-organizing map, customer-centric
Procedia PDF Downloads 1843187 Rapid Identification of Thermophilic Campylobacter Species from Retail Poultry Meat Using Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry
Authors: Graziella Ziino, Filippo Giarratana, Stefania Maria Marotta, Alessandro Giuffrida, Antonio Panebianco
Abstract:
In Europe, North America and Japan, campylobacteriosis is one of the leading food-borne bacterial illnesses, often related to the consumption of poultry meats and/or by-products. The aim of this study was the evaluation of Campylobacter contamination of poultry meats marketed in Sicily (Italy) using both traditional methods and Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS). MALDI-TOF MS is considered a promising rapid (less than 1 hour) identification method for food borne pathogens bacteria. One hundred chicken and turkey meat preparations (no. 68 hamburgers, no. 21 raw sausages, no. 4 meatballs and no. 7 meat rolls) were taken from different butcher’s shops and large scale retailers and submitted to detection/enumeration of Campylobacter spp. according to EN ISO 10272-1:2006 and EN ISO 10272-2:2006. Campylobacter spp. was detected with general low counts in 44 samples (44%), of which 30 from large scale retailers and 14 from butcher’s shops. Chicken meats were significantly more contaminated than turkey meats. Among the preparations, Campylobacter spp. was found in 85.71% of meat rolls, 50% of meatballs, 44.12% of hamburgers and 28.57% of raw sausages. A total of 100 strains, 2-3 from each positive samples, were isolated for the identification by phenotypic, biomolecular and MALDI-TOF MS methods. C. jejuni was the predominant strains (63%), followed by C. coli (33%) and C. lari (4%). MALDI-TOF MS correctly identified 98% of the strains at the species level, only 1% of the tested strains were not identified. In the last 1%, a mixture of two different species was mixed in the same sample and MALDI-TOF MS correctly identified at least one of the strains. Considering the importance of rapid identification of pathogens in the food matrix, this method is highly recommended for the identification of suspected colonies of Campylobacteria.Keywords: campylobacter spp., Food Microbiology, matrix-assisted laser desorption ionization-time of flight mass spectrometry, rapid microbial identification
Procedia PDF Downloads 2933186 Early Identification and Early Intervention: Pre and Post Diagnostic Tests in Mathematics Courses
Authors: Kailash Ghimire, Manoj Thapa
Abstract:
This study focuses on early identification of deficiencies in pre-required areas of students who are enrolled in College Algebra and Calculus I classes. The students were given pre-diagnostic tests on the first day of the class before they are provided with the syllabus. The tests consist of prerequisite, uniform and advanced content outlined by the University System of Georgia (USG). The results show that 48% of students in College Algebra are lacking prerequisite skills while 52% of Calculus I students are lacking prerequisite skills but, interestingly these students are prior exposed to uniform content and advanced content. The study is still in progress and this paper contains the outcome from Fall 2017 and Spring 2018. In this paper, early intervention used in these classes: two days vs three days meeting a week and students’ self-assessment using exam wrappers and their effectiveness on students’ learning will also be discussed. A result of this study shows that there is an improvement on Drop, Fail and Withdraw (DFW) rates by 7%-10% compared to those in previous semesters.Keywords: student at risk, diagnostic tests, identification, intervention, normalization gain, validity of tests
Procedia PDF Downloads 2083185 Identification and Force Control of a Two Chambers Pneumatic Soft Actuator
Authors: Najib K. Dankadai, Ahmad 'Athif Mohd Faudzi, Khairuddin Osman, Muhammad Rusydi Muhammad Razif, IIi Najaa Aimi Mohd Nordin
Abstract:
Researches in soft actuators are now growing rapidly because of their adequacy to be applied in sectors like medical, agriculture, biological and welfare. This paper presents system identification (SI) and control of the force generated by a two chambers pneumatic soft actuator (PSA). A force mathematical model for the actuator was identified experimentally using data acquisition card and MATLAB SI toolbox. Two control techniques; a predictive functional control (PFC) and conventional proportional integral and derivative (PID) schemes are proposed and compared based on the identified model for the soft actuator flexible mechanism. Results of this study showed that both of the proposed controllers ensure accurate tracking when the closed loop system was tested with the step, sinusoidal and multi step reference input through MATLAB simulation although the PFC provides a better response than the PID.Keywords: predictive functional control (PFC), proportional integral and derivative (PID), soft actuator, system identification
Procedia PDF Downloads 3263184 Leader Self-sacrifice in Sports Organizations
Authors: Stefano Ruggieri, Rubinia C. Bonfanti
Abstract:
Research on leadership in sports organizations has proved extremely fruitful in recent decades, favoring the growing and diffusion of figures such as mental coaches, trainers, etc. Recent scholarly attention on organizations has been directed towards the phenomenon of leader self-sacrifice, wherein leaders who display such behavior are perceived by their followers as more effective, charismatic, and legitimate compared to those who prioritize self-interest. This growing interest reflects the importance of leaders who prioritize the collective welfare over personal gain, as they inspire greater loyalty, trust, and dedication among their followers, ultimately fostering a more cohesive and high-performing team environment. However, there is limited literature on the mechanisms through which self-sacrifice influences both group dynamics (such as cohesion and team identification) and individual factors (such as self-competence). The aim of the study is to analyze the impact of the leader self-sacrifice on cohesion, team identification and self-competence. Team identification is a crucial determinant of individual identity, delineated by the extent to which a team member aligns with a specific organizational team rather than broader social collectives. This association motivates members to synchronize their actions with the collective interests of the group, thereby fostering cohesion among its constituents, and cultivating a shared sense of purpose and unity within the team. In the domain of team sports, particularly soccer and water polo, two studies involving 447 participants (men = 238, women = 209) between 22 and 35 years old (M = 26.36, SD = 5.51) were conducted. The first study employed a correlational methodology to investigate the predictive capacity of self-sacrifice on cohesion, team identification, self-efficacy, and self-competence. The second study utilized an experimental design to explore the relationship between team identification and self-sacrifice. Together, these studies provided comprehensive insights into the multifaceted nature of leader self-sacrifice and its profound implications for group cohesion and individual well-being within organizational settings. The findings underscored the pivotal role of leader self-sacrifice in not only fostering stronger bonds among team members but also in enhancing critical facets of group dynamics, ultimately contributing to the overall effectiveness and success of the team.Keywords: cohesion, leadership, self-sacrifice, sports organizations, team-identification
Procedia PDF Downloads 483183 Proposing an Index for Determining Key Knowledge Management Processes in Decision Making Units Using Fuzzy Quality Function Deployment (QFD), Data Envelopment Analysis (DEA) Method
Authors: Sadegh Abedi, Ali Yaghoubi, Hamidreza Mashatzadegan
Abstract:
This paper proposes an approach to identify key processes required by an organization in the field of knowledge management and aligning them with organizational objectives. For this purpose, first, organization’s most important non-financial objectives which are impacted by knowledge management processes are identified and then, using a quality house, are linked with knowledge management processes which are regarded as technical elements. Using this method, processes that are in need of improvement and more attention are prioritized based on their significance. This means that if a process has more influence on organization’s objectives and is in a dire situation comparing to others, is prioritized for choice and improvement. In this research process dominance is considered to be an influential element in process ranking (in addition to communication matrix). This is the reason for utilizing DEA techniques for prioritizing processes in quality house. Results of implementing the method in Khuzestan steel company represents this method’s capability of identifying key processes that require improvements in organization’s knowledge management system.Keywords: knowledge management, organizational performance, fuzzy data, envelopment analysis
Procedia PDF Downloads 4203182 Evaluation of the Matching Optimization of Human-Machine Interface Matching in the Cab
Authors: Yanhua Ma, Lu Zhai, Xinchen Wang, Hongyu Liang
Abstract:
In this paper, by understanding the development status of the human-machine interface in today's automobile cab, a subjective and objective evaluation system for evaluating the optimization of human-machine interface matching in automobile cab was established. The man-machine interface of the car cab was divided into a software interface and a hard interface. Objective evaluation method of software human factor analysis is used to evaluate the hard interface matching; The analytic hierarchy process is used to establish the evaluation index system for the software interface matching optimization, and the multi-level fuzzy comprehensive evaluation method is used to evaluate hard interface machine. This article takes Dongfeng Sokon (DFSK) C37 model automobile as an example. The evaluation method given in the paper is used to carry out relevant analysis and evaluation, and corresponding optimization suggestions are given, which have certain reference value for designers.Keywords: analytic hierarchy process, fuzzy comprehension evaluation method, human-machine interface, matching optimization, software human factor analysis
Procedia PDF Downloads 1583181 Optimizing Operation of Photovoltaic System Using Neural Network and Fuzzy Logic
Authors: N. Drir, L. Barazane, M. Loudini
Abstract:
It is well known that photovoltaic (PV) cells are an attractive source of energy. Abundant and ubiquitous, this source is one of the important renewable energy sources that have been increasing worldwide year by year. However, in the V-P characteristic curve of GPV, there is a maximum point called the maximum power point (MPP) which depends closely on the variation of atmospheric conditions and the rotation of the earth. In fact, such characteristics outputs are nonlinear and change with variations of temperature and irradiation, so we need a controller named maximum power point tracker MPPT to extract the maximum power at the terminals of photovoltaic generator. In this context, the authors propose here to study the modeling of a photovoltaic system and to find an appropriate method for optimizing the operation of the PV generator using two intelligent controllers respectively to track this point. The first one is based on artificial neural networks and the second on fuzzy logic. After the conception and the integration of each controller in the global process, the performances are examined and compared through a series of simulation. These two controller have prove by their results good tracking of the MPPT compare with the other method which are proposed up to now.Keywords: maximum power point tracking, neural networks, photovoltaic, P&O
Procedia PDF Downloads 3403180 Application of a Synthetic DNA Reference Material for Optimisation of DNA Extraction and Purification for Molecular Identification of Medicinal Plants
Authors: Mina Kalantarzadeh, Claire Lockie-Williams, Caroline Howard
Abstract:
DNA barcoding is increasingly used for identification of medicinal plants worldwide. In the last decade, a large number of DNA barcodes have been generated, and their application in species identification explored. The success of DNA barcoding process relies on the accuracy of the results from polymerase chain reaction (PCR) amplification step which could be negatively affected due to a presence of inhibitors or degraded DNA in herbal samples. An established DNA reference material can be used to support molecular characterisation protocols and prove system suitability, for fast and accurate identification of plant species. The present study describes the use of a novel reference material, the trnH-psbA British Pharmacopoeia Nucleic Acid Reference Material (trnH-psbA BPNARM), which was produced to aid in the identification of Ocimum tenuiflorum L., a widely used herb. During DNA barcoding of O. tenuiflorum, PCR amplifications of isolated DNA produced inconsistent results, suggesting an issue with either the method or DNA quality of the tested samples. The trnH-psbA BPNARM was produced and tested to check for the issues caused during PCR amplification. It was added to the plant material as control DNA before extraction and was co-extracted and amplified by PCR. PCR analyses revealed that the amplification was not as successful as expected which suggested that the amplification is affected by presence of inhibitors co-extracted from plant materials. Various potential issues were assessed during DNA extraction and optimisations were made accordingly. A DNA barcoding protocol for O. tenuiflorum was published in the British Pharmacopoeia 2016, which included the reference sequence. The trnH-psbA BPNARM accelerated degradation test which investigates the stability of the reference material over time demonstrated that it has been stable when stored at 56 °C for a year. Using this protocol and trnH-psbA reference material provides a fast and accurate method for identification of O. tenuiflorum. The optimisations of the DNA extraction using the trnH-psbA BPNARM provided a signposting method which can assist in overcoming common problems encountered when using molecular methods with medicinal plants.Keywords: degradation, DNA extraction, nucleic acid reference material, trnH-psbA
Procedia PDF Downloads 2003179 Regional Problems of Electronic Governance in Autonomous Republic of Adjara
Authors: Manvelidze irakli, Iashvili Genadi
Abstract:
Research has shown that public institutions in Autonomous Republic of Ajara try their best to make their official electronic data (web-pages, social websites) more informative and improve them. Part of public institutions offer interesting electronic services and initiatives to the public although they are seldom used in communication process. The statistical analysis of the use of web-pages and social websites of public institutions for example their facebook page show lack of activity. The reason could be the fact that public institutions give people less possibility of interaction in official web-pages. Second reason could be the fact that these web-pages are less known to the public and the third reason could be the fact that heads of these institutions lack awareness about the necessity of strengthening citizens’ involvement. In order to increase people’s involvement in this process it is necessary to have at least 23 e-services in one web-page. The research has shown that 11 of the 16 public institutions have only 5 services which are contact, social networks and hotline. Besides introducing innovative services government institutions should evaluate them and make them popular and easily accessible for the public. It would be easy to solve this problem if public institutions had concrete strategic plan of public relations which involved matters connected with maximum usage of electronic services while interaction with citizens. For this moment only one governmental body has a functioning action plan of public relations. As a result of the research organizational, social, methodological and technical problems have been revealed. It should be considered that there are many feedback possibilities like forum, RSS, blogs, wiki, twitter, social networks, etc. usage of only one or three of such instruments indicate that there is no strategy of regional electronic governance. It is necessary to develop more mechanisms of feedback which will increase electronic interaction, discussions and it is necessary to introduce the service of online petitions. It is important to reduce the so-called “digital inequality” and increase internet access for the public. State actions should decrease such problems. In the end if such shortcomings will be improved the role of electronic interactions in democratic processes will increase.Keywords: e-Government, electronic services, information technology, regional government, regional government
Procedia PDF Downloads 312