Search results for: distributed sensor networks
5185 Compact LWIR Borescope Sensor for Surface Temperature of Engine Components
Authors: Andy Zhang, Awnik Roy, Trevor B. Chen, Bibik Oleksandr, Subodh Adhikari, Paul S. Hsu
Abstract:
The durability of a combustor in gas-turbine enginesrequiresa good control of its component temperatures. Since the temperature of combustion gases frequently exceeds the melting point of the combustion liner walls, an efficient air-cooling system is significantly important to elongatethe lifetime of liner walls. To determine the effectiveness of the air-cooling system, accurate 2D surface temperature measurement of combustor liner walls is crucial for advanced engine development. Traditional diagnostic techniques for temperature measurement, such as thermocouples, thermal wall paints, pyrometry, and phosphors, have shown disadvantages, including being intrusive and affecting local flame/flow dynamics, potential flame quenching, and physical damages to instrumentation due to harsh environments inside the combustor and strong optical interference from strong combustion emission in UV-Mid IR wavelength. To overcome these drawbacks, a compact and small borescope long-wave-infrared (LWIR) sensor is developed to achieve two-dimensional high-spatial resolution, high-fidelity thermal imaging of 2D surface temperature in gas-turbine engines, providing the desired engine component temperature distribution. The compactLWIRborescope sensor makes it feasible to promote the durability of combustor in gas-turbine engines.Keywords: borescope, engine, long-wave-infrared, sensor
Procedia PDF Downloads 1415184 UV-Enhanced Room-Temperature Gas-Sensing Properties of ZnO-SnO2 Nanocomposites Obtained by Hydrothermal Treatment
Authors: Luís F. da Silva, Ariadne C. Catto, Osmando F. Lopes, Khalifa Aguir, Valmor R. Mastelaro, Caue Ribeiro, Elson Longo
Abstract:
Gas detection is important for controlling industrial, and vehicle emissions, agricultural residues, and environmental control. In last decades, several semiconducting oxides have been used to detect dangerous or toxic gases. The excellent gas-sensing performance of these devices have been observed at high temperatures (~250 °C), which forbids the use for the detection of flammable and explosive gases. In this way, ultraviolet light activated gas sensors have been a simple and promising alternative to achieve room temperature sensitivity. Among the semiconductor oxides which exhibit a good performance as gas sensor, the zinc oxide (ZnO) and tin oxide (SnO2) have been highlighted. Nevertheless, their poor selectivity is the main disadvantage for application as gas sensor devices. Recently, heterostructures combining these two semiconductors (ZnO-SnO2) have been studied as an alternative way to enhance the gas sensor performance (sensitivity, selectivity, and stability). In this work, we investigated the influence of mass ratio Zn:Sn on the properties of ZnO-SnO2 nanocomposites prepared by hydrothermal treatment for 4 hours at 200 °C. The crystalline phase, surface, and morphological features were characterized by X-ray diffraction (XRD), high-resolution transmission electron (HR-TEM), and X-ray photoelectron spectroscopy (XPS) measurements. The gas sensor measurements were carried out at room-temperature under ultraviolet (UV) light irradiation using different ozone levels (0.06 to 0.61 ppm). The XRD measurements indicate the presence of ZnO and SnO2 crystalline phases, without the evidence of solid solution formation. HR-TEM analysis revealed that a good contact between the SnO2 nanoparticles and the ZnO nanorods, which are very important since interface characteristics between nanostructures are considered as challenge to development new and efficient heterostructures. Electrical measurements proved that the best ozone gas-sensing performance is obtained for ZnO:SnO2 (50:50) nanocomposite under UV light irradiation. Its sensitivity was around 6 times higher when compared to SnO2 pure, a traditional ozone gas sensor. These results demonstrate the potential of ZnO-SnO2 heterojunctions for the detection of ozone gas at room-temperature when irradiated with UV light irradiation.Keywords: hydrothermal, zno-sno2, ozone sensor, uv-activation, room-temperature
Procedia PDF Downloads 2875183 An Efficient Algorithm for Global Alignment of Protein-Protein Interaction Networks
Authors: Duc Dong Do, Ngoc Ha Tran, Thanh Hai Dang, Cao Cuong Dang, Xuan Huan Hoang
Abstract:
Global aligning two protein-protein interaction networks is an essentially important task in bioinformatics/computational biology field of study. It is a challenging and widely studied research topic in recent years. Accurately aligned networks allow us to identify functional modules of proteins and/ororthologous proteins from which unknown functions of a protein can be inferred. We here introduce a novel efficient heuristic global network alignment algorithm called FASTAn, including two phases: the first to construct an initial alignment and the second to improve such alignment by exerting a local optimization repeated procedure. The experimental results demonstrated that FASTAn outperformed the state-of-the-art global network alignment algorithm namely SPINAL in terms of both commonly used objective scores and the run-time.Keywords: FASTAn, Heuristic algorithm, biological network alignment, protein-protein interaction networks
Procedia PDF Downloads 6075182 SAP-Reduce: Staleness-Aware P-Reduce with Weight Generator
Authors: Lizhi Ma, Chengcheng Hu, Fuxian Wong
Abstract:
Partial reduce (P-Reduce) has set a state-of-the-art performance on distributed machine learning in the heterogeneous environment over the All-Reduce architecture. The dynamic P-Reduce based on the exponential moving average (EMA) approach predicts all the intermediate model parameters, which raises unreliability. It is noticed that the approximation trick leads the wrong way to obtaining model parameters in all the nodes. In this paper, SAP-Reduce is proposed, which is a variant of the All-Reduce distributed training model with staleness-aware dynamic P-Reduce. SAP-Reduce directly utilizes the EMA-like algorithm to generate the normalized weights. To demonstrate the effectiveness of the algorithm, the experiments are set based on a number of deep learning models, comparing the single-step training acceleration ratio and convergence time. It is found that SAP-Reduce simplifying dynamic P-Reduce outperforms the intermediate approximation one. The empirical results show SAP-Reduce is 1.3× −2.1× faster than existing baselines.Keywords: collective communication, decentralized distributed training, machine learning, P-Reduce
Procedia PDF Downloads 355181 Social Networks in a Communication Strategy of a Large Company
Authors: Kherbache Mehdi
Abstract:
Within the framework of the validation of the Master in business administration marketing and sales in INSIM institute international in management Blida, we get the opportunity to do a professional internship in Sonelgaz Enterprise and a thesis. The thesis deals with the integration of social networking in the communication strategy of a company. The problematic is: How communicate with social network can be a solution for companies? The challenges stressed by this thesis were to suggest limits and recommendations to Sonelgaz Enterprise concerning social networks. The whole social networks represent more than a billion people as a potential target for the companies. Thanks to research and a qualitative approach, we have identified tree valid hypothesis. The first hypothesis allows confirming that using social networks cannot be ignored by any company in its communication strategy. However, the second hypothesis demonstrates that it’s necessary to prepare a strategy that integrates social networks in the communication plan of the company. The risk of this strategy is very limited because failure on social networks is not a restraint for the enterprise, social networking is not expensive and, a bad image which could result from it is not as important in the long-term. Furthermore, the return on investment is difficult to evaluate. Finally, the last hypothesis shows that firms establish a new relation between consumers and brands thanks to the proximity allowed by social networks. After the validation of the hypothesis, we suggested some recommendations to Sonelgaz Enterprise regarding the communication through social networks. Firstly, the company must use the interactivity of social network in order to have fruitful exchanges with the community. We also recommended having a strategy to treat negative comments. The company must also suggest delivering resources to the community thanks to a community manager, in order to have a good relation with the community. Furthermore, we advised using social networks to do business intelligence. Sonelgaz Enterprise can have some creative and interactive contents with some amazing applications on Facebook for example. Finally, we recommended to the company to be not intrusive with “fans” or “followers” and to be open to all the platforms: Twitter, Facebook, Linked-In for example.Keywords: social network, buzz, communication, consumer, return on investment, internet users, web 2.0, Facebook, Twitter, interaction
Procedia PDF Downloads 4255180 Surface Modified Thermoplastic Polyurethane and Poly(Vinylidene Fluoride) Nanofiber Based Flexible Triboelectric Nanogenerator and Wearable Bio-Sensor
Authors: Sk Shamim Hasan Abir, Karen Lozano, Mohammed Jasim Uddin
Abstract:
Over the last few years, nanofiber-based triboelectric nanogenerator (TENG) has caught great attention among researchers all over the world due to its inherent capability of converting mechanical energy to usable electrical energy. In this study, poly(vinylidene fluoride) (PVDF) and thermoplastic polyurethane (TPU) nanofiber prepared by Forcespinning® (FS) technique were used to fabricate TENG for self-charging energy storage device and biomechanical body motion sensor. The surface of the TPU nanofiber was modified by uniform deposition of thin gold film to enhance the frictional properties; yielded 254 V open-circuit voltage (Voc) and 86 µA short circuit current (Isc), which were 2.12 and 1.87 times greater in contrast to bare PVDF-TPU TENG. Moreover, the as-fabricated PVDF-TPU/Au TENG was tested against variable capacitors and resistive load, and the results showed that with a 3.2 x 2.5 cm2 active contact area, it can quick charge up to 7.64 V within 30 seconds using a 1.0 µF capacitor and generate significant 2.54 mW power, enough to light 75 commercial LEDs (1.5 V each) by the hand tapping motion at 4 Hz (240 beats per minutes (bpm)) load frequency. Furthermore, the TENG was attached to different body parts to capture distinctive electrical signals for various body movements, elucidated the prospective usability of our prepared nanofiber-based TENG in wearable body motion sensor application.Keywords: biomotion sensor, forcespinning, nanofibers, triboelectric nanogenerator
Procedia PDF Downloads 1055179 Clustering the Wheat Seeds Using SOM Artificial Neural Networks
Authors: Salah Ghamari
Abstract:
In this study, the ability of self organizing map artificial (SOM) neural networks in clustering the wheat seeds varieties according to morphological properties of them was considered. The SOM is one type of unsupervised competitive learning. Experimentally, five morphological features of 300 seeds (including three varieties: gaskozhen, Md and sardari) were obtained using image processing technique. The results show that the artificial neural network has a good performance (90.33% accuracy) in classification of the wheat varieties despite of high similarity in them. The highest classification accuracy (100%) was achieved for sardari.Keywords: artificial neural networks, clustering, self organizing map, wheat variety
Procedia PDF Downloads 6615178 Modifying Byzantine Fault Detection Using Disjoint Paths
Authors: Mehmet Hakan Karaata, Ali Hamdan, Omer Yusuf Adam Mohamed
Abstract:
Consider a distributed system that delivers messages from a process to another. Such a system is often required to deliver each message to its destination regardless of whether or not the system components experience arbitrary forms of faults. In addition, each message received by the destination must be a message sent by a system process. In this paper, we first identify the necessary and sufficient conditions to detect some restricted form of Byzantine faults referred to as modifying Byzantine faults. An observable form of a Byzantine fault whose effect is limited to the modification of a message metadata or content, timing and omission faults, and message replay is referred to as a modifying Byzantine fault. We then present a distributed protocol to detect modifying Byzantine faults using optimal number of messages over node-disjoint paths.Keywords: Byzantine faults, distributed systems, fault detection, network pro- tocols, node-disjoint paths
Procedia PDF Downloads 5675177 Iterative Segmentation and Application of Hausdorff Dilation Distance in Defect Detection
Authors: S. Shankar Bharathi
Abstract:
Inspection of surface defects on metallic components has always been challenging due to its specular property. Occurrences of defects such as scratches, rust, pitting are very common in metallic surfaces during the manufacturing process. These defects if unchecked can hamper the performance and reduce the life time of such component. Many of the conventional image processing algorithms in detecting the surface defects generally involve segmentation techniques, based on thresholding, edge detection, watershed segmentation and textural segmentation. They later employ other suitable algorithms based on morphology, region growing, shape analysis, neural networks for classification purpose. In this paper the work has been focused only towards detecting scratches. Global and other thresholding techniques were used to extract the defects, but it proved to be inaccurate in extracting the defects alone. However, this paper does not focus on comparison of different segmentation techniques, but rather describes a novel approach towards segmentation combined with hausdorff dilation distance. The proposed algorithm is based on the distribution of the intensity levels, that is, whether a certain gray level is concentrated or evenly distributed. The algorithm is based on extraction of such concentrated pixels. Defective images showed higher level of concentration of some gray level, whereas in non-defective image, there seemed to be no concentration, but were evenly distributed. This formed the basis in detecting the defects in the proposed algorithm. Hausdorff dilation distance based on mathematical morphology was used to strengthen the segmentation of the defects.Keywords: metallic surface, scratches, segmentation, hausdorff dilation distance, machine vision
Procedia PDF Downloads 4315176 A Neural Network Approach to Understanding Turbulent Jet Formations
Authors: Nurul Bin Ibrahim
Abstract:
Advancements in neural networks have offered valuable insights into Fluid Dynamics, notably in addressing turbulence-related challenges. In this research, we introduce multiple applications of models of neural networks, namely Feed-Forward and Recurrent Neural Networks, to explore the relationship between jet formations and stratified turbulence within stochastically excited Boussinesq systems. Using machine learning tools like TensorFlow and PyTorch, the study has created models that effectively mimic and show the underlying features of the complex patterns of jet formation and stratified turbulence. These models do more than just help us understand these patterns; they also offer a faster way to solve problems in stochastic systems, improving upon traditional numerical techniques to solve stochastic differential equations such as the Euler-Maruyama method. In addition, the research includes a thorough comparison with the Statistical State Dynamics (SSD) approach, which is a well-established method for studying chaotic systems. This comparison helps evaluate how well neural networks can help us understand the complex relationship between jet formations and stratified turbulence. The results of this study underscore the potential of neural networks in computational physics and fluid dynamics, opening up new possibilities for more efficient and accurate simulations in these fields.Keywords: neural networks, machine learning, computational fluid dynamics, stochastic systems, simulation, stratified turbulence
Procedia PDF Downloads 765175 A Hybrid Distributed Algorithm for Multi-Objective Dynamic Flexible Job Shop Scheduling Problem
Authors: Aydin Teymourifar, Gurkan Ozturk
Abstract:
In this paper, a hybrid distributed algorithm has been suggested for multi-objective dynamic flexible job shop scheduling problem. The proposed algorithm is high level, in which several algorithms search the space on different machines simultaneously also it is a hybrid algorithm that takes advantages of the artificial intelligence, evolutionary and optimization methods. Distribution is done at different levels and new approaches are used for design of the algorithm. Apache spark and Hadoop frameworks have been used for the distribution of the algorithm. The Pareto optimality approach is used for solving the multi-objective benchmarks. The suggested algorithm that is able to solve large-size problems in short times has been compared with the successful algorithms of the literature. The results prove high speed and efficiency of the algorithm.Keywords: distributed algorithms, apache-spark, Hadoop, flexible dynamic job shop scheduling, multi-objective optimization
Procedia PDF Downloads 3585174 A CM-Based Model for 802.11 Networks Security Policies Enforcement
Authors: Karl Mabiala Dondia, Jing Ma
Abstract:
In recent years, networks based on the 802.11 standards have gained a prolific deployment. The reason for this massive acceptance of the technology by both home users and corporations is assuredly due to the "plug-and-play" nature of the technology and the mobility. The lack of physical containment due to inherent nature of the wireless medium makes maintenance very challenging from a security standpoint. This study examines via continuous monitoring various predictable threats that 802.11 networks can face, how they are executed, where each attack may be executed and how to effectively defend against them. The key goal is to identify the key components of an effective wireless security policy.Keywords: wireless LAN, IEEE 802.11 standards, continuous monitoring, security policy
Procedia PDF Downloads 3835173 Nonparametric Sieve Estimation with Dependent Data: Application to Deep Neural Networks
Authors: Chad Brown
Abstract:
This paper establishes general conditions for the convergence rates of nonparametric sieve estimators with dependent data. We present two key results: one for nonstationary data and another for stationary mixing data. Previous theoretical results often lack practical applicability to deep neural networks (DNNs). Using these conditions, we derive convergence rates for DNN sieve estimators in nonparametric regression settings with both nonstationary and stationary mixing data. The DNN architectures considered adhere to current industry standards, featuring fully connected feedforward networks with rectified linear unit activation functions, unbounded weights, and a width and depth that grows with sample size.Keywords: sieve extremum estimates, nonparametric estimation, deep learning, neural networks, rectified linear unit, nonstationary processes
Procedia PDF Downloads 465172 Current Status and Future Trends of Mechanized Fruit Thinning Devices and Sensor Technology
Authors: Marco Lopes, Pedro D. Gaspar, Maria P. Simões
Abstract:
This paper reviews the different concepts that have been investigated concerning the mechanization of fruit thinning as well as multiple working principles and solutions that have been developed for feature extraction of horticultural products, both in the field and industrial environments. The research should be committed towards selective methods, which inevitably need to incorporate some kinds of sensor technology. Computer vision often comes out as an obvious solution for unstructured detection problems, although leaves despite the chosen point of view frequently occlude fruits. Further research on non-traditional sensors that are capable of object differentiation is needed. Ultrasonic and Near Infrared (NIR) technologies have been investigated for applications related to horticultural produce and show a potential to satisfy this need while simultaneously providing spatial information as time of flight sensors. Light Detection and Ranging (LIDAR) technology also shows a huge potential but it implies much greater costs and the related equipment is usually much larger, making it less suitable for portable devices, which may serve a purpose on smaller unstructured orchards. Portable devices may serve a purpose on these types of orchards. In what concerns sensor methods, on-tree fruit detection, major challenge is to overcome the problem of fruits’ occlusion by leaves and branches. Hence, nontraditional sensors capable of providing some type of differentiation should be investigated.Keywords: fruit thinning, horticultural field, portable devices, sensor technologies
Procedia PDF Downloads 1435171 Laban Movement Analysis Using Kinect
Authors: Bernstein Ran, Shafir Tal, Tsachor Rachelle, Studd Karen, Schuster Assaf
Abstract:
Laban Movement Analysis (LMA), developed in the dance community over the past seventy years, is an effective method for observing, describing, notating, and interpreting human movement to enhance communication and expression in everyday and professional life. Many applications that use motion capture data might be significantly leveraged if the Laban qualities will be recognized automatically. This paper presents an automated recognition method of Laban qualities from motion capture skeletal recordings and it is demonstrated on the output of Microsoft’s Kinect V2 sensor.Keywords: Laban movement analysis, multitask learning, Kinect sensor, machine learning
Procedia PDF Downloads 3455170 Key Concepts of 5th Generation Mobile Technology
Authors: Magri Hicham, Noreddine Abghour, Mohamed Ouzzif
Abstract:
The 5th generation of mobile networks is term used in various research papers and projects to identify the next major phase of mobile telecommunications standards. 5G wireless networks will support higher peak data rate, lower latency and provide best connections with QoS guarenty. In this article, we discuss various promising technologies for 5G wireless communication systems, such as IPv6 support, World Wide Wireless Web (WWWW), Dynamic Adhoc Wireless Networks (DAWN), BEAM DIVISION MULTIPLE ACCESS (BDMA), Cloud Computing and cognitive radio technology.Keywords: WWWW, BDMA, DAWN, 5G, 4G, IPv6, Cloud Computing
Procedia PDF Downloads 5185169 Function Approximation with Radial Basis Function Neural Networks via FIR Filter
Authors: Kyu Chul Lee, Sung Hyun Yoo, Choon Ki Ahn, Myo Taeg Lim
Abstract:
Recent experimental evidences have shown that because of a fast convergence and a nice accuracy, neural networks training via extended Kalman filter (EKF) method is widely applied. However, as to an uncertainty of the system dynamics or modeling error, the performance of the method is unreliable. In order to overcome this problem in this paper, a new finite impulse response (FIR) filter based learning algorithm is proposed to train radial basis function neural networks (RBFN) for nonlinear function approximation. Compared to the EKF training method, the proposed FIR filter training method is more robust to those environmental conditions. Furthermore, the number of centers will be considered since it affects the performance of approximation.Keywords: extended Kalman filter, classification problem, radial basis function networks (RBFN), finite impulse response (FIR) filter
Procedia PDF Downloads 4595168 Social Networks Global Impact on Protest Movements and Human Rights Activism
Authors: Marcya Burden, Savonna Greer
Abstract:
In the wake of social unrest around the world, protest movements have been captured like never before. As protest movements have evolved, so too have their visibility and sources of coverage. Long gone are the days of print media as our only glimpse into the action surrounding a protest. Now, with social networks such as Facebook, Instagram and Snapchat, we have access to real-time video footage of protest movements and human rights activism that can reach millions of people within seconds. This research paper investigated various social media network platforms’ statistical usage data in the areas of human rights activism and protest movements, paralleling with other past forms of media coverage. This research demonstrates that social networks are extremely important to protest movements and human rights activism. With over 2.9 billion users across social media networks globally, these platforms are the heart of most recent protests and human rights activism. This research shows the paradigm shift from the Selma March of 1965 to the more recent protests of Ferguson in 2014, Ni Una Menos in 2015, and End Sars in 2018. The research findings demonstrate that today, almost anyone may use their social networks to protest movement leaders and human rights activists. From a student to an 80-year-old professor, the possibility of reaching billions of people all over the world is limitless. Findings show that 82% of the world’s internet population is on social networks 1 in every 5 minutes. Over 65% of Americans believe social media highlights important issues. Thus, there is no need to have a formalized group of people or even be known online. A person simply needs to be engaged on their respective social media networks (Facebook, Twitter, Instagram, Snapchat) regarding any cause they are passionate about. Information may be exchanged in real time around the world and a successful protest can begin.Keywords: activism, protests, human rights, networks
Procedia PDF Downloads 985167 Radio-Frequency Identification (RFID) Based Smart Helmet for Coal Miners
Authors: Waheeda Jabbar, Ali Gul, Rida Noor, Sania Kurd, Saba Gulzar
Abstract:
Hundreds of miners die from mining accidents each year due to poisonous gases found underground mining areas. This paper proposed an idea to protect the precious lives of mining workers. A supervising system is designed which is based on ZigBee wireless technique along with the smart protective helmets to detect real-time surveillance and it gives early warnings on presence of different poisonous gases in order to save mineworkers from any danger caused by these poisonous gases. A wireless sensor network is established using ZigBee wireless technique by integrating sensors on the helmet, apart from this helmet have embedded heartbeat sensor to detect the pulse rate and be aware of the physical or mental strength of a mineworker to increase the potential safety. Radio frequency identification (RFID) technology is used to find the location of workers. A ZigBee based base station is set-upped to control the communication. The idea is implemented and results are verified through experiment.Keywords: Arduino, gas sensor (MQ7), RFID, wireless ZigBee
Procedia PDF Downloads 4575166 Smart Trust Management for Vehicular Networks
Authors: Amel Ltifi, Ahmed Zouinkhi, Med Salim Bouhlel
Abstract:
Spontaneous networks such as VANET are in general deployed in an open and thus easily accessible environment. Therefore, they are vulnerable to attacks. Trust management is one of a set of security solutions dedicated to this type of networks. Moreover, the strong mobility of the nodes (in the case of VANET) makes the establishment of a trust management system complex. In this paper, we present a concept of ‘Active Vehicle’ which means an autonomous vehicle that is able to make decision about trustworthiness of alert messages transmitted about road accidents. The behavior of an “Active Vehicle” is modeled using Petri Nets.Keywords: active vehicle, cooperation, petri nets, trust management, VANET
Procedia PDF Downloads 4105165 Numerical Investigation Including Mobility Model for the Performances of Piezoresistive Sensors
Authors: Abdelaziz Beddiaf
Abstract:
In this work, we present an analysis based on the study of mobility which is a very important electrical parameter of a piezoresistor and which is directly bound to the piezoresistivity effect in piezoresistive pressure sensors. We determine how the temperature affects mobility when the electric potential is applied. For this, a theoretical approach based on mobility in a p-type Silicon piezoresistor with that of a finite difference model for self-heating is developed. So, the evolution of mobility has been established versus time for different doping levels and with temperature rise provoked by self-heating using a numerical model combined with that of mobility. Furthermore, it has been calculated for some geometrical parameters of the sensor, such as membrane side length and thickness. Also, it is computed as a function of bias voltage. It was observed that mobility is strongly affected by the temperature rise induced by the applied potential when the sensor is actuated for a prolonged time as a consequence of drifting in the output response of the sensor. Finally, this work makes it possible to predict their temperature behavior due to self-heating and to improve this effect by optimizing the geometric properties of the device and by reducing the voltage source applied to the bridge.Keywords: Sensors, Piezoresistivity, Mobility, Bias voltage
Procedia PDF Downloads 975164 Investigation on Reducing the Bandgap in Nanocomposite Polymers by Doping
Authors: Sharvare Palwai, Padmaja Guggilla
Abstract:
Smart materials, also called as responsive materials, undergo reversible physical or chemical changes in their properties as a consequence of small environmental variations. They can respond to a single or multiple stimuli such as stress, temperature, moist, electric or magnetic fields, light, or chemical compounds. Hence smart materials are the basis of many applications, including biosensors and transducers, particularly electroactive polymers. As the polymers exhibit good flexibility, high transparency, easy processing, and low cost, they would be promising for the sensor material. Polyvinylidene Fluoride (PVDF), being a ferroelectric polymer, exhibits piezoelectric and pyro electric properties. Pyroelectric materials convert heat directly into electricity, while piezoelectric materials convert mechanical energy into electricity. These characteristics of PVDF make it useful in biosensor devices and batteries. However, the influence of nanoparticle fillers such as Lithium Tantalate (LiTaO₃/LT), Potassium Niobate (KNbO₃/PN), and Zinc Titanate (ZnTiO₃/ZT) in polymer films will be studied comprehensively. Developing advanced and cost-effective biosensors is pivotal to foresee the fullest potential of polymer based wireless sensor networks, which will further enable new types of self-powered applications. Finally, nanocomposites films with best set of properties; the sensory elements will be designed and tested for their performance as electric generators under laboratory conditions. By characterizing the materials for their optical properties and investigate the effects of doping on the bandgap energies, the science in the next-generation biosensor technologies can be advanced.Keywords: polyvinylidene fluoride, PVDF, lithium tantalate, potassium niobate, zinc titanate
Procedia PDF Downloads 1385163 A Distributed Mobile Agent Based on Intrusion Detection System for MANET
Authors: Maad Kamal Al-Anni
Abstract:
This study is about an algorithmic dependence of Artificial Neural Network on Multilayer Perceptron (MPL) pertaining to the classification and clustering presentations for Mobile Adhoc Network vulnerabilities. Moreover, mobile ad hoc network (MANET) is ubiquitous intelligent internetworking devices in which it has the ability to detect their environment using an autonomous system of mobile nodes that are connected via wireless links. Security affairs are the most important subject in MANET due to the easy penetrative scenarios occurred in such an auto configuration network. One of the powerful techniques used for inspecting the network packets is Intrusion Detection System (IDS); in this article, we are going to show the effectiveness of artificial neural networks used as a machine learning along with stochastic approach (information gain) to classify the malicious behaviors in simulated network with respect to different IDS techniques. The monitoring agent is responsible for detection inference engine, the audit data is collected from collecting agent by simulating the node attack and contrasted outputs with normal behaviors of the framework, whenever. In the event that there is any deviation from the ordinary behaviors then the monitoring agent is considered this event as an attack , in this article we are going to demonstrate the signature-based IDS approach in a MANET by implementing the back propagation algorithm over ensemble-based Traffic Table (TT), thus the signature of malicious behaviors or undesirable activities are often significantly prognosticated and efficiently figured out, by increasing the parametric set-up of Back propagation algorithm during the experimental results which empirically shown its effectiveness for the ratio of detection index up to 98.6 percentage. Consequently it is proved in empirical results in this article, the performance matrices are also being included in this article with Xgraph screen show by different through puts like Packet Delivery Ratio (PDR), Through Put(TP), and Average Delay(AD).Keywords: Intrusion Detection System (IDS), Mobile Adhoc Networks (MANET), Back Propagation Algorithm (BPA), Neural Networks (NN)
Procedia PDF Downloads 1965162 A Review of Ultralightweight Mutual Authentication Protocols
Authors: Umar Mujahid, Greatzel Unabia, Hongsik Choi, Binh Tran
Abstract:
Radio Frequency Identification (RFID) is one of the most commonly used technologies in IoTs and Wireless Sensor Networks which makes the devices identification and tracking extremely easy to manage. Since RFID uses wireless channel for communication, which is open for all types of adversaries, researchers have proposed many Ultralightweight Mutual Authentication Protocols (UMAPs) to ensure security and privacy in a cost-effective manner. These UMAPs involve simple bitwise logical operators such as XOR, AND, OR & Rot, etc., to design the protocol messages. However, most of these UMAPs were later reported to be vulnerable against many malicious attacks. In this paper, we have presented a detailed overview of some eminent UMAPs and also discussed the many security attacks on them. Finally, some recommendations and suggestions have been discussed, which can improve the design of the UMAPs.Keywords: RFID, Ultralightweight, UMAP, SASI
Procedia PDF Downloads 1575161 Urban Citizenship in a Sensor Rich Society
Authors: Mike Dee
Abstract:
Urban public spaces are sutured with a range of surveillance and sensor technologies that claim to enable new forms of ‘data based citizen participation’, but also increase the tendency for ‘function-creep’, whereby vast amounts of data are gathered, stored and analysed in a broad application of urban surveillance. This kind of monitoring and capacity for surveillance connects with attempts by civic authorities to regulate, restrict, rebrand and reframe urban public spaces. A direct consequence of the increasingly security driven, policed, privatised and surveilled nature of public space is the exclusion or ‘unfavourable inclusion’ of those considered flawed and unwelcome in the ‘spectacular’ consumption spaces of many major urban centres. In the name of urban regeneration, programs of securitisation, ‘gentrification’ and ‘creative’ and ‘smart’ city initiatives refashion public space as sites of selective inclusion and exclusion. In this context of monitoring and control procedures, in particular, children and young people’s use of space in parks, neighbourhoods, shopping malls and streets is often viewed as a threat to the social order, requiring various forms of remedial action. This paper suggests that cities, places and spaces and those who seek to use them, can be resilient in working to maintain and extend democratic freedoms and processes enshrined in Marshall’s concept of citizenship, calling sensor and surveillance systems to account. Such accountability could better inform the implementation of public policy around the design, build and governance of public space and also understandings of urban citizenship in the sensor saturated urban environment.Keywords: citizenship, public space, surveillance, young people
Procedia PDF Downloads 4535160 Optimizing Availability of Marine Knowledge Repository with Cloud-Based Framework
Authors: Ahmad S. Mohd Noor, Emma A. Sirajudin, Nur F. Mat Zain
Abstract:
Reliability is an important property for knowledge repository system. National Marine Bioinformatics System or NABTICS is a marine knowledge repository portal aimed to provide a baseline for marine biodiversity and a tool for researchers and developers. It is intended to be a large and growing online database and also a metadata system for inputs of research analysis. The trends of present large distributed systems such as Cloud computing are the delivery of computing as a service rather than a product. The goal of this research is to make NABTICS a system of greater availability by integrating it with Cloud based Neighbor Replication and Failure Recovery (NRFR). This can be achieved by implementation of NABTICS into distributed environment. As a result, the user can experience minimum downtime while using the system should the server is having a failure. Consequently the online database application is said to be highly available.Keywords: cloud, availability, distributed system, marine repository, database replication
Procedia PDF Downloads 4735159 Dissolved Gas Analysis Based Regression Rules from Trained ANN for Transformer Fault Diagnosis
Authors: Deepika Bhalla, Raj Kumar Bansal, Hari Om Gupta
Abstract:
Dissolved Gas Analysis (DGA) has been widely used for fault diagnosis in a transformer. Artificial neural networks (ANN) have high accuracy but are regarded as black boxes that are difficult to interpret. For many problems it is desired to extract knowledge from trained neural networks (NN) so that the user can gain a better understanding of the solution arrived by the NN. This paper applies a pedagogical approach for rule extraction from function approximating neural networks (REFANN) with application to incipient fault diagnosis using the concentrations of the dissolved gases within the transformer oil, as the input to the NN. The input space is split into subregions and for each subregion there is a linear equation that is used to predict the type of fault developing within a transformer. The experiments on real data indicate that the approach used can extract simple and useful rules and give fault predictions that match the actual fault and are at times also better than those predicted by the IEC method.Keywords: artificial neural networks, dissolved gas analysis, rules extraction, transformer
Procedia PDF Downloads 5395158 Development of Star Image Simulator for Star Tracker Algorithm Validation
Authors: Zoubida Mahi
Abstract:
A successful satellite mission in space requires a reliable attitude and orbit control system to command, control and position the satellite in appropriate orbits. Several sensors are used for attitude control, such as magnetic sensors, earth sensors, horizon sensors, gyroscopes, and solar sensors. The star tracker is the most accurate sensor compared to other sensors, and it is able to offer high-accuracy attitude control without the need for prior attitude information. There are mainly three approaches in star sensor research: digital simulation, hardware in the loop simulation, and field test of star observation. In the digital simulation approach, all of the processes are done in software, including star image simulation. Hence, it is necessary to develop star image simulation software that could simulate real space environments and various star sensor configurations. In this paper, we present a new stellar image simulation tool that is used to test and validate the stellar sensor algorithms; the developed tool allows to simulate of stellar images with several types of noise, such as background noise, gaussian noise, Poisson noise, multiplicative noise, and several scenarios that exist in space such as the presence of the moon, the presence of optical system problem, illumination and false objects. On the other hand, we present in this paper a new star extraction algorithm based on a new centroid calculation method. We compared our algorithm with other star extraction algorithms from the literature, and the results obtained show the star extraction capability of the proposed algorithm.Keywords: star tracker, star simulation, star detection, centroid, noise, scenario
Procedia PDF Downloads 985157 Blockchain Security in MANETs
Authors: Nada Mouchfiq, Ahmed Habbani, Chaimae Benjbara
Abstract:
The security aspect of the IoT occupies a place of great importance especially after the evolution that has known this field lastly because it must take into account the transformations and the new applications .Blockchain is a new technology dedicated to the data sharing. However, this does not work the same way in the different systems with different operating principles. This article will discuss network security using the Blockchain to facilitate the sending of messages and information, enabling the use of new processes and enabling autonomous coordination of devices. To do this, we will discuss proposed solutions to ensure a high level of security in these networks in the work of other researchers. Finally, our article will propose a method of security more adapted to our needs as a team working in the ad hoc networks, this method is based on the principle of the Blockchain and that we named ”MPR Blockchain”.Keywords: Ad hocs networks, blockchain, MPR, security
Procedia PDF Downloads 1875156 Design of an Acoustic Imaging Sensor Array for Mobile Robots
Authors: Dibyendu Roy, V. Ramu Reddy, Parijat Deshpande, Ranjan Dasgupta
Abstract:
Imaging of underwater objects is primarily conducted by acoustic imagery due to the severe attenuation of electro-magnetic waves in water. Acoustic imagery underwater has varied range of significant applications such as side-scan sonar, mine hunting sonar. It also finds utility in other domains such as imaging of body tissues via ultrasonography and non-destructive testing of objects. In this paper, we explore the feasibility of using active acoustic imagery in air and simulate phased array beamforming techniques available in literature for various array designs to achieve a suitable acoustic sensor array design for a portable mobile robot which can be applied to detect the presence/absence of anomalous objects in a room. The multi-path reflection effects especially in enclosed rooms and environmental noise factors are currently not simulated and will be dealt with during the experimental phase. The related hardware is designed with the same feasibility criterion that the developed system needs to be deployed on a portable mobile robot. There is a trade of between image resolution and range with the array size, number of elements and the imaging frequency and has to be iteratively simulated to achieve the desired acoustic sensor array design. The designed acoustic imaging array system is to be mounted on a portable mobile robot and targeted for use in surveillance missions for intruder alerts and imaging objects during dark and smoky scenarios where conventional optic based systems do not function well.Keywords: acoustic sensor array, acoustic imagery, anomaly detection, phased array beamforming
Procedia PDF Downloads 411