Search results for: bridge deterioration modelling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3150

Search results for: bridge deterioration modelling

2520 Effectiveness of Column Geometry in High-Rise Buildings

Authors: Man Singh Meena

Abstract:

Structural engineers are facing different kind of challenges due to innovative & bold ideas of architects who are trying to design every structure with uniqueness. In RCC frame structures different geometry of columns can be used in design and rectangular columns can be placed with different type orientation. The analysis is design of structures can also be carried out by different type of software available i.e., STAAD Pro, ETABS and TEKLA. In recent times high-rise building modeling & analysis is done by ETABS due to its certain features which are superior to other software. The case study in this paper mainly emphasizes on structural behavior of high rise building for different column shape configurations like Circular, Square, Rectangular and Rectangular with 90-degree Rotation and rectangular shape plan. In all these column shapes the areas of columns are kept same to study the effect on design of concrete area is same. Modelling of 20-storeys R.C.C. framed building is done on the ETABS software for analysis. Post analysis of the structure, maximum bending moments, shear forces and maximum longitudinal reinforcement are computed and compared for three different story structures to identify the effectiveness of geometry of column.

Keywords: high-rise building, column geometry, building modelling, ETABS analysis, building design, structural analysis, structural optimization

Procedia PDF Downloads 79
2519 Aerodynamic Analysis of the Airfoil of a VAWT by Using 2D CFD Modelling

Authors: Luis F. Garcia, Julian E. Jaramillo, Jorge L. Chacón

Abstract:

Colombia is a country where the benefits of wind power industry are barely used because of the geography in some areas does not allow the implementation of onshore horizontal axis wind turbines. Furthermore, exist rural areas without access to the electrical grid. Therefore, there is currently a deficit of energy supply in some towns. This research took place in one of those areas (i.e. Chicamocha Canyon-Santander) where the answer to the energy supply problems could be the use of vertical axis wind turbines, which can be used for turbulent flows. Hence, one task of this research is the analysis of the wind resources in the Chicamocha Canyon in order to implement the wind energy. The wind turbines must be designed in such a way that the blades take good advantage of the wind resources in the area of interest. Consequently, in the current research the analysis of two different airfoils (i.e. NACA0018 and DU 06-W-200) through a 2D CFD simulation is carried out by means of a free-software (OpenFOAM). Predicted results using the “Spalart-Allmaras” turbulence model are similar to the wind tunnel data published in the literature. Moreover, global parameters such as dimensionless lift and drag coefficients were calculated. Finally, this research encourages VAWT studies under wind turbulent flows in order to achieve the best use of natural resources in Colombia.

Keywords: airfoil, wind turbine, turbulence modelling, Chicamocha, CFD

Procedia PDF Downloads 484
2518 Unveiling Drought Dynamics in the Cuneo District, Italy: A Machine Learning-Enhanced Hydrological Modelling Approach

Authors: Mohammadamin Hashemi, Mohammadreza Kashizadeh

Abstract:

Droughts pose a significant threat to sustainable water resource management, agriculture, and socioeconomic sectors, particularly in the field of climate change. This study investigates drought simulation using rainfall-runoff modelling in the Cuneo district, Italy, over the past 60-year period. The study leverages the TUW model, a lumped conceptual rainfall-runoff model with a semi-distributed operation capability. Similar in structure to the widely used Hydrologiska Byråns Vattenbalansavdelning (HBV) model, the TUW model operates on daily timesteps for input and output data specific to each catchment. It incorporates essential routines for snow accumulation and melting, soil moisture storage, and streamflow generation. Multiple catchments' discharge data within the Cuneo district form the basis for thorough model calibration employing the Kling-Gupta Efficiency (KGE) metric. A crucial metric for reliable drought analysis is one that can accurately represent low-flow events during drought periods. This ensures that the model provides a realistic picture of water availability during these critical times. Subsequent validation of monthly discharge simulations thoroughly evaluates overall model performance. Beyond model development, the investigation delves into drought analysis using the robust Standardized Runoff Index (SRI). This index allows for precise characterization of drought occurrences within the study area. A meticulous comparison of observed and simulated discharge data is conducted, with particular focus on low-flow events that characterize droughts. Additionally, the study explores the complex interplay between land characteristics (e.g., soil type, vegetation cover) and climate variables (e.g., precipitation, temperature) that influence the severity and duration of hydrological droughts. The study's findings demonstrate successful calibration of the TUW model across most catchments, achieving commendable model efficiency. Comparative analysis between simulated and observed discharge data reveals significant agreement, especially during critical low-flow periods. This agreement is further supported by the Pareto coefficient, a statistical measure of goodness-of-fit. The drought analysis provides critical insights into the duration, intensity, and severity of drought events within the Cuneo district. This newfound understanding of spatial and temporal drought dynamics offers valuable information for water resource management strategies and drought mitigation efforts. This research deepens our understanding of drought dynamics in the Cuneo region. Future research directions include refining hydrological modelling techniques and exploring future drought projections under various climate change scenarios.

Keywords: hydrologic extremes, hydrological drought, hydrological modelling, machine learning, rainfall-runoff modelling

Procedia PDF Downloads 40
2517 A Low Cost Education Proposal Using Strain Gauges and Arduino to Develop a Balance

Authors: Thais Cavalheri Santos, Pedro Jose Gabriel Ferreira, Alexandre Daliberto Frugoli, Lucio Leonardo, Pedro Americo Frugoli

Abstract:

This paper presents a low cost education proposal to be used in engineering courses. The engineering education in universities of a developing country that is in need of an increasing number of engineers carried out with quality and affordably, pose a difficult problem to solve. In Brazil, the political and economic scenario requires academic managers able to reduce costs without compromising the quality of education. Within this context, the elaboration of a physics principles teaching method with the construction of an electronic balance is proposed. First, a method to develop and construct a load cell through which the students can understand the physical principle of strain gauges and bridge circuit will be proposed. The load cell structure was made with aluminum 6351T6, in dimensions of 80 mm x 13 mm x 13 mm and for its instrumentation, a complete Wheatstone Bridge was assembled with strain gauges of 350 ohms. Additionally, the process involves the use of a software tool to document the prototypes (design circuits), the conditioning of the signal, a microcontroller, C language programming as well as the development of the prototype. The project also intends to use an open-source I/O board (Arduino Microcontroller). To design the circuit, the Fritizing software will be used and, to program the controller, an open-source software named IDE®. A load cell was chosen because strain gauges have accuracy and their use has several applications in the industry. A prototype was developed for this study, and it confirmed the affordability of this educational idea. Furthermore, the goal of this proposal is to motivate the students to understand the several possible applications in high technology of the use of load cells and microcontroller.

Keywords: Arduino, load cell, low-cost education, strain gauge

Procedia PDF Downloads 302
2516 Design, Modelling, and Fabrication of Bioinspired Frog Robot for Synchronous and Asynchronous Swimming

Authors: Afaque Manzoor Soomro, Faheem Ahmed, Fida Hussain Memon, Kyung Hyun Choi

Abstract:

This paper proposes the bioinspired soft frog robot. All printing technology was used for the fabrication of the robot. Polyjet printing was used to print the front and back limbs, while ultrathin filament was used to print the body of the robot, which makes it a complete soft swimming robot. The dual thrust generation approach has been proposed by embedding the main muscle and antagonistic muscle in all the limbs, which enables it to attain high speed (18 mm/s), and significant control of swimming in dual modes (synchronous and asynchronous modes). To achieve the swimming motion of the frog, the design, motivated by the rigorous modelling and real frog dynamics analysis, enabled the as-developed frog robot (FROBOT) to swim at a significant level of consistency with the real frog. The FROBOT (weighing 65 g) can swim at different controllable frequencies (0.5–2Hz) and can turn in any direction by following custom-made LabVIEW software’s commands which enables it to swim at speed up to 18 mm/s on the surface of deep water (100 cm) with excellent weight balance.

Keywords: soft robotics, soft actuator, frog robot, 3D printing

Procedia PDF Downloads 99
2515 Determinants of Financial Structure in the Economic Institution

Authors: Abdous Noureddine

Abstract:

The problem of funding in Algeria emerged as a problem you need to study after many Algerians researchers pointed out that the faltering Algerian public economic institution due to the imbalance in the financial structures and lower steering and marketing efficiency, as well as a result of severe expansion of borrowing because of inadequate own resources, and the consequent inability This institution to repay loans and interest payments, in addition to increasing reliance on overdraft so used to finance fixed assets, no doubt that this deterioration requires research and study of the causes and aspects of treatment, which addresses the current study, aside from it.

Keywords: financial structure, financial capital, equity, debt, firm’s value, return, leverage

Procedia PDF Downloads 312
2514 Modelling of Organic Rankine Cycle for Waste Heat Recovery Process in Supercritical Condition

Authors: Jahedul Islam Chowdhury, Bao Kha Nguyen, David Thornhill, Roy Douglas, Stephen Glover

Abstract:

Organic Rankine Cycle (ORC) is the most commonly used method for recovering energy from small sources of heat. The investigation of the ORC in supercritical condition is a new research area as it has a potential to generate high power and thermal efficiency in a waste heat recovery system. This paper presents a steady state ORC model in supercritical condition and its simulations with a real engine’s exhaust data. The key component of ORC, evaporator, is modelled using finite volume method, modelling of all other components of the waste heat recovery system such as pump, expander and condenser are also presented. The aim of this paper is to investigate the effects of mass flow rate and evaporator outlet temperature on the efficiency of the waste heat recovery process. Additionally, the necessity of maintaining an optimum evaporator outlet temperature is also investigated. Simulation results show that modification of mass flow rate is the key to changing the operating temperature at the evaporator outlet.

Keywords: Organic Rankine cycle, supercritical condition, steady state model, waste heat recovery

Procedia PDF Downloads 404
2513 Scheduling Building Projects: The Chronographical Modeling Concept

Authors: Adel Francis

Abstract:

Most of scheduling methods and software apply the critical path logic. This logic schedule activities, apply constraints between these activities and try to optimize and level the allocated resources. The extensive use of this logic produces a complex an erroneous network hard to present, follow and update. Planning and management building projects should tackle the coordination of works and the management of limited spaces, traffic, and supplies. Activities cannot be performed without the resources available and resources cannot be used beyond the capacity of workplaces. Otherwise, workspace congestion will negatively affect the flow of works. The objective of the space planning is to link the spatial and temporal aspects, promote efficient use of the site, define optimal site occupancy rates, and ensures suitable rotation of the workforce in the different spaces. The Chronographic scheduling modelling belongs to this category and models construction operations as well as their processes, logical constraints, association and organizational models, which help to better illustrate the schedule information using multiple flexible approaches. The model defined three categories of areas (punctual, surface and linear) and four different layers (space creation, systems, closing off space, finishing, and reduction of space). The Chronographical modelling is a more complete communication method, having the ability to alternate from one visual approach to another by manipulation of graphics via a set of parameters and their associated values. Each individual approach can help to schedule a certain project type or specialty. Visual communication can also be improved through layering, sheeting, juxtaposition, alterations, and permutations, allowing for groupings, hierarchies, and classification of project information. In this way, graphic representation becomes a living, transformable image, showing valuable information in a clear and comprehensible manner, simplifying the site management while simultaneously utilizing the visual space as efficiently as possible.

Keywords: building projects, chronographic modelling, CPM, critical path, precedence diagram, scheduling

Procedia PDF Downloads 153
2512 Influence of Footing Offset over Stability of Geosynthetic Reinforced Soil Abutments with Variable Facing under Lateral Excitation

Authors: Ashutosh Verma, Satyendra MIttal

Abstract:

The loss of strength at the facing-reinforcement interface brought on by the seasonal thermal expansion/contraction of the bridge deck has been responsible for several geosynthetic reinforced soil abutment failures over the years. This results in excessive settlement below the bridge seat, which results in bridge bumps along the approach road and shortens abutment's design life. There are surely a wide variety of facing configurations available to designers when choosing the sort of facade. These layouts can generally be categorised into three groups: continuous, full height rigid (FHR) and modular (panels/block). The current work aims to experimentally explore the behavior of these three facing categories using 1g physical model testing under serviceable cyclic lateral displacements. With configurable facing arrangements to represent these three facing categories, a field instrumented GRS abutment prototype was modelled into a N scaled down 1g physical model (N = 5) to reproduce field behavior. Peak earth pressure coefficient (K) on the facing and vertical settlement of the footing (s/B) for footing offset (x/H) as 0.1, 0.2, 0.3, 0.4 and 0.5 at 100 cycles have been measured for cyclic lateral displacement of top of facing at loading rate of 1mm/min. Three types of cyclic displacements have been carried out to replicate active condition (CA), passive condition (CP), and active-passive condition (CAP) for each footing offset. The results demonstrated that a significant decrease in the earth pressure over the facing occurs when footing offset increases. It is worth noticing that the highest rate of increment in earth pressure and footing settlement were observed for each facing configuration at the nearest footing offset. Interestingly, for the farthest footing offset, similar responses of each facing type were observed, which indicates that the upon reaching a critical offset point presumably beyond the active region in the backfill, the lateral responses become independent of the stresses from the external footing load. Evidently, the footing load complements the stresses developed due to lateral excitation resulting in significant footing settlements for nearer footing offsets. The modular facing proved inefficient in resisting footing settlement due to significant buckling along the depth of facing. Instead of relative displacement along the depth of facing, continuous facing rotates around the base when it fails, especially for nearer footing offset causing significant depressions in the backfill area surrounding the footing. FHR facing, on the other hand, have been successful in confining the stresses in the soil domain itself reducing the footing settlement. It may be suitably concluded that increasing the footing offset may render stability to the GRS abutment with any facing configuration even for higher cycles of excitation.

Keywords: GRS abutments, 1g physical model, footing offset, cyclic lateral displacement

Procedia PDF Downloads 81
2511 The Bicoid Gradient in the Drosophila Embryo: 3D Modelling with Realistic Egg Geometries

Authors: Alexander V. Spirov, David M. Holloway, Ekaterina M. Myasnikova

Abstract:

Segmentation of the early Drosophila embryo results from the dynamic establishment of spatial gene expression patterns. Patterning occurs on an embryo geometry which is a 'deformed' prolate ellipsoid, with anteroposterior and dorsal-ventral major and minor axes, respectively. Patterning is largely independent along each axis, but some interaction can be seen in the 'bending' of the segmental expression stripes. This interaction is not well understood. In this report, we investigate how 3D geometrical features of the early embryo affect the segmental expression patterning. Specifically, we study the effect of geometry on formation of the Bicoid primary morphogenetic gradient. Our computational results demonstrate that embryos with a much longer ventral than dorsal surface ('bellied') can produce curved Bicoid concentration contours which could activate curved stripes in the downstream pair-rule segmentation genes. In addition, we show that having an extended source for Bicoid in the anterior of the embryo may be necessary for producing the observed exponential form of the Bicoid gradient along the anteroposterior axis.

Keywords: Drosophila embryo, bicoid morphogenetic gradient, exponential expression profile, expression surface form, segmentation genes, 3D modelling

Procedia PDF Downloads 273
2510 Implementation of Building Information Modelling to Monitor, Assess, and Control the Indoor Environmental Quality of Higher Education Buildings

Authors: Mukhtar Maigari

Abstract:

The landscape of Higher Education (HE) institutions, especially following the CVID-19 pandemic, necessitates advanced approaches to manage Indoor Environmental Quality (IEQ) which is crucial for the comfort, health, and productivity of students and staff. This study investigates the application of Building Information Modelling (BIM) as a multifaceted tool for monitoring, assessing, and controlling IEQ in HE buildings aiming to bridge the gap between traditional management practices and the innovative capabilities of BIM. Central to the study is a comprehensive literature review, which lays the foundation by examining current knowledge and technological advancements in both IEQ and BIM. This review sets the stage for a deeper investigation into the practical application of BIM in IEQ management. The methodology consists of Post-Occupancy Evaluation (POE) which encompasses physical monitoring, questionnaire surveys, and interviews under the umbrella of case studies. The physical data collection focuses on vital IEQ parameters such as temperature, humidity, CO2 levels etc, conducted by using different equipment including dataloggers to ensure accurate data. Complementing this, questionnaire surveys gather perceptions and satisfaction levels from students, providing valuable insights into the subjective aspects of IEQ. The interview component, targeting facilities management teams, offers an in-depth perspective on IEQ management challenges and strategies. The research delves deeper into the development of a conceptual BIM-based framework, informed by the insight findings from case studies and empirical data. This framework is designed to demonstrate the critical functions necessary for effective IEQ monitoring, assessment, control and automation with real time data handling capabilities. This BIM-based framework leads to the developing and testing a BIM-based prototype tool. This prototype leverages on software such as Autodesk Revit with its visual programming tool i.e., Dynamo and an Arduino-based sensor network thereby allowing for real-time flow of IEQ data for monitoring, control and even automation. By harnessing the capabilities of BIM technology, the study presents a forward-thinking approach that aligns with current sustainability and wellness goals, particularly vital in the post-COVID-19 era. The integration of BIM in IEQ management promises not only to enhance the health, comfort, and energy efficiency of educational environments but also to transform them into more conducive spaces for teaching and learning. Furthermore, this research could influence the future of HE buildings by prompting universities and government bodies to revaluate and improve teaching and learning environments. It demonstrates how the synergy between IEQ and BIM can empower stakeholders to monitor IEQ conditions more effectively and make informed decisions in real-time. Moreover, the developed framework has broader applications as well; it can serve as a tool for other sustainability assessments, like energy analysis in HE buildings, leveraging measured data synchronized with the BIM model. In conclusion, this study bridges the gap between theoretical research and real-world application by practicalizing how advanced technologies like BIM can be effectively integrated to enhance environmental quality in educational institutions. It portrays the potential of integrating advanced technologies like BIM in the pursuit of improved environmental conditions in educational institutions.

Keywords: BIM, POE, IEQ, HE-buildings

Procedia PDF Downloads 47
2509 Prediction of Saturated Hydraulic Conductivity Dynamics in an Iowan Agriculture Watershed

Authors: Mohamed Elhakeem, A. N. Thanos Papanicolaou, Christopher Wilson, Yi-Jia Chang

Abstract:

In this study, a physically-based, modelling framework was developed to predict saturated hydraulic conductivity (KSAT) dynamics in the Clear Creek Watershed (CCW), Iowa. The modelling framework integrated selected pedotransfer functions and watershed models with geospatial tools. A number of pedotransfer functions and agricultural watershed models were examined to select the appropriate models that represent the study site conditions. Models selection was based on statistical measures of the models’ errors compared to the KSAT field measurements conducted in the CCW under different soil, climate and land use conditions. The study has shown that the predictions of the combined pedotransfer function of Rosetta and the Water Erosion Prediction Project (WEPP) provided the best agreement to the measured KSAT values in the CCW compared to the other tested models. Therefore, Rosetta and WEPP were integrated with the Geographic Information System (GIS) tools for visualization of the data in forms of geospatial maps and prediction of KSAT variability in CCW due to the seasonal changes in climate and land use activities.

Keywords: saturated hydraulic conductivity, pedotransfer functions, watershed models, geospatial tools

Procedia PDF Downloads 259
2508 Molecular Modeling of 17-Picolyl and 17-Picolinylidene Androstane Derivatives with Anticancer Activity

Authors: Sanja Podunavac-Kuzmanović, Strahinja Kovačević, Lidija Jevrić, Evgenija Djurendić, Jovana Ajduković

Abstract:

In the present study, the molecular modeling of a series of 24 17-picolyl and 17-picolinylidene androstane derivatives whit significant anticancer activity was carried out. Modelling of studied compounds was performed by CS ChemBioDraw Ultra v12.0 program for drawing 2D molecular structures and CS ChemBio3D Ultra v12.0 for 3D molecular modelling. The obtained 3D structures were subjected to energy minimization using molecular mechanics force field method (MM2). The cutoff for structure optimization was set at a gradient of 0.1 kcal/Åmol. Full geometry optimization was done by the Austin Model 1 (AM1) until the root mean square (RMS) gradient reached a value smaller than 0.0001 kcal/Åmol using Molecular Orbital Package (MOPAC) program. The obtained physicochemical, lipophilicity and topological descriptors were used for analysis of molecular similarities and dissimilarities applying suitable chemometric methods (principal component analysis and cluster analysis). These results are the part of the project No. 114-451-347/2015-02, financially supported by the Provincial Secretariat for Science and Technological Development of Vojvodina and CMST COST Action CM1306.

Keywords: androstane derivatives, anticancer activity, chemometrics, molecular descriptors

Procedia PDF Downloads 359
2507 Assessing Two Protocols for Positive Reinforcement Training in Captive Olive Baboons (Papio anubis)

Authors: H. Cano, P. Ferrer, N. Garcia, M. Popovic, J. Zapata

Abstract:

Positive Reinforcement Training is a well-known methodology which has been reported frequently to be used in captive non-human primates. As a matter of fact, it is an invaluable tool for different purposes related with animal welfare, such as primate husbandry and environmental enrichment. It is also essential to perform some cognitive experiments. The main propose of this pilot study was to establish an efficient protocol to train captive olive baboons (Papio anubis). This protocol seems to be vital in the context of a larger research program in which it will be necessary to train a complete population of around 40 baboons. Baboons were studied at the Veterinary Research Farm of the University of Murcia. Temporally isolated animals were trained to perform three basic tasks. Firstly, they were required to take food prices directly from the researchers’ hands. Then a clicker sound or bridge stimulus was added each time the animal acceded to the reinforcement. Finally, they were trained to touch a target, consisted of a whip with a red ball in its end, with their hands or their nose. When the subject completed correctly this task, it was also exposed to the bridge stimulus and awarded with a food price, such as a portion of banana, orange, apple, peach or a raisin. Two protocols were tested during this experiment. In both of them, there were 6 series of 2min training periods each day. However, in the first protocol, the series consisted in 3 trials, whereas in the second one, in each series there were 5 trials. A reliable performance was obtained with only 6 days of training in the case of the 5-trials protocol. However, with the 3-trials one, 26 days of training were needed. As a result, the 5-trials protocol seems to be more effective than the 3-trials one, in order to teach these three basic tasks to olive baboons. In consequence, it will be used to train the rest of the colony.

Keywords: captive primates, olive baboon, positive reinforcement training, Papio anubis, training

Procedia PDF Downloads 121
2506 Efficacy of Coconut Shell Pyrolytic Oil Distillate in Protecting Wood Against Bio-Deterioration

Authors: K. S. Shiny, R. Sundararaj

Abstract:

Coconut trees (Cocos nucifera L.) are grown in many parts of India and world because of its multiple utilities. During pyrolysis, coconut shells yield oil, which is a dark thick liquid. Upon simple distillation it produces a more or less colourless liquid, termed coconut shell pyrolytic oil distillate (CSPOD). This manuscript reports and discusses the use of coconut shell pyrolytic oil distillate as a potential wood protectant against bio-deterioration. Since botanical products as ecofriendly wood protectant is being tested worldwide, the utilization of CPSOD as wood protectant is of great importance. The efficacy of CSPOD as wood protectant was evaluated as per Bureau of Indian Standards (BIS) in terms of its antifungal, antiborer, and termiticidal activities. Specimens of Rubber wood (Hevea brasiliensis) in six replicate each for two treatment methods namely spraying and dipping (48hrs) were employed. CSPOD was found to impart total protection against termites for six months compared to control under field conditions. For assessing the efficacy of CSPOD against fungi, the treated blocks were subjected to the attack of two white rot fungi Tyromyces versicolor (L.) Fr. and Polyporus sanguineus (L.) G. Mey and two brown rot fungi, Polyporus meliae (Undrew.) Murrill. and Oligoporus placenta (Fr.) Gilb. & Ryvarden. Results indicated that treatment with CSPOD significantly protected wood from the damage caused by the decay fungi. Efficacy of CSPOD against wood borer Lyctus africanus Lesne was carried out using six pairs of male and female beetles and it gave promising results in protecting the treated wood blocks when compared to control blocks. As far as the treatment methods were concerned, dip treatment was found to be more effective when compared to spraying. The results of the present investigation indicated that CSPOD is a promising botanical compound which has the potential to replace synthetic wood protectants. As coconut shell, pyrolytic oil is a waste byproduct of coconut shell charcoal industry, its utilization as a wood preservative will expand the economic returns from such industries.

Keywords: coconut shell pyrolytic oil distillate, eco-friendly wood protection, termites, wood borers, wood decay fungi

Procedia PDF Downloads 371
2505 Simulation of Concrete Wall Subjected to Airblast by Developing an Elastoplastic Spring Model in Modelica Modelling Language

Authors: Leo Laine, Morgan Johansson

Abstract:

To meet the civilizations future needs for safe living and low environmental footprint, the engineers designing the complex systems of tomorrow will need efficient ways to model and optimize these systems for their intended purpose. For example, a civil defence shelter and its subsystem components needs to withstand, e.g. airblast and ground shock from decided design level explosion which detonates with a certain distance from the structure. In addition, the complex civil defence shelter needs to have functioning air filter systems to protect from toxic gases and provide clean air, clean water, heat, and electricity needs to also be available through shock and vibration safe fixtures and connections. Similar complex building systems can be found in any concentrated living or office area. In this paper, the authors use a multidomain modelling language called Modelica to model a concrete wall as a single degree of freedom (SDOF) system with elastoplastic properties with the implemented option of plastic hardening. The elastoplastic model was developed and implemented in the open source tool OpenModelica. The simulation model was tested on the case with a transient equivalent reflected pressure time history representing an airblast from 100 kg TNT detonating 15 meters from the wall. The concrete wall is approximately regarded as a concrete strip of 1.0 m width. This load represents a realistic threat on any building in a city like area. The OpenModelica model results were compared with an Excel implementation of a SDOF model with an elastic-plastic spring using simple fixed timestep central difference solver. The structural displacement results agreed very well with each other when it comes to plastic displacement magnitude, elastic oscillation displacement, and response times.

Keywords: airblast from explosives, elastoplastic spring model, Modelica modelling language, SDOF, structural response of concrete structure

Procedia PDF Downloads 129
2504 Diagnostics and Explanation of the Current Status of the 40- Year Railway Viaduct

Authors: Jakub Zembrzuski, Bartosz Sobczyk, Mikołaj MIśkiewicz

Abstract:

Besides designing new constructions, engineers all over the world must face another problem – maintenance, repairs, and assessment of the technical condition of existing bridges. To solve more complex issues, it is necessary to be familiar with the theory of finite element method and to have access to the software that provides sufficient tools which to enable create of sometimes significantly advanced numerical models. The paper includes a brief assessment of the technical condition, a description of the in situ non-destructive testing carried out and the FEM models created for global and local analysis. In situ testing was performed using strain gauges and displacement sensors. Numerical models were created using various software and numerical modeling techniques. Particularly noteworthy is the method of modeling riveted joints of the crossbeam of the viaduct. It is a simplified method that consists of the use of only basic numerical tools such as beam and shell finite elements, constraints, and simplified boundary conditions (fixed support and symmetry). The results of the numerical analyses were presented and discussed. It is clearly explained why the structure did not fail, despite the fact that the weld of the deck plate completely failed. A further research problem that was solved was to determine the cause of the rapid increase in values on the stress diagram in the cross-section of the transverse section. The problems were solved using the solely mentioned, simplified method of modeling riveted joints, which demonstrates that it is possible to solve such problems without access to sophisticated software that enables to performance of the advanced nonlinear analysis. Moreover, the obtained results are of great importance in the field of assessing the operation of bridge structures with an orthotropic plate.

Keywords: bridge, diagnostics, FEM simulations, failure, NDT, in situ testing

Procedia PDF Downloads 71
2503 Effect of Double-Skin Facade Configuration on the Energy Performance of Office Building in Maritime Desert Climate

Authors: B. Umaru Mohammed, Faris A. Al-Maziad, Mohammad Y. Numan

Abstract:

One of the most important factors affecting the energy performance within a building is a carefully and efficiently designed facade. The primary aim of this research was to identify and present the potentiality of utilising Double-Skin Facade (DSF) construction and critically examine its effect on the energy consumption of an office building located within a maritime desert climate as to the conventional single-skin curtain wall system. A comparative analysis of the effect on the overall energy consumption within an office building was investigated in which a combination of various Double-Skin Facade configurations, systems, and cavity depths, glazing types and orientations were utilised. A computer dynamic modelling was utilised in order to ensure accurate calculations and efficient simulations of the various DSF systems due to the complex nature of the various functions within the Facade cavity. Through the use of the dynamic thermal modelling simulations, the best cavity size glazed type and orientation were determined to lead to a detailed analysis of the efficiency of each respective combination of Double-Skin Facade construction. As such the optimal facade combination for use within an office building located in a maritime desert climate was identified. Results demonstrated that a multi-story Facade, depending on its configuration, save up to 5% on annual cooling loads respect to a Corridor Facade and while vented can save unto 12% when compared to the single skin façade, on annual cooling load in the maritime desert climate. The selected configuration of the DSF from SSF saves an overall annual cooling load of 32%.A comparative analysis of the effect on the overall energy consumption within an office building was investigated in which a combination of various Double-Skin Facade configurations, systems, and cavity depths, glazing types and orientations were utilized. A computer dynamic modelling was utilized in order to ensure accurate calculations and efficient simulations of the various DSF systems due to the complex nature of the various functions within the Facade cavity. Through the use of the dynamic thermal modelling simulations, the best cavity size glazed type and orientation were determined to lead to a detailed analysis of the efficiency of each respective combination of Double-Skin Facade construction. As such the optimal facade combination for use within an office building located in a maritime desert climate was identified. Results demonstrated that a multi-story Facade, depending on its configuration, save up to 5% on annual cooling loads respect to a Corridor Facade and while vented can save unto 12% when compared to the single skin facade, on annual cooling load in the maritime desert climate. The selected configuration of the DSF from SSF saves an overall annual cooling load of 32%.

Keywords: computer dynamics modelling, comparative analysis, energy computation, double skin facade, single skin curtain wall, maritime desert climate

Procedia PDF Downloads 340
2502 Analog Input Output Buffer Information Specification Modelling Techniques for Single Ended Inter-Integrated Circuit and Differential Low Voltage Differential Signaling I/O Interfaces

Authors: Monika Rawat, Rahul Kumar

Abstract:

Input output Buffer Information Specification (IBIS) models are used for describing the analog behavior of the Input Output (I/O) buffers of a digital device. They are widely used to perform signal integrity analysis. Advantages of using IBIS models include simple structure, IP protection and fast simulation time with reasonable accuracy. As design complexity of driver and receiver increases, capturing exact behavior from transistor level model into IBIS model becomes an essential task to achieve better accuracy. In this paper, an improvement in existing methodology of generating IBIS model for complex I/O interfaces such as Inter-Integrated Circuit (I2C) and Low Voltage Differential Signaling (LVDS) is proposed. Furthermore, the accuracy and computational performance of standard method and proposed approach with respect to SPICE are presented. The investigations will be useful to further improve the accuracy of IBIS models and to enhance their wider acceptance.

Keywords: IBIS, signal integrity, open-drain buffer, low voltage differential signaling, behavior modelling, transient simulation

Procedia PDF Downloads 195
2501 Computational Assistance of the Research, Using Dynamic Vector Logistics of Processes for Critical Infrastructure Subjects Continuity

Authors: Urbánek Jiří J., Krahulec Josef, Urbánek Jiří F., Johanidesová Jitka

Abstract:

These Computational assistance for the research and modelling of critical infrastructure subjects continuity deal with this paper. It enables us the using of prevailing operation system MS Office (SmartArt...) for mathematical models, using DYVELOP (Dynamic Vector Logistics of Processes) method. It serves for crisis situations investigation and modelling within the organizations of critical infrastructure. In the first part of the paper, it will be introduced entities, operators and actors of DYVELOP method. It uses just three operators of Boolean algebra and four types of the entities: the Environments, the Process Systems, the Cases and the Controlling. The Process Systems (PrS) have five “brothers”: Management PrS, Transformation PrS, Logistic PrS, Event PrS and Operation PrS. The Cases have three “sisters”: Process Cell Case, Use Case and Activity Case. They all need for the controlling of their functions special Ctrl actors, except ENV – it can do without Ctrl. Model´s maps are named the Blazons and they are able mathematically - graphically express the relationships among entities, actors and processes. In the second part of this paper, the rich blazons of DYVELOP method will be used for the discovering and modelling of the cycling cases and their phases. The blazons need live PowerPoint presentation for better comprehension of this paper mission. The crisis management of energetic crisis infrastructure organization is obliged to use the cycles for successful coping of crisis situations. Several times cycling of these cases is a necessary condition for the encompassment of the both the emergency event and the mitigation of organization´s damages. Uninterrupted and continuous cycling process bring for crisis management fruitfulness and it is a good indicator and controlling actor of organizational continuity and its sustainable development advanced possibilities. The research reliable rules are derived for the safety and reliable continuity of energetic critical infrastructure organization in the crisis situation.

Keywords: blazons, computational assistance, DYVELOP method, critical infrastructure

Procedia PDF Downloads 381
2500 Effects of Nano-Coating on the Mechanical Behavior of Nanoporous Metals

Authors: Yunus Onur Yildiz, Mesut Kirca

Abstract:

In this study, mechanical properties of a nanoporous metal coated with a different metallic material are studied through a new atomistic modelling technique and molecular dynamics (MD) simulations. This new atomistic modelling technique is based on the Voronoi tessellation method for the purpose of geometric representation of the ligaments. With the proposed technique, atomistic models of nanoporous metals which have randomly oriented ligaments with non-uniform mass distribution along the ligament axis can be generated by enabling researchers to control both ligament length and diameter. Furthermore, by the utilization of this technique, atomistic models of coated nanoporous materials can be numerically obtained for further mechanical or thermal characterization. In general, this study consists of two stages. At the first stage, we use algorithms developed for generating atomic coordinates of the coated nanoporous material. In this regard, coordinates of randomly distributed points are determined in a controlled way to be employed in the establishment of the Voronoi tessellation, which results in randomly oriented and intersected line segments. Then, line segment representation of the Voronoi tessellation is transformed to atomic structure by a special process. This special process includes generation of non-uniform volumetric core region in which atoms can be generated based on a specific crystal structure. As an extension, this technique can be used for coating of nanoporous structures by creating another volumetric region encapsulating the core region in which atoms for the coating material are generated. The ultimate goal of the study at this stage is to generate atomic coordinates that can be employed in the MD simulations of randomly organized coated nanoporous structures. At the second stage of the study, mechanical behavior of the coated nanoporous models is investigated by examining deformation mechanisms through MD simulations. In this way, the effect of coating on the mechanical behavior of the selected material couple is investigated.

Keywords: atomistic modelling, molecular dynamic, nanoporous metals, voronoi tessellation

Procedia PDF Downloads 276
2499 State of Conservation of the British Colonial Architectural Heritage of Karachi: Case Study of Damage Mapping of Empress Market Building

Authors: Tania Ali Soomro

Abstract:

In 1839, the British, after the annexation of the port city of Karachi, established a new urban centre consisting of various quarters and introduced new settlements there. These quarters were out of the boundaries of fortified native old area and now contain much of the oldest parts of the city and signify the colonial history of Karachi, in particular the Saddar Bazaar and the neighboring areas of Kharadar and Mithadar. These quarters bestow a mix of functional typology built in a hybrid form of construction - an adaptation of the western architectural attributes to regional requirements and characteristics. This approach is referred to as the Anglo Vernacular, Colonial or the Domestic Gothic architectural form. This research paper investigates the historical and architectural value of one such property: the Empress Market designed by then Municipal Architect, Ar. James Strachan in 1889 as a commemorative monument for the jubilee of Her Majesty the Queen Victoria; Empress of British India, at that time. This paper presents information on the present conservation status of the market building and highlights its role as a catalyst to the community interconnection. This building has survived to present day and functioned well, despite undergoing numerous transformations. A detailed analysis of the bio-degradation (Natural-Chemical dissolution of material) and the bio-deterioration (Manmade-Negative state change of the material) of the building, based on the examination of the prevailing causes of these bio-alterations is carried out, and is presented in form of a damage atlas containing both the categories of bio-alteration/ changes occurred to the building over the time. The research methodology followed in this paper starts with the available archival analysis, physical observation, photographic documentation, the statistics review and the interviews with the direct and indirect stakeholders. The results and findings of this research portray that these bio-alterations and changes are the essential part of the life cycle of Empress Market building which illustrate the historic development of the premise and therefore ought to be given due importance (depending upon their condition) while developing the conservation plan for the building.

Keywords: British colonial architecture, bio-alteration, bio-degradation, bio-deterioration, domestic gothic architectural form

Procedia PDF Downloads 149
2498 Comparative Analysis of the Computer Methods' Usage for Calculation of Hydrocarbon Reserves in the Baltic Sea

Authors: Pavel Shcherban, Vlad Golovanov

Abstract:

Nowadays, the depletion of hydrocarbon deposits on the land of the Kaliningrad region leads to active geological exploration and development of oil and natural gas reserves in the southeastern part of the Baltic Sea. LLC 'Lukoil-Kaliningradmorneft' implements a comprehensive program for the development of the region's shelf in 2014-2023. Due to heterogeneity of reservoir rocks in various open fields, as well as with ambiguous conclusions on the contours of deposits, additional geological prospecting and refinement of the recoverable oil reserves are carried out. The key element is use of an effective technique of computer stock modeling at the first stage of processing of the received data. The following step uses information for the cluster analysis, which makes it possible to optimize the field development approaches. The article analyzes the effectiveness of various methods for reserves' calculation and computer modelling methods of the offshore hydrocarbon fields. Cluster analysis allows to measure influence of the obtained data on the development of a technical and economic model for mining deposits. The relationship between the accuracy of the calculation of recoverable reserves and the need of modernization of existing mining infrastructure, as well as the optimization of the scheme of opening and development of oil deposits, is observed.

Keywords: cluster analysis, computer modelling of deposits, correction of the feasibility study, offshore hydrocarbon fields

Procedia PDF Downloads 164
2497 Spatial Organization of Organelles in Living Cells: Insights from Mathematical Modelling

Authors: Congping Lin

Abstract:

Intracellular transport in fungi has a number of important roles in, e.g., filamentous fungal growth and cellular metabolism. Two basic mechanisms for intracellular transport are motor-driven trafficking along microtubules (MTs) and diffusion. Mathematical modelling has been actively developed to understand such intracellular transport and provide unique insight into cellular complexity. Based on live-cell imaging data in Ustilago hyphal cells, probabilistic models have been developed to study mechanism underlying spatial organization of molecular motors and organelles. In particular, anther mechanism - stochastic motility of dynein motors along MTs has been found to contribute to half of its accumulation at hyphal tip in order to support early endosome (EE) recycling. The EE trafficking not only facilitates the directed motion of peroxisomes but also enhances their diffusive motion. Considering the importance of spatial organization of early endosomes in supporting peroxisome movement, computational and experimental approaches have been combined to a whole-cell level. Results from this interdisciplinary study promise insights into requirements for other membrane trafficking systems (e.g., in neurons), but also may inform future 'synthetic biology' studies.

Keywords: intracellular transport, stochastic process, molecular motors, spatial organization

Procedia PDF Downloads 132
2496 Nanotechnology in Conservation of Artworks: TiO2-Based Nanocoatings for the Protection and Preservation of Stone Monuments

Authors: Sayed M. Ahmed, Sawsan S. Darwish, Nagib A. Elmarzugi, Mohammad A. Al-Dosari, Mahmoud A. Adam, Nadia A. Al-Mouallimi

Abstract:

The preservation of cultural heritage is a worldwide problem. Stone monuments represent an important part of this heritage, but due to their prevalently outdoor location, they are generally subject to a complex series of weathering and decay processes, in addition to physical and chemical factors, also biological agents usually play an important role in deterioration phenomena. The aim of this paper is to experimentally verify applicability and feasibility of titanium dioxide (TiO2) nanoparticles for the preservation of historical (architectural, monumental, archaeological) stone surfaces which enables to reduce the deterioration behaviors mentioned above. TiO2 nanoparticles dispersed in an aqueous colloidal suspension were applied directly on travertine (Marble and limestone often used in historical and monumental buildings) by spray-coating in order to obtain a nanometric film on stone samples. SEM, coupled with EDX microanalysis. (SEM-EDX), in order to obtain information oncoating homogeneity, surface morphology before and after aging and penetration depth of the TiO2 within the samples. Activity of the coated surface was evaluated with UV accelerated aging test. Capillary water absorption, thermal aging and colorimetric measurements have been performed on on coated and uncoated samples to evaluate their properties and estimate change of appearance with colour variation. Results show Tio2 nanoparticles good candidate for coating applications on calcareous stone, good water-repellence was observed on the samples after treatment; analyses were carried out on both untreated and freshly treated samples as well as after artificial aging. Colour change showed negligible variations on the coated or uncoated stone as well as after aging. Results showed that treated stone surfaces seem to be not affected after 1000 hours of exposure to UV radiation, no alteration of the original features.

Keywords: architectural and archaeological heritage, calcareous stone, photocatalysis TiO2, self-cleaning, thermal aging

Procedia PDF Downloads 273
2495 Application of Human Biomonitoring and Physiologically-Based Pharmacokinetic Modelling to Quantify Exposure to Selected Toxic Elements in Soil

Authors: Eric Dede, Marcus Tindall, John W. Cherrie, Steve Hankin, Christopher Collins

Abstract:

Current exposure models used in contaminated land risk assessment are highly conservative. Use of these models may lead to over-estimation of actual exposures, possibly resulting in negative financial implications due to un-necessary remediation. Thus, we are carrying out a study seeking to improve our understanding of human exposure to selected toxic elements in soil: arsenic (As), cadmium (Cd), chromium (Cr), nickel (Ni), and lead (Pb) resulting from allotment land-use. The study employs biomonitoring and physiologically-based pharmacokinetic (PBPK) modelling to quantify human exposure to these elements. We recruited 37 allotment users (adults > 18 years old) in Scotland, UK, to participate in the study. Concentrations of the elements (and their bioaccessibility) were measured in allotment samples (soil and allotment produce). Amount of produce consumed by the participants and participants’ biological samples (urine and blood) were collected for up to 12 consecutive months. Ethical approval was granted by the University of Reading Research Ethics Committee. PBPK models (coded in MATLAB) were used to estimate the distribution and accumulation of the elements in key body compartments, thus indicating the internal body burden. Simulating low element intake (based on estimated ‘doses’ from produce consumption records), predictive models suggested that detection of these elements in urine and blood was possible within a given period of time following exposure. This information was used in planning biomonitoring, and is currently being used in the interpretation of test results from biological samples. Evaluation of the models is being carried out using biomonitoring data, by comparing model predicted concentrations and measured biomarker concentrations. The PBPK models will be used to generate bioavailability values, which could be incorporated in contaminated land exposure models. Thus, the findings from this study will promote a more sustainable approach to contaminated land management.

Keywords: biomonitoring, exposure, PBPK modelling, toxic elements

Procedia PDF Downloads 319
2494 Application of Data Driven Based Models as Early Warning Tools of High Stream Flow Events and Floods

Authors: Mohammed Seyam, Faridah Othman, Ahmed El-Shafie

Abstract:

The early warning of high stream flow events (HSF) and floods is an important aspect in the management of surface water and rivers systems. This process can be performed using either process-based models or data driven-based models such as artificial intelligence (AI) techniques. The main goal of this study is to develop efficient AI-based model for predicting the real-time hourly stream flow (Q) and apply it as early warning tool of HSF and floods in the downstream area of the Selangor River basin, taken here as a paradigm of humid tropical rivers in Southeast Asia. The performance of AI-based models has been improved through the integration of the lag time (Lt) estimation in the modelling process. A total of 8753 patterns of Q, water level, and rainfall hourly records representing one-year period (2011) were utilized in the modelling process. Six hydrological scenarios have been arranged through hypothetical cases of input variables to investigate how the changes in RF intensity in upstream stations can lead formation of floods. The initial SF was changed for each scenario in order to include wide range of hydrological situations in this study. The performance evaluation of the developed AI-based model shows that high correlation coefficient (R) between the observed and predicted Q is achieved. The AI-based model has been successfully employed in early warning throughout the advance detection of the hydrological conditions that could lead to formations of floods and HSF, where represented by three levels of severity (i.e., alert, warning, and danger). Based on the results of the scenarios, reaching the danger level in the downstream area required high RF intensity in at least two upstream areas. According to results of applications, it can be concluded that AI-based models are beneficial tools to the local authorities for flood control and awareness.

Keywords: floods, stream flow, hydrological modelling, hydrology, artificial intelligence

Procedia PDF Downloads 247
2493 Optimisation of Structural Design by Integrating Genetic Algorithms in the Building Information Modelling Environment

Authors: Tofigh Hamidavi, Sepehr Abrishami, Pasquale Ponterosso, David Begg

Abstract:

Structural design and analysis is an important and time-consuming process, particularly at the conceptual design stage. Decisions made at this stage can have an enormous effect on the entire project, as it becomes ever costlier and more difficult to alter the choices made early on in the construction process. Hence, optimisation of the early stages of structural design can provide important efficiencies in terms of cost and time. This paper suggests a structural design optimisation (SDO) framework in which Genetic Algorithms (GAs) may be used to semi-automate the production and optimisation of early structural design alternatives. This framework has the potential to leverage conceptual structural design innovation in Architecture, Engineering and Construction (AEC) projects. Moreover, this framework improves the collaboration between the architectural stage and the structural stage. It will be shown that this SDO framework can make this achievable by generating the structural model based on the extracted data from the architectural model. At the moment, the proposed SDO framework is in the process of validation, involving the distribution of an online questionnaire among structural engineers in the UK.

Keywords: building information, modelling, BIM, genetic algorithm, GA, architecture-engineering-construction, AEC, optimisation, structure, design, population, generation, selection, mutation, crossover, offspring

Procedia PDF Downloads 239
2492 Geospatial Analysis of Hydrological Response to Forest Fires in Small Mediterranean Catchments

Authors: Bojana Horvat, Barbara Karleusa, Goran Volf, Nevenka Ozanic, Ivica Kisic

Abstract:

Forest fire is a major threat in many regions in Croatia, especially in coastal areas. Although they are often caused by natural processes, the most common cause is the human factor, intentional or unintentional. Forest fires drastically transform landscapes and influence natural processes. The main goal of the presented research is to analyse and quantify the impact of the forest fire on hydrological processes and propose the model that best describes changes in hydrological patterns in the analysed catchments. Keeping in mind the spatial component of the processes, geospatial analysis is performed to gain better insight into the spatial variability of the hydrological response to disastrous events. In that respect, two catchments that experienced severe forest fire were delineated, and various hydrological and meteorological data were collected both attribute and spatial. The major drawback is certainly the lack of hydrological data, common in small torrential karstic streams; hence modelling results should be validated with the data collected in the catchment that has similar characteristics and established hydrological monitoring. The event chosen for the modelling is the forest fire that occurred in July 2019 and burned nearly 10% of the analysed area. Surface (land use/land cover) conditions before and after the event were derived from the two Sentinel-2 images. The mapping of the burnt area is based on a comparison of the Normalized Burn Index (NBR) computed from both images. To estimate and compare hydrological behaviour before and after the event, curve number (CN) values are assigned to the land use/land cover classes derived from the satellite images. Hydrological modelling resulted in surface runoff generation and hence prediction of hydrological responses in the catchments to a forest fire event. The research was supported by the Croatian Science Foundation through the project 'Influence of Open Fires on Water and Soil Quality' (IP-2018-01-1645).

Keywords: Croatia, forest fire, geospatial analysis, hydrological response

Procedia PDF Downloads 135
2491 Simulation of Scaled Model of Tall Multistory Structure: Raft Foundation for Experimental and Numerical Dynamic Studies

Authors: Omar Qaftan

Abstract:

Earthquakes can cause tremendous loss of human life and can result in severe damage to a several of civil engineering structures especially the tall buildings. The response of a multistory structure subjected to earthquake loading is a complex task, and it requires to be studied by physical and numerical modelling. For many circumstances, the scale models on shaking table may be a more economical option than the similar full-scale tests. A shaking table apparatus is a powerful tool that offers a possibility of understanding the actual behaviour of structural systems under earthquake loading. It is required to use a set of scaling relations to predict the behaviour of the full-scale structure. Selecting the scale factors is the most important steps in the simulation of the prototype into the scaled model. In this paper, the principles of scaling modelling procedure are explained in details, and the simulation of scaled multi-storey concrete structure for dynamic studies is investigated. A procedure for a complete dynamic simulation analysis is investigated experimentally and numerically with a scale factor of 1/50. The frequency domain accounting and lateral displacement for both numerical and experimental scaled models are determined. The procedure allows accounting for the actual dynamic behave of actual size porotype structure and scaled model. The procedure is adapted to determine the effects of the tall multi-storey structure on a raft foundation. Four generated accelerograms were used as inputs for the time history motions which are in complying with EC8. The output results of experimental works expressed regarding displacements and accelerations are compared with those obtained from a conventional fixed-base numerical model. Four-time history was applied in both experimental and numerical models, and they concluded that the experimental has an acceptable output accuracy in compare with the numerical model output. Therefore this modelling methodology is valid and qualified for different shaking table experiments tests.

Keywords: structure, raft, soil, interaction

Procedia PDF Downloads 135