Search results for: fermented organic substances
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3129

Search results for: fermented organic substances

2499 Emergency Management of Poisoning Tracery Care Hospital in India

Authors: Rajiv Ratan Singh, Sachin Kumar Tripathi, Pradeep Kumar Yadav

Abstract:

The timely evaluation, diagnosis, and treatment of people who have been exposed to toxic chemicals is a crucial component of emergency poison management in the medical field. The various substances that can poison include chemicals, medications, and naturally occurring poisons. The toxicology of the particular drug involved, as well as the symptoms and indicators of poisoning, must be thoroughly understood to handle poisoning emergencies effectively. One of the most important aspects of emergency poison management in medicine is the prompt examination, diagnosis, and treatment of persons who have been exposed to dangerous substances. To properly manage poisoning crises, one must have a good understanding of the toxicology of the particular medication concerned, as well as the signs and indicators of poisoning. Emergency management of poisoning includes not only prompt medical attention but also patient education, follow-up care, and monitoring for any long-term consequences. To achieve the greatest results for patients, the management of poisoning is a complicated and dynamic process that calls for collaboration between medical professionals, first responders, and toxicologists. All poisoned patients who present to the emergency room are assessed and diagnosed based on a collection of symptoms and a biochemical diagnosis, and they are then provided targeted, specialized treatment for the toxin identified. This article focuses on the loxodromic strategy as the primary method of treatment for poisoned patients. The authors of this article conclude that mortality and morbidity can be reduced if patients visit the emergency room promptly and receive targeted treatment.

Keywords: antidotes, blood poisoning, emergency medicine, gastric lavage, medico-legal aspects, patient care

Procedia PDF Downloads 75
2498 Phytoremediation Potential of Enhanced Tobacco BAC F3 in Soil Contaminated with Heavy Metals

Authors: Violina Angelova

Abstract:

A comparative study has been carried out into the impact of organic meliorants on the uptake of heavy metals, micro and macroelements and the phytoremediation potential of enhanced tobacco BAC F3. The soil used as part of this experiment was sampled from the vicinity of the Non-Ferrous-Metal Works near Plovdiv, Bulgaria. The pot experiment carried out consisted of a randomized, complete block design containing nine treatments and three replications (27 pots). The treatments consisted of a control (with no organic meliorants) and compost and vermicompost meliorants (added at 5%, 10%, 15%, and 30%, and recalculated based on their dry soil weight). Upon reaching commercial ripeness, the tobacco plants were gathered. Heavy metals, micro and macroelement contents in roots, stems, and leaves of tobacco were analyzed by the method of the microwave mineralization. To determine the elements in the samples, inductively coupled emission spectrometry (Jobin Yvon Emission - JY 38 S, France) was used. The distribution of the heavy metals, micro, and macroelements in the organs of the enhanced tobacco has a selective character and depended above all on the parts of the plants and the element that was examined. Pb, Zn, Cu, Fe, Mn, P and Mg distribution in tobacco decreases in the following order: roots > leaves > stems, and for Cd, K, and Ca - leaves > roots > stems. The high concentration of Cd in the leaves and the high translocation factor indicate the possibility of enhanced tobacco to be used in phytoextraction. Tested organic amendments significantly influenced the uptake of heavy metals, micro and macroelements by the roots, stems, and leaves of tobacco. A correlation was found between the quantity of the mobile forms and the uptake of Pb, Zn, and Cd by the enhanced tobacco. The compost and vermicompost treatments significantly reduced heavy metals concentration in leaves and increased uptake of K, Ca and Mg. The 30% compost and 30% vermicompost treatments led to the maximal reduction of heavy metals in enhanced tobacco BAC F3. The addition of compost and vermicompost further reduces the ability to digest the heavy metals in the leaves, and phytoremediation potential of enhanced tobacco BAC F3. Acknowledgment: The financial support by the Bulgarian National Science Fund Project DFNI Н04/9 is greatly appreciated.

Keywords: heavy metals, micro and macroelements, enhanced tobacco BAC F3, phytoremediation, organic meliorants

Procedia PDF Downloads 136
2497 A Simple Light-Outcoupling Enhancement Method for Organic Light-Emitting Diodes

Authors: Ho-Nyeon Lee

Abstract:

We propose to use a gradual-refractive-index dielectric (GRID) as a simple and efficient light-outcoupling method for organic light-emitting diodes (OLEDs). Using the simple GRIDs, we could improve the light outcoupling efficiency of OLEDs rather than relying on difficult nano-patterning processes. Through numerical simulations using a finite-difference time-domain (FDTD) method, the feasibility of the GRID structure was examined and the design parameters were extracted. The outcoupling enhancement effects due to the GRIDs were proved through severe experimental works. The GRIDs were adapted to bottom-emission OLEDs and top-emission OLEDs. For bottom-emission OLEDs, the efficiency was improved more than 20%, and for top-emission OLEDs, more than 40%. The detailed numerical and experimental results will be presented at the conference site.

Keywords: efficiency, GRID, light outcoupling, OLED

Procedia PDF Downloads 403
2496 Neutral Sugar Contents of Laurel-leaved and Cryptomeria japonica Forests

Authors: Ayuko Itsuki, Sachiyo Aburatani

Abstract:

Soil neutral sugar contents in Kasuga-yama Hill Primeval Forest (Nara, Japan) were examined using the Waksman’s approximation analysis to clarify relations with the neutral sugar constituted the soil organic matter and the microbial biomass. Samples were selected from the soil surrounding laurel-leaved (BB-1) and Carpinus japonica (BB-2) trees for analysis. The water and HCl soluble neutral sugars increased microbial biomass of the laurel-leaved forest soil. Arabinose, xylose, and galactose of the HCl soluble fraction were used immediately in comparison with other neutral sugars. Rhamnose, glucose, and fructose of the HCl soluble fraction were re-composed by the microbes.

Keywords: forest soil, neutral sugaras, soil organic matter, Waksman’s approximation analysis

Procedia PDF Downloads 289
2495 Analysis of the Potential of Biomass Residues for Energy Production and Applications in New Materials

Authors: Sibele A. F. Leite, Bernno S. Leite, José Vicente H. D´Angelo, Ana Teresa P. Dell’Isola, Julio CéSar Souza

Abstract:

The generation of bioenergy is one of the oldest and simplest biomass applications and is one of the safest options for minimizing emissions of greenhouse gasses and replace the use of fossil fuels. In addition, the increasing development of technologies for energy biomass conversion parallel to the advancement of research in biotechnology and engineering has enabled new opportunities for exploitation of biomass. Agricultural residues offer great potential for energy use, and Brazil is in a prominent position in the production and export of agricultural products such as banana and rice. Despite the economic importance of the growth prospects of these activities and the increasing of the agricultural waste, they are rarely explored for energy and production of new materials. Brazil products almost 10.5 million tons/year of rice husk and 26.8 million tons/year of banana stem. Thereby, the aim of this study was to analysis the potential of biomass residues for energy production and applications in new materials. Rice husk (specify the type) and banana stem (specify the type) were characterized by physicochemical analyses using the following parameters: organic carbon, nitrogen (NTK), proximate analyses, FT-IR spectroscopy, thermogravimetric analyses (TG), calorific values and silica content. Rice husk and banana stem presented attractive superior calorific (from 11.5 to 13.7MJ/kg), and they may be compared to vegetal coal (21.25 MJ/kg). These results are due to the high organic matter content. According to the proximate analysis, biomass has high carbon content (fixed and volatile) and low moisture and ash content. In addition, data obtained by Walkley–Black method point out that most of the carbon present in the rice husk (50.5 wt%) and in banana stalk (35.5 wt%) should be understood as organic carbon (readily oxidizable). Organic matter was also detected by Kjeldahl method which gives the values of nitrogen (especially on the organic form) for both residues: 3.8 and 4.7 g/kg of rice husk and banana stem respectively. TG and DSC analyses support the previous results, as they can provide information about the thermal stability of the samples allowing a correlation between thermal behavior and chemical composition. According to the thermogravimetric curves, there were two main stages of mass-losses. The first and smaller one occurred below 100 °C, which was suitable for water losses and the second event occurred between 200 and 500 °C which indicates decomposition of the organic matter. At this broad peak, the main loss was between 250-350 °C, and it is because of sugar decomposition (components readily oxidizable). Above 350 °C, mass loss of the biomass may be associated with lignin decomposition. Spectroscopic characterization just provided qualitative information about the organic matter, but spectra have shown absorption bands around 1030 cm-1 which may be identified as species containing silicon. This result is expected for the rice husk and deserves further investigation to the stalk of banana, as it can bring a different perspective for this biomass residue.

Keywords: rice husk, banana stem, bioenergy, renewable feedstock

Procedia PDF Downloads 256
2494 Operating Parameters and Costs Assessments of a Real Fishery Wastewater Effluent Treated by Electrocoagulation Process

Authors: Mirian Graciella Dalla Porta, Humberto Jorge José, Danielle de Bem Luiz, Regina de F. P. M.Moreira

Abstract:

Similar to most processing industries, fish processing produces large volumes of wastewater, which contains especially organic contaminants, salts and oils dispersed therein. Different processes have been used for the treatment of fishery wastewaters, but the most commonly used are chemical coagulation and flotation. These techniques are well known but sometimes the characteristics of the treated effluent do not comply with legal standards for discharge. Electrocoagulation (EC) is an electrochemical process that can be used to treat wastewaters in terms of both organic matter and nutrient removal. The process is based on the use of sacrificial electrodes such as aluminum, iron or zinc, that are oxidized to produce metal ions that can be used to coagulate and react with organic matter and nutrients in the wastewater. While EC processes are effective to treatment of several types of wastewaters, applications have been limited due to the high energy demands and high current densities. Generally, the for EC process can be performed without additional chemicals or pre-treatment, but the costs should be reduced for EC processes to become more applicable. In this work, we studied the treatment of a real wastewater from fishmeal industry by electrocoagulation process. Removal efficiencies for chemical oxygen demand (COD), total organic carbon (TOC) turbidity, phosphorous and nitrogen concentration were determined as a function of the operating conditions, such as pH, current density and operating time. The optimum operating conditions were determined to be operating time of 10 minutes, current density 100 A.m-2, and initial pH 4.0. COD, TOC, phosphorous concentration, and turbidity removal efficiencies at the optimum operating conditions were higher than 90% for aluminum electrode. Operating costs at the optimum conditions were calculated as US$ 0.37/m3 (US$ 0.038/kg COD) for Al electrode. These results demonstrate that the EC process is a promising technology to remove nutrients from fishery wastewaters, as the process has both a high efficiency of nutrient removal, and low energy requirements.

Keywords: electrocoagulation, fish, food industry, wastewater

Procedia PDF Downloads 220
2493 The Influence of Organic Waste on Vegetable Nutritional Components and Healthy Livelihood, Minna, Niger State, Nigeria

Authors: A. Abdulkadir, A. A. Okhimamhe, Y. M. Bello, H. Ibrahim, D. H. Makun, M. T. Usman

Abstract:

Household waste form a larger proportion of waste generated across the state, accumulation of organic waste is an apparent problem and the existing dump sites could be overstressed. Niger state has abundant arable land and water resources thus should be one of the highest producers of agricultural crops in the country. However, the major challenge to agricultural sector today is the loss of soil nutrient coupled with high cost of fertilizer. These have continued to increase the use of fertilizer and decomposed solid waste for enhancing agricultural yield, which have varying effects on the soil as well a threat to human livelihood. Consequently, vegetable yield samples from poultry droppings decomposed household waste manure, NPK treatments and control from each replication were subjected to proximate analysis to determine the nutritional and anti-nutritional component as well as heavy metal concentration. Data collected was analyzed using SPSS software and Randomized complete Block Design means were compared. The result shows that the treatments do not devoid the concentrations of any nutritional components while the anti-nutritional analysis proved that NPK had higher oxalate content than control and organic treats. The concentration of lead and cadmium are within safe permissible level while the mercury level exceeded the FAO/WHO maximum permissible limit for the entire treatments depicts the need for urgent intervention to minimize mercury levels in soil and manure in order to mitigate its toxic effect. Thus, eco-agriculture should be widely accepted and promoted by the stakeholders for soil amendment, higher yield, strategies for sustainable environmental protection, food security, poverty eradication, attainment of sustainable development and healthy livelihood.

Keywords: anti-nutritional, healthy livelihood, nutritional waste, organic waste

Procedia PDF Downloads 363
2492 Bioleaching of Precious Metals from an Oil-fired Ash Using Organic Acids Produced by Aspergillus niger in Shake Flasks and a Bioreactor

Authors: Payam Rasoulnia, Seyyed Mohammad Mousavi

Abstract:

Heavy fuel oil firing power plants produce huge amounts of ashes as solid wastes, which seriously need to be managed and processed. Recycling precious metals of V and Ni from these oil-fired ashes which are considered as secondary sources of metals recovery, not only has a great economic importance for use in industry, but also it is noteworthy from the environmental point of view. Vanadium is an important metal that is mainly used in the steel industry because of its physical properties of hardness, tensile strength, and fatigue resistance. It is also utilized in oxidation catalysts, titanium–aluminum alloys and vanadium redox batteries. In the present study bioleaching of vanadium and nickel from an oil-fired ash sample was conducted using Aspergillus niger fungus. The experiments were carried out using spent-medium bioleaching method in both Erlenmeyer flasks and also bubble column bioreactor, in order to compare them together. In spent-medium bioleaching the solid waste is not in direct contact with the fungus and consequently the fungal growth is not retarded and maximum organic acids are produced. In this method the metals are leached through biogenic produced organic acids present in the medium. In shake flask experiments the fungus was cultured for 15 days, where the maximum production of organic acids was observed, while in bubble column bioreactor experiments a 7 days fermentation period was applied. The amount of produced organic acids were measured using high performance liquid chromatography (HPLC) and the results showed that depending on the fermentation period and the scale of experiments, the fungus has different major lixiviants. In flask tests, citric acid was the main produced organic acid by the fungus and the other organic acids including gluconic, oxalic, and malic were excreted in much lower concentrations, while in the bioreactor oxalic acid was the main lixiviant and it was produced considerably. In Erlenmeyer flasks during 15 days fermentation of Aspergillus niger, 8080 ppm citric acid and 1170 ppm oxalic acid was produced, while in bubble column bioreactor over 7 days of fungal growth, 17185 ppm oxalic acid and 1040 ppm citric acid was secreted. The leaching tests using the spent-media obtained from both of fermentation experiments, were performed at the same conditions of leaching duration of 7 days, leaching temperature of 60 °C and pulp density up to 3% (w/v). The results revealed that in Erlenmeyer flask experiments 97% of V and 50% of Ni were extracted while using spent medium produced in bubble column bioreactor, V and Ni recoveries were achieved to 100% and 33%, respectively. These recovery yields indicate that in both scales almost total vanadium can be recovered, while nickel recovery was lower. With help of the bioreactor spent-medium nickel recovery yield was lower than that of obtained from the flask experiments, which it could be due to precipitation of some values of Ni in presence of high levels of oxalic acid existing in its spent medium.

Keywords: Aspergillus niger, bubble column bioreactor, oil-fired ash, spent-medium bioleaching

Procedia PDF Downloads 211
2491 Synthesis and Properties of Photocured Surface Modified Polyaniline Hybrid Composites

Authors: Asli Beyler Çi̇ği̇l, Memet Vezi̇r Kahraman

Abstract:

Organic–inorganic hybrids have become an effective source of advanced materials because they combine the advantages of both the organic moiety such as flexibility, low dielectric constant, and processability, and inorganic moiety as rigidity, strength, durability, and thermal stability. By incorporating cross-linkable side chains, the hybrid materials can be made photosensitive and UV curable, which offers many advantages including low processing temperature, low equipment cost and compatibility. In this study, uv-curable organic-inorganic hybrid material, which was contained surface modified polyaniline particles (PANI), was prepared. PANI surface photografted with hydroxy ethyl methacrylate (HEMA) to produce hydroxyl groups. Hydroxyl functionalized PANI/HEMA was acrylated using isocyanato ethyl methacrylate (IEM) in order to improve the dispersion and interfacial interaction in composites. UV-curable formulation was prepared by mixing the surface modified PANI, polyethylene glycol diacrylate (PEGDA), trimethylolpropane triacrylate (TMPTA), hydrolized 3- methacryloxypropyltrimethoxysilane (hyd. MEMO) and photoinitiator. Chemical structure of nano-hybrid material was characterized by FTIR. FTIR spectra showed that the photografting of PANI was prepared successfully. Thermal properties of the nano-hybrid material were determined by thermogravimetric analysis (TGA). The morphology of the nano-hybrid material was performed by scanning electron microscopy (SEM).

Keywords: polyaniline, photograft, sol-gel, uv-curable polymer

Procedia PDF Downloads 279
2490 Biohydrogen and Potential Vinegar Production from Agricultural Wastes Using Thermotoga neopolitana

Authors: Nidhi Nalin

Abstract:

This study is theoretical modelling of the fermentation process of glucose in agricultural wastes like discarded peaches to produce hydrogen, acetic acid, and carbon dioxide using Thermotoga neopolitana bacteria. The hydrogen gas produced in this process can be used in hydrogen fuel cells to generate power, and the fermented broth with acetic acid and salts could be utilized as salty vinegar if enough acetic acid is produced. The theoretical modelling was done using SuperPro software, and the results indicated how much sugar (discarded peaches) is required to produce both hydrogen and vinegar for the process to be profitable.

Keywords: fermentation, thermotoga, hydrogen, vinegar, biofuel

Procedia PDF Downloads 135
2489 Regioselective Nucleophilic Substitution of the Baylis-Hillman Adducts with Iodine

Authors: Zahid Shafiq, Li Liu, Dong Wang, Yong-Jun Chen

Abstract:

As synthetic organic methods are increasingly concerned with the growing importance of sustainable chemistry, iodine recently has emerged as an inexpensive, non-toxic, readily available and environmentally benign catalyst for various organic transformations to afford the corresponding products in high yields with high regio- and chemoselectivity. Iodine has found widespread applications in various organic synthesis such as Michael addition, coupling reaction and also in the multicomponent synthesis where it can efficiently activate C=C, C=O, C=N, and so forth. Iodine not only has been shown to be an efficient mild Lewis acid in various processes, but also due to its moderate nature, and water tolerance, reactions catalyzed by iodine can be effectively carried out in neutral media under very mild conditions. We have successfully described an efficient procedure for the nucleophilic substitution of the Baylis-Hillman (BH) adducts and their corresponding acetates with indoles to get α-substitution product using catalytic Silver Triflate (AgOTf) as Lewis acid. At this point, we were interested to develop an environmentally benign catalytic system to effect this substitution reaction and to avoid the use of metal Lewis acid as a catalyst. Since, we observed the formation of -product during the course of the reaction, we also became interested to explore the reaction conditions in order to control regioselectivity and to obtain both regioisomers. The developed methodology resulted in regioselective substitution products with controlled selectivity. Further, the substitution products were used to synthesize various Tri- and Tetracyclo Azepino indole derivatives via reductive amination.

Keywords: indole, regioselective, Baylis-Hillman, substitution

Procedia PDF Downloads 169
2488 Inhibition Effect of Natural Junipers Extract towards Steel Corrosion in HCl Solution

Authors: L. Bammou, M. Belkhaouda R. Salghi, L. Bazzi, B. Hammouti

Abstract:

Steel and steel-based alloys of different grades steel are extensively used in numerous applications where acid solutions are widely applied such as industrial acid pickling, industrial acid cleaning and oil-well acidizing. The use of chemical inhibitors is one of the most practical methods for the protection against corrosion in acidic media. Most of the excellent acid inhibitors are organic compounds containing nitrogen, oxygen, phosphorus and sulphur. The use of non-toxic inhibitors called green or eco-friendly environmental inhibitors is one of the solutions possible to prevent the corrosion of the material. These advantages have incited us to draw a large part of program of our laboratory to examine natural substances as corrosion inhibitors such as: prickly pear seed oil, Argan oil, Argan extract, Fennel oil, Rosemary oil, Thymus oil, Lavender oil, Jojoba oil, Pennyroyal Mint oil, and Artemisia. In the present work, we investigate the corrosion inhibition of steel in 1 M HCl by junipers extract using weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) methods. The result obtained of junipers extract (JE) shows excellent inhibition properties for the corrosion of C38 steel in 1M HCl at 298K, and the inhibition efficiency increases with increasing of the JE concentration. The inhibitor efficiencies determined by weight loss, Tafel polarisation and EIS methods are in reasonable agreement. Based on the polarisation results, the investigated junipers extract can be classified as mixed inhibitor. The calculated structural parameters show increase of the obtained Rct values and decrease of the capacitance, Cdl, with JE concentration increase. It is suggested to attribute this to the increase of the thickness of the adsorption layer at steel surface. The adsorption model obeys to the Langmuir adsorption isotherm. The adsorption process is a spontaneous and exothermic process.

Keywords: corrosion inhibition, steel, friendly inhibitors, Tafel polarisation

Procedia PDF Downloads 501
2487 Physico-Chemical Analysis of the Reclaimed Land Area of Kasur

Authors: Shiza Zafar

Abstract:

The tannery effluents contaminated about 400 acres land area in Kasur, Pakistan, has been reclaimed by removing polluted water after the long term effluent logging from the nearby tanneries. In an effort to describe the status of reclaimed soil for agricultural practices, the results of physicochemical analysis of the soil are reported in this article. The concentrations of the parameters such as pH, Electrical Conductivity (EC), Organic Matter (OM), Organic Carbon (OC), Available Phosphorus (P), Potassium (K), and Sodium (Na) were determined by standard methods of analysis and results were computed and compared with various international standards for agriculture recommended by international organizations, groups of experts and or individual researchers. The results revealed that pH, EC, OM, OC, K, and Na are in accordance with the prescribed limits but P in soil exceeds the satisfactory range of P in agricultural soil. Thus, the reclaimed soil in Kasur can be inferred fit for the purpose of agricultural activities.

Keywords: soil toxicity, agriculture, reclaimed land, physico-chemical analysis

Procedia PDF Downloads 359
2486 Molluscicidal Activity of Some Aqueous and Organic Extract from Some Asteraceae

Authors: Lineda Rouissat-Dahane, Abdelkrim Cheriti, Abbderazak Marouf, Reddy Kandappa H., Govender Patrick

Abstract:

Natural phytochemicals extracted from folk herbal have drawn much attention in complementary and alternative medicine, and the plant kingdom is considered for developing new molluscicide. The aqueous and acetone extract of the aerial parts of some Asteraceae (Anvillea radiata, Bubonium graveolens, Launaea arborescens, Launaea nudicaulis and Warionia saharae) were investigated for its molluscicidal activity against Lymnaea acuminata showed significant molluscicidal activity with a median lethal concentration (LC50) of aqueous extract (8,178mg/ml) and organic extract 0.002μg/mL, which was indicated higher potency than the positive control, (LC50=100mg /mL for aqueous extract ; LC50=11.6 μg/mL for organic extract). Among the extract and their fractions, those of aerial parts of Launaea nudicaulis and Warionia saharae were found to exhibit significant molluscicidal activities. Among different solvent fractions of the acetone extract of Warionia saharae, the dichloromethane (DCM) soluble fraction showed the most potent molluscicidal activity against Lymnaea acuminata. Plants in species Anvillea radiata, Bubonium graveolens, Launaea arborescens, Launaea nudicaulis, and Warionia saharae produce a great variety of Flavonoids, Glucoside flavonoids, and Saponins that confer natural resistance against several pests. Most extracts were found to exhibit significant molluscicidal activity.

Keywords: acetone extract, aqueous extract, Asteraceae, molluscicidal activity, Lymnaea acuminata

Procedia PDF Downloads 102
2485 Analysis of Fertilizer Effect in the Tilapia Growth of Mozambique (Oreochromis mossambicus)

Authors: Sérgio Afonso Mulema, Andrés Carrión García, Vicente Ernesto

Abstract:

This paper analyses the effect of fertilizer (organic and inorganic) in the growth of tilapia. An experiment was implemented in the Aquapesca Company of Mozambique; there were considered four different treatments. Each type of fertilizer was applied in two of these treatments; a feed was supplied to the third treatment, and the fourth was taken as control. The weight and length of the tilapia were used as the growth parameters, and to measure the water quality, the physical-chemical parameters were registered. The results show that the weight and length were different for tilapias cultivated in different treatments. These differences were evidenced mainly by organic and feed treatments, where there was the largest and smallest value of these parameters, respectively. In order to prove that these differences were caused only by applied treatment without interference for the aquatic environment, a Fisher discriminant analysis was applied, which confirmed that the treatments were exposed to the same environment condition.

Keywords: fertilizer, tilapia, growth, statistical methods

Procedia PDF Downloads 203
2484 Extracellular Enzymes as Promising Soil Health Indicators: Assessing Response to Different Land Uses Using Long-Term Experiments

Authors: Munisath Khandoker, Stephan Haefele, Andy Gregory

Abstract:

Extracellular enzymes play a key role in soil organic carbon (SOC) decomposition and nutrient cycling and are known indicators for soil health; however, it is not understood how these enzymes respond to different land uses and their relationships to other soil properties have not been extensively reviewed. The relationships among the activities of three soil enzymes: β-glucosaminidase (NAG), phosphomonoesterase (PHO) and β-glucosidase (GLU), were examined. The impact of soil organic amendments, soil types and land management on soil enzyme activities were reviewed, and it was hypothesized that soils with increased SOC have increased enzyme activity. Long-term experiments at Rothamsted Research Woburn and Harpenden sites in the UK were used to evaluate how different management practices affect enzyme activity involved in carbon (C) and nitrogen (N) cycling in the soil. Samples were collected from soils with different organic treatments such as straw, farmyard manure (FYM), compost additions, cover crops and permanent grass cover to assess whether SOC can be linked with increased levels of enzymatic activity and what influence, if any, enzymatic activity has on total C and N in the soil. Investigating the interactions of important enzymes with soil characteristics and SOC can help to better understand the health of soils. Studies on long-term experiments with known histories and large datasets can better help with this. SOC tends to decrease during land use changes from natural ecosystems to agricultural systems; therefore, it is imperative that agricultural lands find ways to increase and/or maintain SOC in the soil.

Keywords: biological soil health indicators, extracellular enzymes, soil health, soil, microbiology

Procedia PDF Downloads 53
2483 Studies on Organic and Inorganic Micro/Nano Particle Reinforced Epoxy Composites

Authors: Daniel Karthik, Vijay Baheti, Jiri Militky, Sundaramurthy Palanisamy

Abstract:

Fibre based nano particles are presently considered as one of the potential filler materials for the improvement of mechanical and physical properties of polymer composites. Due to high matrix-filler interfacial area there will be uniform and homogeneous dispersion of nanoparticles. In micro/nano filler reinforced composites, resin material is usually tailored by organic or inorganic nanoparticles to have improved matrix properties. The objective of this study was to compare the potential of reinforcement of different organic and inorganic micro/nano fillers in epoxy composites. Industrial and agricultural waste of fibres like Agave Americana, cornhusk, jute, basalt, carbon, glass and fly ash was utilized to prepare micro/nano particles. Micro/nano particles were obtained using high energy planetary ball milling process in dry condition. Milling time and ball size were kept constant throughout the ball milling process. Composites were fabricated by hand lay method. Particle loading was kept constant to 3% wt. for all composites. In present study, loading of fillers was selected as 3 wt. % for all composites. Dynamic mechanical properties of the nanocomposite films were performed in three-point bending mode with gauge length and sample width of 50 mm and 10 mm respectively. The samples were subjected to an oscillating frequency of 1 Hz, 5 Hz and 10 Hz and 100 % oscillating amplitude in the temperature ranges of 30°C to 150°C at the heating rate of 3°C/min. Damping was found to be higher with the jute composites. Amongst organic fillers lowest damping factor was observed with Agave Americana particles, this means that Agave americana fibre particles have betters interface adhesion with epoxy resin. Basalt, fly ash and glass particles have almost similar damping factors confirming better interface adhesion with epoxy.

Keywords: ball milling, damping factor, matrix-filler interface, particle reinforcements

Procedia PDF Downloads 252
2482 Corrosion Behavior of Organic-Inorganic Hybrid Coatings Fabricated by Electrostatic Method

Authors: Mohammed Ahmed, Ziba Nazarlou

Abstract:

Mild steels have a limited alloying content which makes them vulnerable to excessive corrosion rates in the harsh medium. To overcome this issue, some protective coatings are used to prevent corrosion on the steel surface. The use of specialized coatings, mainly organic coatings (such as epoxies, polyurethanes, and acrylics) and inorganic coatings (such as Polysiloxanes) is the most common method of mitigating corrosion of carbon steel. Incorporating the benefits of organic and inorganic hybrid (OIH) compounds for the designing of hybrid protective coatings is still challenging for industrial applications. There are advantages of inorganic coatings have, but purely inorganic siloxane-based coatings are difficult to use on industrial applications unless they are used at extremely low thicknesses (< 1-2 microns). Hence, most industrial applications try to have a combination of Polysiloxanes with organic compounds.  A hybrid coating possesses an organic section, which transports flexibility and impact resistance, and an inorganic section, which usually helps in the decreasing of porosity and increasing thermal stability and hardness. A number of polymers including polyethylene glycol and polyvinyl pyrrolidone have been reported to inhibit the corrosion mild steel in acidic media. However, reports on the effect of polyethylene oxide (PEO) or its blends on corrosion inhibition of metals is very scarce. Different composition of OIH coatings was synthesized by using silica sol-gel, epoxy, and PEO. The effect of different coating types on the corrosion behavior of carbon steel in harsh solution has been studied by weight loss and electrochemical measurements using Gamry 1000 Interface Potentiostat. Coating structures were investigated by SEM. İt revealed a considerable reduction in corrosion rate for coated sample. Based on these results, OIH coating prepared by epoxy-silica sol gel-PEO and epoxy-silica sol-gel exhibit had a %99.5 and %98 reduction of (Corrosion rate) CR compares to baseline. Cathodic Tafel constant (βc) shows that coatings change both Tafel constants but had more effect on the cathodic process. The evolution of the Potentiostatic scan with time displays stability in potential, some of them in a high value while the other in a low value which can be attributed to the formation of an oxide film covering substrate surface. The coated samples with the group of epoxy coating have a lower potential along with the time test, while the silica group shows higher in potential with respect to time.

Keywords: electrostatic, hybrid coating, corrosion tests, silica sol gel

Procedia PDF Downloads 102
2481 Screening of Antiviral Compounds in Medicinal Plants: Non-Volatiles

Authors: Tomas Drevinskas, Ruta Mickiene, Audrius Maruska, Nicola Tiso, Algirdas Salomskas, Raimundas Lelesius, Agneta Karpovaite, Ona Ragazinskiene, Loreta Kubiliene

Abstract:

Antiviral effect of substances accumulated by plants and natural products is known to ethno-pharmacy and modern day medicine. Antiviral properties are usually assigned to volatile compounds and polyphenols. This research work is divided into several parts and the task of this part was to investigate potential plants, potential substances and potential preparation conditions that can be used for the preparation of antiviral agents. Sixteen different medicinal plants, their parts and two types of propolis were selected for screening. Firstly, extraction conditions of non-volatile compounds were investigated: 3 pre-selected plants were extracted with 5 different ethanol – water mixtures (96%, 75%, 60%, 40%, 20 %, vol.) and bidistilled water. Total phenolic content, total flavonoid content and radical scavenging activity was determined. The results indicated that optimal extrahent is 40%, vol. of ethanol – water mixture. Further investigations were performed with the extrahent of 40%, vol. ethanol – water mixture. All 16 of selected plants, their parts and two types of propolis were extracted using selected extrahent. Determined total phenolic content, total flavonoid content and radical scavenging activity indicated that extracts of Origanum Vulgare L., Mentha piperita L., Geranium macrorrhizum L., Melissa officinalis L. and Desmodium canadence L. contains highest amount of extractable phenolic compounds (7.31, 5.48, 7.88, 8.02 and 7.16 rutin equivalents (mg/ ml) respectively), flavonoid content (2.14, 2.23, 2.49, 0.79 and 1.51 rutin equivalents (mg/ml) respectively) and radical scavenging activity (11.98, 8.72, 13.47, 13.22 and 12.22 rutin equivalents (mg/ml) respectively). Composition of the extracts is analyzed using HPLC.

Keywords: antiviral effect, plants, propolis, phenols

Procedia PDF Downloads 307
2480 Effect of Highway Construction on Soil Properties and Soil Organic Carbon (Soc) Along Lagos-Badagry Expressway, Lagos, Nigeria

Authors: Fatai Olakunle Ogundele

Abstract:

Road construction is increasingly common in today's world as human development expands and people increasingly rely on cars for transportation on a daily basis. The construction of a large network of roads has dramatically altered the landscape and impacted well-being in a number of deleterious ways. In addition, the road can also shift population demographics and be a source of pollution into the environment. Road construction activities normally result in changes in alteration of the soil's physical properties through soil compaction on the road itself and on adjacent areas and chemical and biological properties, among other effects. Understanding roadside soil properties that are influenced by road construction activities can serve as a basis for formulating conservation-based management strategies. Therefore, this study examined the effects of road construction on soil properties and soil organic carbon along Lagos Badagry Expressway, Lagos, Nigeria. The study adopted purposive sampling techniques and 40 soil samples were collected at a depth of 0 – 30cm from each of the identified road intersections and infrastructures using a soil auger. The soil samples collected were taken to the laboratory for soil properties and carbon stock analysis using standard methods. Both descriptive and inferential statistical techniques were applied to analyze the data obtained. The results revealed that soil compaction inhibits ecological succession on roadsides in that increased compaction suppresses plant growth as well as causes changes in soil quality.

Keywords: highway, soil properties, organic carbon, road construction, land degradation

Procedia PDF Downloads 52
2479 Municipal Sewage Sludge as Co-Substrate in Anaerobic Digestion of Vegetable Waste and Biogas Yield

Authors: J. V. Thanikal, M. Torrijos, Philipe Sousbie, S. M. Rizwan, R. Senthil Kumar, Hatem Yezdi

Abstract:

Co-digestion is one of the advantages of anaerobic digestion process because; several wastes having complimentary characteristics can be treated in a single process. The anaerobic co-digestion process, which can be defined as the simultaneous treatment of two –or more – organic biodegradable waste streams by anaerobic digestion offers great potential for the proper disposal of the organic fraction of solid waste coming from source or separate collection systems. The results of biogas production for sewage sludge, when used as a single substrate, were low (350ml/d), and also the biodegradation rate was slow. Sewage sludge as a co-substrate did not show much effect on biogas yield. The vegetable substrates (Potato, Carrot, Spinach) with a total charge of 27–36 g VS, with a HRT starting from 3 days and ending with 1 day, shown a considerable increase in biogas yield 3.5-5 l/d.

Keywords: anaerobic digestion, co-digestion, vegetable substrate, sewage sludge

Procedia PDF Downloads 550
2478 New Teaching Tools for a Modern Representation of Chemical Bond in the Course of Food Science

Authors: Nicola G. G. Cecca

Abstract:

In Italian IPSSEOAs, high schools that give a vocational education to students that will work in the field of Enogastronomy and Hotel Management, the course of Food Science allows the students to start and see food as a mixture of substances that they will transform during their profession. These substances are characterized not only by a chemical composition but also by a molecular structure that makes them nutritionally active. But the increasing number of new products proposed by Food Industry, the modern techniques of production and transformation, the innovative preparations required by customers have made many information reported in the most wide spread Food Science textbooks not up-to-date or too poor for the people who will work in catering sector. Often Authors offer information aged to Bohr’s Atomic Model and to the ‘Octet Rule’ proposed by G.N. Lewis to describe the Chemical Bond, without giving any reference to new as Orbital Atomic Model and Molecular Orbital Theory that, in the meantime, start to be old themselves. Furthermore, this antiquated information precludes an easy understanding of a wide range of properties of nutritive substances and many reactions in which the food constituents are involved. In this paper, our attention is pointed out to use GEOMAG™ to represent the dynamics with which the chemical bond is formed during the synthesis of the molecules. GEOMAG™ is a toy, produced by the Swiss Company Geomagword S.A., pointed to stimulate in children, aged between 6-10 years, their fantasy and their handling ability and constituted by metallic spheres and metallic magnetic bars coated by coloured plastic materials. The simulation carried out with GEOMAG™ is based on the similitude existing between the Coulomb’s force and the magnetic attraction’s force and in particular between the formulae with which they are calculated. The electrostatic force (F in Newton) that allows the formation of the chemical bond can be calculated by mean Fc = kc q1 q2/d2 where: q1 e q2 are the charge of particles [in Coulomb], d is the distance between the particles [in meters] and kc is the Coulomb’s constant. It is surprising to observe that the attraction’s force (Fm) acting between the magnetic extremities of GEOMAG™ used to simulate the chemical bond can be calculated in the same way by using the formula Fm = km m1 m2/d2 where: m1 e m2 represent the strength of the poles [A•m], d is the distance between the particles [m], km = μ/4π in which μ is the magnetic permeability of medium [N•A-2]. The magnetic attraction can be tested by students by trying to keep the magnetic elements of GEOMAG™ separate by hands or trying to measure by mean an appropriate dynamometric system. Furthermore, by using a dynamometric system to measure the magnetic attraction between the GEOMAG™ elements is possible draw a graphic F=f(d) to verify that the curve obtained during the simulation is very similar to that one hypnotized, around the 1920’s by Linus Pauling to describe the formation of H2+ in according with Molecular Orbital Theory.

Keywords: chemical bond, molecular orbital theory, magnetic attraction force, GEOMAG™

Procedia PDF Downloads 241
2477 Computer Simulation of Hydrogen Superfluidity through Binary Mixing

Authors: Sea Hoon Lim

Abstract:

A superfluid is a fluid of bosons that flows without resistance. In order to be a superfluid, a substance’s particles must behave like bosons, yet remain mobile enough to be considered a superfluid. Bosons are low-temperature particles that can be in all energy states at the same time. If bosons were to be cooled down, then the particles will all try to be on the lowest energy state, which is called the Bose Einstein condensation. The temperature when bosons start to matter is when the temperature has reached its critical temperature. For example, when Helium reaches its critical temperature of 2.17K, the liquid density drops and becomes a superfluid with zero viscosity. However, most materials will solidify -and thus not remain fluids- at temperatures well above the temperature at which they would otherwise become a superfluid. Only a few substances currently known to man are capable of at once remaining a fluid and manifesting boson statistics. The most well-known of these is helium and its isotopes. Because hydrogen is lighter than helium, and thus expected to manifest Bose statistics at higher temperatures than helium, one might expect hydrogen to also be a superfluid. As of today, however, no one has yet been able to produce a bulk, hydrogen superfluid. The reason why hydrogen did not form a superfluid in the past is its intermolecular interactions. As a result, hydrogen molecules are much more likely to crystallize than their helium counterparts. The key to creating a hydrogen superfluid is therefore finding a way to reduce the effect of the interactions among hydrogen molecules, postponing the solidification to lower temperature. In this work, we attempt via computer simulation to produce bulk superfluid hydrogen through binary mixing. Binary mixture is a technique of mixing two pure substances in order to avoid crystallization and enhance super fluidity. Our mixture here is KALJ H2. We then sample the partition function using this Path Integral Monte Carlo (PIMC), which is well-suited for the equilibrium properties of low-temperature bosons and captures not only the statistics but also the dynamics of Hydrogen. Via this sampling, we will then produce a time evolution of the substance and see if it exhibits superfluid properties.

Keywords: superfluidity, hydrogen, binary mixture, physics

Procedia PDF Downloads 299
2476 The Influence of Morphology and Interface Treatment on Organic 6,13-bis (triisopropylsilylethynyl)-Pentacene Field-Effect Transistors

Authors: Daniel Bülz, Franziska Lüttich, Sreetama Banerjee, Georgeta Salvan, Dietrich R. T. Zahn

Abstract:

For the development of electronics, organic semiconductors are of great interest due to their adjustable optical and electrical properties. Especially for spintronic applications they are interesting because of their weak spin scattering, which leads to longer spin life times compared to inorganic semiconductors. It was shown that some organic materials change their resistance if an external magnetic field is applied. Pentacene is one of the materials which exhibit the so called photoinduced magnetoresistance which results in a modulation of photocurrent when varying the external magnetic field. Also the soluble derivate of pentacene, the 6,13-bis (triisopropylsilylethynyl)-pentacene (TIPS-pentacene) exhibits the same negative magnetoresistance. Aiming for simpler fabrication processes, in this work, we compare TIPS-pentacene organic field effect transistors (OFETs) made from solution with those fabricated by thermal evaporation. Because of the different processing, the TIPS-pentacene thin films exhibit different morphologies in terms of crystal size and homogeneity of the substrate coverage. On the other hand, the interface treatment is known to have a high influence on the threshold voltage, eliminating trap states of silicon oxide at the gate electrode and thereby changing the electrical switching response of the transistors. Therefore, we investigate the influence of interface treatment using octadecyltrichlorosilane (OTS) or using a simple cleaning procedure with acetone, ethanol, and deionized water. The transistors consist of a prestructured OFET substrates including gate, source, and drain electrodes, on top of which TIPS-pentacene dissolved in a mixture of tetralin and toluene is deposited by drop-, spray-, and spin-coating. Thereafter we keep the sample for one hour at a temperature of 60 °C. For the transistor fabrication by thermal evaporation the prestructured OFET substrates are also kept at a temperature of 60 °C during deposition with a rate of 0.3 nm/min and at a pressure below 10-6 mbar. The OFETs are characterized by means of optical microscopy in order to determine the overall quality of the sample, i.e. crystal size and coverage of the channel region. The output and transfer characteristics are measured in the dark and under illumination provided by a white light LED in the spectral range from 450 nm to 650 nm with a power density of (8±2) mW/cm2.

Keywords: organic field effect transistors, solution processed, surface treatment, TIPS-pentacene

Procedia PDF Downloads 430
2475 Biological Methods to Control Parasitic Weed Phelipanche ramosa L. Pomel in the Field Tomato Crop

Authors: F. Lops, G. Disciglio, A. Carlucci, G. Gatta, L. Frabboni, A. Tarantino, E. Tarantino

Abstract:

Phelipanche ramosa L. Pomel is a root holoparasitic weed plant of many cultivations, particularly of tomato (Lycopersicum esculentum L.) crop. In Italy, Phelipanche problem is increasing, both in density and in acreage. The biological control of this parasitic weed involves the use of living organisms as numerous fungi and bacteria that can infect the parasitic weed, while it may improve the crop growth. This paper deals with the biocontrol with microorganism, including Arbuscular mycorrhizal (AM) fungi and fungal pathogens as Fusarium oxisporum spp. Colonization of crop roots by AM fungi can provide protection of crops against parasitic weeds because of a reduction in their seed germination and attachment, while F. oxisporum, isolated from diseased broomrape tubercles, proved to be highly virulent on P. ramosa. The experimental trial was carried out in open field at Foggia province (Apulia Region, Southern Italy), during the spring-summer season 2016, in order to evaluate the effect of four biological treatments: AM fungi and Fusarium oxisporum applied in the soil alone or combined together, and Rizosum Max® product, compared with the untreated control, to reduce the P. ramosa infestation in processing tomato crop. The principal results to be drawn from this study under field condition, in contrast of those reported previously under laboratory and greenhouse conditions, show that both AM fungi and F. oxisporum do not provide the reduction of the number of emerged shoots of P. ramosa. This can arise probably from the low efficacy seedling of the agent pathogens for the control of this parasite in the field. On the contrary, the Rizosum Max® product, containing AM fungi and some rizophere bacteria combined with several minerals and organic substances, appears to be most effective for the reduction of P. ramosa infestation.

Keywords: Arbuscular mycorrhized fungi, biocontrol methods, Phelipanche ramosa, tomato crop

Procedia PDF Downloads 437
2474 Antimicrobial and Aroma Finishing of Organic Cotton Knits Using Vetiver Oil Microcapsules for Health Care Textiles

Authors: K. J. Sannapapamma, H. Malligawad Lokanath, Sakeena Naikwadi

Abstract:

Eco-friendly textiles are gaining importance among the consumers and textile manufacturers in the healthcare sector due to increased environmental pollution which leads to several health and environmental hazards. Hence, the research was designed to cultivate and develop the organic cotton knit, to prepare and characterize the Vetiver oil microcapsules for textile finishing and to access the wash durability of finished knits. The cotton SAHANA variety grown under organic production systems was processed and spun into 30 single yarn dyed with four natural colorants (Arecanut slurry, Eucalyptus leaves, Pomegranate rind and Indigo) and eco dyed yarn was further used for development of single jersy knitted fabric. Vetiveria zizanioides is an aromatic grass which is being traditionally used in medicine and perfumery. Vetiver essential oil was used for preparation of microcapsules by interfacial polymerization technique subjected to Gas Chromatography Mass Spectrometry (GCMS), Fourier Transform Infrared Spectroscopy (FTIR), Thermo Gravimetric Analyzer (TGA) and Scanning Electron Microscope (SEM) for characterization of microcapsules. The knitted fabric was finished with vetiver oil microcapsules by exhaust and pad dry cure methods. The finished organic knit was assessed for laundering on antimicrobial efficiency and aroma intensity. GCMS spectral analysis showed that, diethyl phthalate (28%) was the major compound found in vetiver oil followed by isoaromadendrene epoxide (7.72%), beta-vetivenene (6.92%), solavetivone (5.58%), aromadenderene, azulene and khusimol. Bioassay explained that, the vetiver oil and diluted vetiver oil possessed greater zone of inhibition against S. aureus and E. coli than the coconut oil. FTRI spectra of vetiver oil and microcapsules possessed similar peaks viz., C-H, C=C & C꞊O stretching and additionally oil microcapsules possessed the peak of 3331.24 cm-1 at 91.14 transmittance was attributed to N-H stretches. TGA of oil microcapsules revealed that, there was a minimum weight loss (5.835%) recorded at 467.09°C compared to vetiver oil i.e., -3.026% at the temperature of 396.24°C. The shape of the microcapsules was regular and round, some were spherical in shape and few were rounded by small aggregates. Irrespective of methods of application, organic cotton knits finished with microcapsules by pad dry cure method showed maximum zone of inhibition compared to knits finished by exhaust method against S. aureus and E. coli. The antimicrobial activity of the finished samples was subjected to multiple washing which indicated that knits finished with pad dry cure method showed a zone of inhibition even after 20th wash and better aroma retention compared to knits finished with the exhaust method of application. Further, the group of respondents rated that the 5th washed samples had the greater aroma intensity in both the methods than the other samples. Thus, the vetiver microencapsulated organic cotton knits are free from hazardous chemicals and have multi-functional properties that can be suitable for medical and healthcare textiles.

Keywords: exhaust and pad dry cure finishing, interfacial polymerization, organic cotton knits, vetiver oil microcapsules

Procedia PDF Downloads 252
2473 Improvement of Performance for R. C. Beams Made from Recycled Aggregate by Using Non-Traditional Admixture

Authors: A. H. Yehia, M. M. Rashwan, K. A. Assaf, K. Abd el Samee

Abstract:

The aim of this work is to use an environmental, cheap; organic non-traditional admixture to improve the structural behavior of sustainable reinforced concrete beams contains different ratios of recycled concrete aggregate. The used admixture prepared by using wastes from vegetable oil industry. Under and over reinforced concrete beams made from natural aggregate and different ratios of recycled concrete aggregate were tested under static load until failure. Eight beams were tested to investigate the performance and mechanism effect of admixture on improving deformation characteristics, modulus of elasticity and toughness of tested beams. Test results show efficiency of organic admixture on improving flexural behavior of beams contains 20% recycled concrete aggregate more over the other ratios.

Keywords: deflection, modulus of elasticity, non-traditional admixture, recycled concrete aggregate, strain, toughness, under and over reinforcement

Procedia PDF Downloads 437
2472 The Adsorption of Zinc Metal in Waste Water Using ZnCl2 Activated Pomegranate Peel

Authors: S. N. Turkmen, A. S. Kipcak, N. Tugrul, E. M. Derun, S. Piskin

Abstract:

Activated carbon is an amorphous carbon chain which has extremely extended surface area. High surface area of activated carbon is due to the porous structure. Activated carbon, using a variety of materials such as coal and cellulosic materials; can be obtained by both physical and chemical methods. The prepared activated carbon can be used for decolorize, deodorize and also can be used for removal of organic and non-organic pollution. In this study, pomegranate peel was subjected to 800W microwave power for 1 to 4 minutes. Also fresh pomegranate peel was used for the reference material. Then ZnCl2 was used for the chemical activation purpose. After the activation process, activated pomegranate peels were used for the adsorption of Zn metal (40 ppm) in the waste water. As a result of the adsorption experiments, removal of heavy metals ranged from 89% to 85%.

Keywords: activated carbon, adsorption, chemical activation, microwave, pomegranate peel

Procedia PDF Downloads 525
2471 Establishing Community-Based Pro-Biodiversity Enterprise in the Philippines: A Climate Change Adaptation Strategy towards Agro-Biodiversity Conservation and Local Green Economic Development

Authors: Dina Magnaye

Abstract:

In the Philippines, the performance of the agricultural sector is gauged through crop productivity and returns from farm production rather than the biodiversity in the agricultural ecosystem. Agricultural development hinges on the overall goal of increasing productivity through intensive agriculture, monoculture system, utilization of high yielding varieties in plants, and genetic upgrading in animals. This merits an analysis of the role of agro-biodiversity in terms of increasing productivity, food security and economic returns from community-based pro-biodiversity enterprises. These enterprises conserve biodiversity while equitably sharing production income in the utilization of biological resources. The study aims to determine how community-based pro-biodiversity enterprises become instrumental in local climate change adaptation and agro-biodiversity conservation as input to local green economic development planning. It also involves an assessment of the role of agrobiodiversity in terms of increasing productivity, food security and economic returns from community-based pro-biodiversity enterprises. The perceptions of the local community members both in urban and upland rural areas on community-based pro-biodiversity enterprises were evaluated. These served as a basis in developing a planning modality that can be mainstreamed in the management of local green economic enterprises to benefit the environment, provide local income opportunities, conserve species diversity, and sustain environment-friendly farming systems and practices. The interviews conducted with organic farmer-owners, entrepreneur-organic farmers, and organic farm workers revealed that pro-biodiversity enterprise such as organic farming involved the cyclic use of natural resources within the carrying capacity of a farm; recognition of the value of tradition and culture especially in the upland rural area; enhancement of socio-economic capacity; conservation of ecosystems in harmony with nature; and climate change mitigation. The suggested planning modality for community-based pro-biodiversity enterprises for a green economy encompasses four (4) phases to include community resource or capital asset profiling; stakeholder vision development; strategy formulation for sustained enterprises; and monitoring and evaluation.

Keywords: agro-biodiversity, agro-biodiversity conservation, local green economy, organic farming, pro-biodiversity enterprise

Procedia PDF Downloads 342
2470 A Method for Solid-Liquid Separation of Cs+ from Radioactive Waste by Using Ionic Liquids and Extractants

Authors: J. W. Choi, S. Y. Cho, H. J. Lee, W. Z. Oh, S. J. Choi

Abstract:

Ionic liquids (ILs), which is alternative to conventional organic solvent, were used for extraction of Cs ions. ILs, as useful environment friendly green solvents, have been recently applied as replacement for traditional volatile organic compounds (VOCs) in liquid/liquid extraction of heavy metal ions as well as organic and inorganic species and pollutants. Thus, Ionic liquids were used for extraction of Cs ions from the liquid radioactive waste. In most cases, Cs ions present in radioactive wastes in very low concentration, approximately less than 1ppm. Therefore, unlike established extraction system the required amount of ILs as extractant is comparatively very small. This extraction method involves cation exchange mechanism in which Cs ion transfers to the organic phase and binds to one crown ether by chelation in exchange of single ILs cation, IL_cation+, transfer to the aqueous phase. In this extraction system showed solid-liquid separation in which the Ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonly)imide (C2mimTf2N) and the crown ether Dicyclohexano-18-crown-6 (DCH18C6) both were used here in very little amount as solvent and as extractant, respectively. 30 mM of CsNO3 was used as simulated waste solution cesium ions. Generally, in liquid-liquid extraction, the molar ratio of CE:Cs+:ILs was 1:5~10:>100, while our applied molar ratio of CE:Cs+:ILs was 1:2:1~10. The quantity of CE and Cs ions were fixed to 0.6 and 1.2 mmol, respectively. The phenomenon of precipitation showed two kinds of separation: solid-liquid separation in the ratio of 1:2:1 and 1:2:2; solid-liquid-liquid separation (3 phase) in the ratio of 1:2:5 and 1:2:10. In the last system, 3 phases were precipitate-ionic liquids-aqueous. The precipitate was verified to consist of Cs+, DCH18C6, Tf2N- based on the cation exchange mechanism. We analyzed precipitate using scanning electron microscopy with X-ray microanalysis (SEM-EDS), an elemental analyser, Fourier transform infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC). The experimental results showed an easy extraction method and confirmed the composition of solid precipitate. We also obtained information that complex formation ratio of Cs+ to DCH18C6 is 0.88:1 regardless of C2mimTf2N quantities.

Keywords: extraction, precipitation, solid-liquid seperation, ionic liquid, precipitate

Procedia PDF Downloads 399