Search results for: accuracy improvement
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7874

Search results for: accuracy improvement

7244 Uncertainty of the Brazilian Earth System Model for Solar Radiation

Authors: Elison Eduardo Jardim Bierhals, Claudineia Brazil, Deivid Pires, Rafael Haag, Elton Gimenez Rossini

Abstract:

This study evaluated the uncertainties involved in the solar radiation projections generated by the Brazilian Earth System Model (BESM) of the Weather and Climate Prediction Center (CPTEC) belonging to Coupled Model Intercomparison Phase 5 (CMIP5), with the aim of identifying efficiency in the projections for solar radiation of said model and in this way establish the viability of its use. Two different scenarios elaborated by Intergovernmental Panel on Climate Change (IPCC) were evaluated: RCP 4.5 (with more optimistic contour conditions) and 8.5 (with more pessimistic initial conditions). The method used to verify the accuracy of the present model was the Nash coefficient and the Statistical bias, as it better represents these atmospheric patterns. The BESM showed a tendency to overestimate the data ​​of solar radiation projections in most regions of the state of Rio Grande do Sul and through the validation methods adopted by this study, BESM did not present a satisfactory accuracy.

Keywords: climate changes, projections, solar radiation, uncertainty

Procedia PDF Downloads 252
7243 Mobile Platform’s Attitude Determination Based on Smoothed GPS Code Data and Carrier-Phase Measurements

Authors: Mohamed Ramdani, Hassen Abdellaoui, Abdenour Boudrassen

Abstract:

Mobile platform’s attitude estimation approaches mainly based on combined positioning techniques and developed algorithms; which aim to reach a fast and accurate solution. In this work, we describe the design and the implementation of an attitude determination (AD) process, using only measurements from GPS sensors. The major issue is based on smoothed GPS code data using Hatch filter and raw carrier-phase measurements integrated into attitude algorithm based on vectors measurement using least squares (LSQ) estimation method. GPS dataset from a static experiment is used to investigate the effectiveness of the presented approach and consequently to check the accuracy of the attitude estimation algorithm. Attitude results from GPS multi-antenna over short baselines are introduced and analyzed. The 3D accuracy of estimated attitude parameters using smoothed measurements is over 0.27°.

Keywords: attitude determination, GPS code data smoothing, hatch filter, carrier-phase measurements, least-squares attitude estimation

Procedia PDF Downloads 155
7242 Utilizing Temporal and Frequency Features in Fault Detection of Electric Motor Bearings with Advanced Methods

Authors: Mohammad Arabi

Abstract:

The development of advanced technologies in the field of signal processing and vibration analysis has enabled more accurate analysis and fault detection in electrical systems. This research investigates the application of temporal and frequency features in detecting faults in electric motor bearings, aiming to enhance fault detection accuracy and prevent unexpected failures. The use of methods such as deep learning algorithms and neural networks in this process can yield better results. The main objective of this research is to evaluate the efficiency and accuracy of methods based on temporal and frequency features in identifying faults in electric motor bearings to prevent sudden breakdowns and operational issues. Additionally, the feasibility of using techniques such as machine learning and optimization algorithms to improve the fault detection process is also considered. This research employed an experimental method and random sampling. Vibration signals were collected from electric motors under normal and faulty conditions. After standardizing the data, temporal and frequency features were extracted. These features were then analyzed using statistical methods such as analysis of variance (ANOVA) and t-tests, as well as machine learning algorithms like artificial neural networks and support vector machines (SVM). The results showed that using temporal and frequency features significantly improves the accuracy of fault detection in electric motor bearings. ANOVA indicated significant differences between normal and faulty signals. Additionally, t-tests confirmed statistically significant differences between the features extracted from normal and faulty signals. Machine learning algorithms such as neural networks and SVM also significantly increased detection accuracy, demonstrating high effectiveness in timely and accurate fault detection. This study demonstrates that using temporal and frequency features combined with machine learning algorithms can serve as an effective tool for detecting faults in electric motor bearings. This approach not only enhances fault detection accuracy but also simplifies and streamlines the detection process. However, challenges such as data standardization and the cost of implementing advanced monitoring systems must also be considered. Utilizing temporal and frequency features in fault detection of electric motor bearings, along with advanced machine learning methods, offers an effective solution for preventing failures and ensuring the operational health of electric motors. Given the promising results of this research, it is recommended that this technology be more widely adopted in industrial maintenance processes.

Keywords: electric motor, fault detection, frequency features, temporal features

Procedia PDF Downloads 52
7241 Enhancing Predictive Accuracy in Pharmaceutical Sales through an Ensemble Kernel Gaussian Process Regression Approach

Authors: Shahin Mirshekari, Mohammadreza Moradi, Hossein Jafari, Mehdi Jafari, Mohammad Ensaf

Abstract:

This research employs Gaussian Process Regression (GPR) with an ensemble kernel, integrating Exponential Squared, Revised Matern, and Rational Quadratic kernels to analyze pharmaceutical sales data. Bayesian optimization was used to identify optimal kernel weights: 0.76 for Exponential Squared, 0.21 for Revised Matern, and 0.13 for Rational Quadratic. The ensemble kernel demonstrated superior performance in predictive accuracy, achieving an R² score near 1.0, and significantly lower values in MSE, MAE, and RMSE. These findings highlight the efficacy of ensemble kernels in GPR for predictive analytics in complex pharmaceutical sales datasets.

Keywords: Gaussian process regression, ensemble kernels, bayesian optimization, pharmaceutical sales analysis, time series forecasting, data analysis

Procedia PDF Downloads 71
7240 A Survey of Feature Selection and Feature Extraction Techniques in Machine Learning

Authors: Samina Khalid, Shamila Nasreen

Abstract:

Dimensionality reduction as a preprocessing step to machine learning is effective in removing irrelevant and redundant data, increasing learning accuracy, and improving result comprehensibility. However, the recent increase of dimensionality of data poses a severe challenge to many existing feature selection and feature extraction methods with respect to efficiency and effectiveness. In the field of machine learning and pattern recognition, dimensionality reduction is important area, where many approaches have been proposed. In this paper, some widely used feature selection and feature extraction techniques have analyzed with the purpose of how effectively these techniques can be used to achieve high performance of learning algorithms that ultimately improves predictive accuracy of classifier. An endeavor to analyze dimensionality reduction techniques briefly with the purpose to investigate strengths and weaknesses of some widely used dimensionality reduction methods is presented.

Keywords: age related macular degeneration, feature selection feature subset selection feature extraction/transformation, FSA’s, relief, correlation based method, PCA, ICA

Procedia PDF Downloads 497
7239 Using the Smith-Waterman Algorithm to Extract Features in the Classification of Obesity Status

Authors: Rosa Figueroa, Christopher Flores

Abstract:

Text categorization is the problem of assigning a new document to a set of predetermined categories, on the basis of a training set of free-text data that contains documents whose category membership is known. To train a classification model, it is necessary to extract characteristics in the form of tokens that facilitate the learning and classification process. In text categorization, the feature extraction process involves the use of word sequences also known as N-grams. In general, it is expected that documents belonging to the same category share similar features. The Smith-Waterman (SW) algorithm is a dynamic programming algorithm that performs a local sequence alignment in order to determine similar regions between two strings or protein sequences. This work explores the use of SW algorithm as an alternative to feature extraction in text categorization. The dataset used for this purpose, contains 2,610 annotated documents with the classes Obese/Non-Obese. This dataset was represented in a matrix form using the Bag of Word approach. The score selected to represent the occurrence of the tokens in each document was the term frequency-inverse document frequency (TF-IDF). In order to extract features for classification, four experiments were conducted: the first experiment used SW to extract features, the second one used unigrams (single word), the third one used bigrams (two word sequence) and the last experiment used a combination of unigrams and bigrams to extract features for classification. To test the effectiveness of the extracted feature set for the four experiments, a Support Vector Machine (SVM) classifier was tuned using 20% of the dataset. The remaining 80% of the dataset together with 5-Fold Cross Validation were used to evaluate and compare the performance of the four experiments of feature extraction. Results from the tuning process suggest that SW performs better than the N-gram based feature extraction. These results were confirmed by using the remaining 80% of the dataset, where SW performed the best (accuracy = 97.10%, weighted average F-measure = 97.07%). The second best was obtained by the combination of unigrams-bigrams (accuracy = 96.04, weighted average F-measure = 95.97) closely followed by the bigrams (accuracy = 94.56%, weighted average F-measure = 94.46%) and finally unigrams (accuracy = 92.96%, weighted average F-measure = 92.90%).

Keywords: comorbidities, machine learning, obesity, Smith-Waterman algorithm

Procedia PDF Downloads 298
7238 Humans Trust Building in Robots with the Help of Explanations

Authors: Misbah Javaid, Vladimir Estivill-Castro, Rene Hexel

Abstract:

The field of robotics is advancing rapidly to the point where robots have become an integral part of the modern society. These robots collaborate and contribute productively with humans and compensate some shortcomings from human abilities and complement them with their skills. Effective teamwork of humans and robots demands to investigate the critical issue of trust. The field of human-computer interaction (HCI) has already examined trust humans place in technical systems mostly on issues like reliability and accuracy of performance. Early work in the area of expert systems suggested that automatic generation of explanations improved trust and acceptability of these systems. In this work, we augmented a robot with the user-invoked explanation generation proficiency. To measure explanations effect on human’s level of trust, we collected subjective survey measures and behavioral data in a human-robot team task into an interactive, adversarial and partial information environment. The results showed that with the explanation capability humans not only understand and recognize robot as an expert team partner. But, it was also observed that human's learning and human-robot team performance also significantly improved because of the meaningful interaction with the robot in the human-robot team. Moreover, by observing distinctive outcomes, we expect our research outcomes will also provide insights into further improvement of human-robot trustworthy relationships.

Keywords: explanation interface, adversaries, partial observability, trust building

Procedia PDF Downloads 201
7237 Small Target Recognition Based on Trajectory Information

Authors: Saad Alkentar, Abdulkareem Assalem

Abstract:

Recognizing small targets has always posed a significant challenge in image analysis. Over long distances, the image signal-to-noise ratio tends to be low, limiting the amount of useful information available to detection systems. Consequently, visual target recognition becomes an intricate task to tackle. In this study, we introduce a Track Before Detect (TBD) approach that leverages target trajectory information (coordinates) to effectively distinguish between noise and potential targets. By reframing the problem as a multivariate time series classification, we have achieved remarkable results. Specifically, our TBD method achieves an impressive 97% accuracy in separating target signals from noise within a mere half-second time span (consisting of 10 data points). Furthermore, when classifying the identified targets into our predefined categories—airplane, drone, and bird—we achieve an outstanding classification accuracy of 96% over a more extended period of 1.5 seconds (comprising 30 data points).

Keywords: small targets, drones, trajectory information, TBD, multivariate time series

Procedia PDF Downloads 48
7236 The Effects of Big 6+6 Skill Training on Daily Living Skills for an Adolescent with Intellectual Disability

Authors: Luca Vascelli, Silvia Iacomini, Giada Gueli, Francesca Cavallini, Carlo Cavallini, Federica Berardo

Abstract:

The study was conducted to evaluate the effect of training on Big 6 + 6 motor skills to promote daily living skills. Precision teaching (PT) suggests that improved speed of the component behaviors can lead to better performance of composite skills. This study assessed the effects of the repeated timed practice of component motor skills on speed and accuracy of composite skills related to daily living skills. An 18 years old adolescent with intellectual disability participated. A pre post probe single-subject design was used. The results suggest that the participant was able to perform the component skills at his individual aims (endurance was assessed). The speed and accuracy of composite skills were increased; stability and retention were also measured for the composite skill after the training.

Keywords: big 6+6, daily living skills, intellectual disability, precision teaching

Procedia PDF Downloads 155
7235 Estimation of the Road Traffic Emissions and Dispersion in the Developing Countries Conditions

Authors: Hicham Gourgue, Ahmed Aharoune, Ahmed Ihlal

Abstract:

We present in this work our model of road traffic emissions (line sources) and dispersion of these emissions, named DISPOLSPEM (Dispersion of Poly Sources and Pollutants Emission Model). In its emission part, this model was designed to keep the consistent bottom-up and top-down approaches. It also allows to generate emission inventories from reduced input parameters being adapted to existing conditions in Morocco and in the other developing countries. While several simplifications are made, all the performance of the model results are kept. A further important advantage of the model is that it allows the uncertainty calculation and emission rate uncertainty according to each of the input parameters. In the dispersion part of the model, an improved line source model has been developed, implemented and tested against a reference solution. It provides improvement in accuracy over previous formulas of line source Gaussian plume model, without being too demanding in terms of computational resources. In the case study presented here, the biggest errors were associated with the ends of line source sections; these errors will be canceled by adjacent sections of line sources during the simulation of a road network. In cases where the wind is parallel to the source line, the use of the combination discretized source and analytical line source formulas minimizes remarkably the error. Because this combination is applied only for a small number of wind directions, it should not excessively increase the calculation time.

Keywords: air pollution, dispersion, emissions, line sources, road traffic, urban transport

Procedia PDF Downloads 442
7234 Highly Linear and Low Noise AMR Sensor Using Closed Loop and Signal-Chopped Architecture

Authors: N. Hadjigeorgiou, A. C. Tsalikidou, E. Hristoforou, P. P. Sotiriadis

Abstract:

During the last few decades, the continuously increasing demand for accurate and reliable magnetic measurements has paved the way for the development of different types of magnetic sensing systems as well as different measurement techniques. Sensor sensitivity and linearity, signal-to-noise ratio, measurement range, cross-talk between sensors in multi-sensor applications are only some of the aspects that have been examined in the past. In this paper, a fully analog closed loop system in order to optimize the performance of AMR sensors has been developed. The operation of the proposed system has been tested using a Helmholtz coil calibration setup in order to control both the amplitude and direction of magnetic field in the vicinity of the AMR sensor. Experimental testing indicated that improved linearity of sensor response, as well as low noise levels can be achieved, when the system is employed.

Keywords: AMR sensor, closed loop, memory effects, chopper, linearity improvement, sensitivity improvement, magnetic noise, electronic noise

Procedia PDF Downloads 362
7233 Potentials of Ecotourism to Nature Conservation and Improvement of Livelihood of People around Ayikunnugba Waterfalls, Oke-Ila Orangun, Nigeria

Authors: Funmilola Ajani, I. A. Ayodele, O.A. Filade

Abstract:

Tourism has direct, indirect and induced impacts on economic development and the industry is one of the most crucial tradable sectors in the world. The study was therefore carried out to assess the potentials of ecotourism to nature conservation and its contributions to the improvement of the livelihood of Oke- Ila Orangun community. One hundred and fifty residents were chosen by stratified random sampling as respondents. Respondents awareness of ecotourism was assessed using an 8-point scale while respondents acceptance of ecotourism was assessed using a 14-point scale. Contributions to improvement of livelihood of residents and perceived constraints identified by residents to the development of the water fall and socio-economic variables among others were also obtained. Also, in-depth interview was conducted with the king of Ayikunnugba. The data was analyzed using descriptive statistics such as frequency count, mean and percentages. Correlation analysis was used to determine whether or not a relationship exists between two variables at 0.05 level of significance. Perception of respondents based on the awareness of ecotourism and contributions to livelihood development was high (78.3%). A significant relationship exists between acceptance of ecotourism and its contributions to peoples’ livelihood. Also, relationship between constraints encountered by respondents and its contributions to peoples livelihood is highly significant(r =0.546; P =0.00). Majority (71.3%) of the respondents believed that the development of the area will not lead to environmental pollution. Public- Private- Partnership (PPP) is therefore recommended so as to enable the recreation site to meet international standard in terms of development and management.

Keywords: Ayikunnugba water fall, ecotourism constraints, nature conservation, awareness

Procedia PDF Downloads 160
7232 Augmentation of Conventional Medicine for Post-concussion Syndrome with Cognitive Behavioral Therapy Accelerates Symptomatic Relief in Affected Individuals

Authors: Waqas Mehdi, Muhammad Umar Hassan, Khadeeja Mustafa

Abstract:

Objective: Post-concussion syndrome (PCS) is a medical term used to point out the complicated combination of physical, emotional, cognitive and behavioral signs and symptoms associated with Mild Traumatic Brain Injury(mTBI). This study was conducted to assess the improvement or debilitating effect of behavioral therapy in addition to the conventional treatment and to document these results for increasing the efficiency of treatment provided to such cases. Method: This was primarily an interventional prospective cohort study which was conducted in the Department of Neurosurgery, Mayo Hospital Lahore. The sample size was 200 patients who were randomly distributed into two groups. The interventional group with Cognitive behavioral therapy was added in addition to the conventional treatment regimen and the Control group receiving only conventional treatment. Results were noted initially as well as after two weeks of the follow-up period. Data were subsequently analyzed by Statistical Package for Social Sciences (SPSS) software and associations worked out. Result and conclusion: Among the patients that were given therapy sessions along with conventional medicine, there was a significant improvement in the symptoms and their overall quality of life. It is also important to notice that the time period taken for these effects to wane is cut down by psychiatric solutions too. So we can conclude that CBT sessions not only speed up recovery in patients with post-concussion syndrome they also aid in the efficiency improvement in functional capability and quality of life.

Keywords: neurosurgery, CBT, PCS, mTBI

Procedia PDF Downloads 164
7231 Using Open Source Data and GIS Techniques to Overcome Data Deficiency and Accuracy Issues in the Construction and Validation of Transportation Network: Case of Kinshasa City

Authors: Christian Kapuku, Seung-Young Kho

Abstract:

An accurate representation of the transportation system serving the region is one of the important aspects of transportation modeling. Such representation often requires developing an abstract model of the system elements, which also requires important amount of data, surveys and time. However, in some cases such as in developing countries, data deficiencies, time and budget constraints do not always allow such accurate representation, leaving opportunities to assumptions that may negatively affect the quality of the analysis. With the emergence of Internet open source data especially in the mapping technologies as well as the advances in Geography Information System, opportunities to tackle these issues have raised. Therefore, the objective of this paper is to demonstrate such application through a practical case of the development of the transportation network for the city of Kinshasa. The GIS geo-referencing was used to construct the digitized map of Transportation Analysis Zones using available scanned images. Centroids were then dynamically placed at the center of activities using an activities density map. Next, the road network with its characteristics was built using OpenStreet data and other official road inventory data by intersecting their layers and cleaning up unnecessary links such as residential streets. The accuracy of the final network was then checked, comparing it with satellite images from Google and Bing. For the validation, the final network was exported into Emme3 to check for potential network coding issues. Results show a high accuracy between the built network and satellite images, which can mostly be attributed to the use of open source data.

Keywords: geographic information system (GIS), network construction, transportation database, open source data

Procedia PDF Downloads 168
7230 Improvement of Ride Comfort of Turning Electric Vehicle Using Optimal Speed Control

Authors: Yingyi Zhou, Tohru Kawabe

Abstract:

With the spread of EVs (electric Vehicles), the ride comfort has been gaining a lot of attention. The influence of the lateral acceleration is important for the improvement of ride comfort of EVs as well as the longitudinal acceleration, especially upon turning of the vehicle. Therefore, this paper proposes a practical optimal speed control method to greatly improve the ride comfort in the vehicle turning situation. For consturcting this method, effective criteria that can appropriately evaluate deterioration of ride comfort is derived. The method can reduce the influence of both the longitudinal and the lateral speed changes for providing a confortable ride. From several simulation results, we can see the fact that the method can prevent aggravation of the ride comfort by suppressing the influence of longitudinal speed change in the turning situation. Hence, the effectiveness of the method is recognized.

Keywords: electric vehicle, speed control, ride comfort, optimal control theory, driving support system

Procedia PDF Downloads 215
7229 Improvement of Sleep Quality Through Manual and Non-Pharmacological Treatment

Authors: Andreas Aceranti, Sergio Romanò, Simonetta Vernocchi, Silvia Arnaboldi, Emilio Mazza

Abstract:

As a result of the Sars-Cov2 pandemic, the incidence of thymism disorders has significantly increased and, often, patients are reluctant to want to take drugs aimed at stabilizing mood. In order to provide an alternative approach to drug therapies, we have prepared a study in order to evaluate the possibility of improving the quality of life of these subjects through osteopathic treatment. Patients were divided into visceral and fascial manual treatment with the aim of increasing serotonin levels and stimulating the vagus nerve through validated techniques. The results were evaluated through the administration of targeted questionnaires in order to assess quality of life, mood, sleep and intestinal functioning. At a first endpoint we found, in patients undergoing fascial treatment, an increase in quality of life and sleep: in fact, they report a decrease in the number of nocturnal awakenings; a reduction in falling asleep times and greater rest upon waking. In contrast, patients undergoing visceral treatment, as well as those included in the control group, did not show significant improvements. Patients in the fascial group have, in fact, reported an improvement in thymism and subjective quality of life with a generalized improvement in function. Although the study is still ongoing, based on the results of the first endpoint we can hypothesize that fascial stimulation of the vagus nerve with manual and osteopathic techniques may be a valid alternative to pharmacological treatments in mood and sleep disorders.

Keywords: ostheopathy, insomnia, noctural awakening, thymism

Procedia PDF Downloads 90
7228 The Improvement in Clinical Outcomes with the Histological Presence of Nidus Following Radiofrequency Ablation (RFA) for Osteoid Osteoma (OO)

Authors: Amirul Adlan, Motaz AlAqeel, Scott Evans, Vaiyapuri sumathi, Mark Davies, Rajesh Botchu

Abstract:

Background & Objectives: Osteoid osteoma (OO) is a benign tumor of the bone commonly found in childhood and adolescence, causing bone pain, especially during the night. CT-guided radiofrequency ablation (RFA) is currently the mainstay treatment for OO. There is currently no literature reporting the outcomes of OO following RFA based on the histological presence of a nidus seen on a biopsy taken at the time of RFA. The primary aim of this study was to compare the clinical outcomes of OO between the group of patients with the presence of nidus on biopsy samples from RFA with those without nidus. Secondly, we aimed to examine other factors that may affect the outcomes of OO, reflecting our experience as a tertiary orthopedic oncology center. Methods: We retrospectively reviewed 88 consecutive patients diagnosed with osteoid osteoma treated with RFA between November 2005 and March 2015, consisting of 63 males (72%) and 25 females (28%). Sixty-six patients (75%) had nidus present in their biopsy samples. Patients’ mean age was 17.6 years (4-53). The median duration of follow-up was 12.5 months (6-20.8). Lesions were located in the appendicular skeleton in seventy-nine patients (90%), while nine patients (10%) had an OO in the axial skeleton. Outcomes assessed were based on patients’ pain alleviation (partial, complete, or no pain improvement) and the need for further interventions. Results: Pain improvement in the patient group with nidus in the histology sample was significantly better than in the group without nidus (OR 7.4, CI 1.35-41.4, p=0.021). The patient group with nidus on biopsy demonstrated less likelihood of having a repeat procedure compared to the group without nidus(OR 0.092, CI 0.016-0.542, p=0.008). Our study showed significantly better outcomes in pain improvement in appendicular lesions compared to the axially located lesions (p = 0.005). Patients with spinal lesions tend to have relatively poor pain relief than those with appendicular or pelvic lesions (p=0.007). Conclusions: Patients with nidus on histology had better pain alleviation compared to patients without nidus. The histological presence of nidus significantly reduces the chance of repeat interventions. The pain alleviation of osteoid osteoma following RFA is better in patients with appendicular lesions than spinal or axially located lesions.

Keywords: osteoid osteoma, benign tumour, radiofrequency ablation, oncology

Procedia PDF Downloads 155
7227 Human Errors in IT Services, HFACS Model in Root Cause Categorization

Authors: Kari Saarelainen, Marko Jantti

Abstract:

IT service trending of root causes of service incidents and problems is an important part of proactive problem management and service improvement. Human error related root causes are an important root cause category also in IT service management, although it’s proportion among root causes is smaller than in the other industries. The research problem in this study is: How root causes of incidents related to human errors should be categorized in an ITSM organization to effectively support service improvement. Categorization based on IT service management processes and based on Human Factors Analysis and Classification System (HFACS) taxonomy was studied in a case study. HFACS is widely used in human error root cause categorization across many industries. Combining these two categorization models in a two dimensional matrix was found effective, yet impractical for daily work.

Keywords: IT service management, ITIL, incident, problem, HFACS, swiss cheese model

Procedia PDF Downloads 490
7226 Forecasting Model to Predict Dengue Incidence in Malaysia

Authors: W. H. Wan Zakiyatussariroh, A. A. Nasuhar, W. Y. Wan Fairos, Z. A. Nazatul Shahreen

Abstract:

Forecasting dengue incidence in a population can provide useful information to facilitate the planning of the public health intervention. Many studies on dengue cases in Malaysia were conducted but are limited in modeling the outbreak and forecasting incidence. This article attempts to propose the most appropriate time series model to explain the behavior of dengue incidence in Malaysia for the purpose of forecasting future dengue outbreaks. Several seasonal auto-regressive integrated moving average (SARIMA) models were developed to model Malaysia’s number of dengue incidence on weekly data collected from January 2001 to December 2011. SARIMA (2,1,1)(1,1,1)52 model was found to be the most suitable model for Malaysia’s dengue incidence with the least value of Akaike information criteria (AIC) and Bayesian information criteria (BIC) for in-sample fitting. The models further evaluate out-sample forecast accuracy using four different accuracy measures. The results indicate that SARIMA (2,1,1)(1,1,1)52 performed well for both in-sample fitting and out-sample evaluation.

Keywords: time series modeling, Box-Jenkins, SARIMA, forecasting

Procedia PDF Downloads 487
7225 Functional Neurocognitive Imaging (fNCI): A Diagnostic Tool for Assessing Concussion Neuromarker Abnormalities and Treating Post-Concussion Syndrome in Mild Traumatic Brain Injury Patients

Authors: Parker Murray, Marci Johnson, Tyson S. Burnham, Alina K. Fong, Mark D. Allen, Bruce McIff

Abstract:

Purpose: Pathological dysregulation of Neurovascular Coupling (NVC) caused by mild traumatic brain injury (mTBI) is the predominant source of chronic post-concussion syndrome (PCS) symptomology. fNCI has the ability to localize dysregulation in NVC by measuring blood-oxygen-level-dependent (BOLD) signaling during the performance of fMRI-adapted neuropsychological evaluations. With fNCI, 57 brain areas consistently affected by concussion were identified as PCS neural markers, which were validated on large samples of concussion patients and healthy controls. These neuromarkers provide the basis for a computation of PCS severity which is referred to as the Severity Index Score (SIS). The SIS has proven valuable in making pre-treatment decisions, monitoring treatment efficiency, and assessing long-term stability of outcomes. Methods and Materials: After being scanned while performing various cognitive tasks, 476 concussed patients received an SIS score based on the neural dysregulation of the 57 previously identified brain regions. These scans provide an objective measurement of attentional, subcortical, visual processing, language processing, and executive functioning abilities, which were used as biomarkers for post-concussive neural dysregulation. Initial SIS scores were used to develop individualized therapy incorporating cognitive, occupational, and neuromuscular modalities. These scores were also used to establish pre-treatment benchmarks and measure post-treatment improvement. Results: Changes in SIS were calculated in percent change from pre- to post-treatment. Patients showed a mean improvement of 76.5 percent (σ= 23.3), and 75.7 percent of patients showed at least 60 percent improvement. Longitudinal reassessment of 24 of the patients, measured an average of 7.6 months post-treatment, shows that SIS improvement is maintained and improved, with an average of 90.6 percent improvement from their original scan. Conclusions: fNCI provides a reliable measurement of NVC allowing for identification of concussion pathology. Additionally, fNCI derived SIS scores direct tailored therapy to restore NVC, subsequently resolving chronic PCS resulting from mTBI.

Keywords: concussion, functional magnetic resonance imaging (fMRI), neurovascular coupling (NVC), post-concussion syndrome (PCS)

Procedia PDF Downloads 359
7224 Lean Implementation in a Nurse Practitioner Led Pediatric Primary Care Clinic: A Case Study

Authors: Lily Farris, Chantel E. Canessa, Rena Heathcote, Susan Shumay, Suzanna V. McRae, Alissa Collingridge, Minna K. Miller

Abstract:

Objective: To describe how the Lean approach can be applied to improve access, quality and safety of care in an ambulatory pediatric primary care setting. Background: Lean was originally developed by Toyota manufacturing in Japan, and subsequently adapted for use in the healthcare sector. Lean is a systematic approach, focused on identifying and reducing waste within organizational processes, improving patient-centered care and efficiency. Limited literature is available on the implementation of the Lean methodologies in a pediatric ambulatory care setting. Methods: A strategic continuous improvement event or Rapid Process Improvement Workshop (RPIW) was launched with the aim evaluating and structurally supporting clinic workflow, capacity building, sustainability, and ultimately improving access to care and enhancing the patient experience. The Lean process consists of five specific activities: Current state/process assessment (value stream map); development of a future state map (value stream map after waste reduction); identification, quantification and prioritization of the process improvement opportunities; implementation and evaluation of process changes; and audits to sustain the gains. Staff engagement is a critical component of the Lean process. Results: Through the implementation of the RPIW and shifting workload among the administrative team, four hours of wasted time moving between desks and doing work was eliminated from the Administrative Clerks role. To streamline clinic flow, the Nursing Assistants completed patient measurements and vitals for Nurse Practitioners, reducing patient wait times and adding value to the patients visit with the Nurse Practitioners. Additionally, through the Nurse Practitioners engagement in the Lean processes a need was recognized to articulate clinic vision, mission and the alignment of NP role and scope of practice with the agency and Ministry of Health strategic plan. Conclusions: Continuous improvement work in the Pediatric Primary Care NP Clinic has provided a unique opportunity to improve the quality of care delivered and has facilitated further alignment of the daily continuous improvement work with the strategic priorities of the Ministry of Health.

Keywords: ambulatory care, lean, pediatric primary care, system efficiency

Procedia PDF Downloads 301
7223 Land Use/Land Cover Mapping Using Landsat 8 and Sentinel-2 in a Mediterranean Landscape

Authors: Moschos Vogiatzis, K. Perakis

Abstract:

Spatial-explicit and up-to-date land use/land cover information is fundamental for spatial planning, land management, sustainable development, and sound decision-making. In the last decade, many satellite-derived land cover products at different spatial, spectral, and temporal resolutions have been developed, such as the European Copernicus Land Cover product. However, more efficient and detailed information for land use/land cover is required at the regional or local scale. A typical Mediterranean basin with a complex landscape comprised of various forest types, crops, artificial surfaces, and wetlands was selected to test and develop our approach. In this study, we investigate the improvement of Copernicus Land Cover product (CLC2018) using Landsat 8 and Sentinel-2 pixel-based classification based on all available existing geospatial data (Forest Maps, LPIS, Natura2000 habitats, cadastral parcels, etc.). We examined and compared the performance of the Random Forest classifier for land use/land cover mapping. In total, 10 land use/land cover categories were recognized in Landsat 8 and 11 in Sentinel-2A. A comparison of the overall classification accuracies for 2018 shows that Landsat 8 classification accuracy was slightly higher than Sentinel-2A (82,99% vs. 80,30%). We concluded that the main land use/land cover types of CLC2018, even within a heterogeneous area, can be successfully mapped and updated according to CLC nomenclature. Future research should be oriented toward integrating spatiotemporal information from seasonal bands and spectral indexes in the classification process.

Keywords: classification, land use/land cover, mapping, random forest

Procedia PDF Downloads 127
7222 A Ratio-Weighted Decision Tree Algorithm for Imbalance Dataset Classification

Authors: Doyin Afolabi, Phillip Adewole, Oladipupo Sennaike

Abstract:

Most well-known classifiers, including the decision tree algorithm, can make predictions on balanced datasets efficiently. However, the decision tree algorithm tends to be biased towards imbalanced datasets because of the skewness of the distribution of such datasets. To overcome this problem, this study proposes a weighted decision tree algorithm that aims to remove the bias toward the majority class and prevents the reduction of majority observations in imbalance datasets classification. The proposed weighted decision tree algorithm was tested on three imbalanced datasets- cancer dataset, german credit dataset, and banknote dataset. The specificity, sensitivity, and accuracy metrics were used to evaluate the performance of the proposed decision tree algorithm on the datasets. The evaluation results show that for some of the weights of our proposed decision tree, the specificity, sensitivity, and accuracy metrics gave better results compared to that of the ID3 decision tree and decision tree induced with minority entropy for all three datasets.

Keywords: data mining, decision tree, classification, imbalance dataset

Procedia PDF Downloads 139
7221 A Neural Network Classifier for Identifying Duplicate Image Entries in Real-Estate Databases

Authors: Sergey Ermolin, Olga Ermolin

Abstract:

A Deep Convolution Neural Network with Triplet Loss is used to identify duplicate images in real-estate advertisements in the presence of image artifacts such as watermarking, cropping, hue/brightness adjustment, and others. The effects of batch normalization, spatial dropout, and various convergence methodologies on the resulting detection accuracy are discussed. For comparative Return-on-Investment study (per industry request), end-2-end performance is benchmarked on both Nvidia Titan GPUs and Intel’s Xeon CPUs. A new real-estate dataset from San Francisco Bay Area is used for this work. Sufficient duplicate detection accuracy is achieved to supplement other database-grounded methods of duplicate removal. The implemented method is used in a Proof-of-Concept project in the real-estate industry.

Keywords: visual recognition, convolutional neural networks, triplet loss, spatial batch normalization with dropout, duplicate removal, advertisement technologies, performance benchmarking

Procedia PDF Downloads 340
7220 The Relationship between Iranian EFL Learners' Multiple Intelligences and Their Performance on Grammar Tests

Authors: Rose Shayeghi, Pejman Hosseinioun

Abstract:

The Multiple Intelligences theory characterizes human intelligence as a multifaceted entity that exists in all human beings with varying degrees. The most important contribution of this theory to the field of English Language Teaching (ELT) is its role in identifying individual differences and designing more learner-centered programs. The present study aims at investigating the relationship between different elements of multiple intelligence and grammar scores. To this end, 63 female Iranian EFL learner selected from among intermediate students participated in the study. The instruments employed were a Nelson English language test, Michigan Grammar Test, and Teele Inventory for Multiple Intelligences (TIMI). The results of Pearson Product-Moment Correlation revealed a significant positive correlation between grammatical accuracy and linguistic as well as interpersonal intelligence. The results of Stepwise Multiple Regression indicated that linguistic intelligence contributed to the prediction of grammatical accuracy.

Keywords: multiple intelligence, grammar, ELT, EFL, TIMI

Procedia PDF Downloads 494
7219 Face Tracking and Recognition Using Deep Learning Approach

Authors: Degale Desta, Cheng Jian

Abstract:

The most important factor in identifying a person is their face. Even identical twins have their own distinct faces. As a result, identification and face recognition are needed to tell one person from another. A face recognition system is a verification tool used to establish a person's identity using biometrics. Nowadays, face recognition is a common technique used in a variety of applications, including home security systems, criminal identification, and phone unlock systems. This system is more secure because it only requires a facial image instead of other dependencies like a key or card. Face detection and face identification are the two phases that typically make up a human recognition system.The idea behind designing and creating a face recognition system using deep learning with Azure ML Python's OpenCV is explained in this paper. Face recognition is a task that can be accomplished using deep learning, and given the accuracy of this method, it appears to be a suitable approach. To show how accurate the suggested face recognition system is, experimental results are given in 98.46% accuracy using Fast-RCNN Performance of algorithms under different training conditions.

Keywords: deep learning, face recognition, identification, fast-RCNN

Procedia PDF Downloads 140
7218 Comparison of Different Machine Learning Algorithms for Solubility Prediction

Authors: Muhammet Baldan, Emel Timuçin

Abstract:

Molecular solubility prediction plays a crucial role in various fields, such as drug discovery, environmental science, and material science. In this study, we compare the performance of five machine learning algorithms—linear regression, support vector machines (SVM), random forests, gradient boosting machines (GBM), and neural networks—for predicting molecular solubility using the AqSolDB dataset. The dataset consists of 9981 data points with their corresponding solubility values. MACCS keys (166 bits), RDKit properties (20 properties), and structural properties(3) features are extracted for every smile representation in the dataset. A total of 189 features were used for training and testing for every molecule. Each algorithm is trained on a subset of the dataset and evaluated using metrics accuracy scores. Additionally, computational time for training and testing is recorded to assess the efficiency of each algorithm. Our results demonstrate that random forest model outperformed other algorithms in terms of predictive accuracy, achieving an 0.93 accuracy score. Gradient boosting machines and neural networks also exhibit strong performance, closely followed by support vector machines. Linear regression, while simpler in nature, demonstrates competitive performance but with slightly higher errors compared to ensemble methods. Overall, this study provides valuable insights into the performance of machine learning algorithms for molecular solubility prediction, highlighting the importance of algorithm selection in achieving accurate and efficient predictions in practical applications.

Keywords: random forest, machine learning, comparison, feature extraction

Procedia PDF Downloads 42
7217 Assessment on the Improvement of the Quality of Life after One Year of Regular Physical Activity and Treatment in Patients with Postmenopausal Osteoporosis

Authors: Stoyanka Georgieva Vladeva, Elena Kirilova Kirilova, Nikola Kirilov Kirilov

Abstract:

Summary: WHO (World Health Organization) recommends the elder people a certain amount of regular physical activity in order to prevent some of the health issues. Postmenopausal osteoporosis is one of the chronic diseases which requires the maintaining of regular physical activity. The regular activity combined with an adequate medical treatment greatly improves the quality of life of the patient. Objectives: Assessment of the effect of the regular physical activity recommended by WHO on the quality of life in patients with postmenopausal osteoporosis. Material and methods: For the period of one year 68 female patients treated with Denosumab have been monitored. The bone density has been measured with the DEXA method in accordance to the T-score. No patients having any oncologic diseases and secondary osteoporosis have been included in the study. The subjects have been divided into groups by their age. The first group – women aged under 65 years (27 subjects) and the second group – women aged over 65 years (41 subjects). All patients have been advised to maintain regular physical activity included in the recommendations of the WHO in accordance with the age and the disease. The quality of life has been assessed in the beginning and at the end of the one-year period using the SF 36V2 questionnaire. Results: Only 31% of the subjects have engaged into regular increased physical activities for the whole period. Among them are mostly patients of the second group (aged over 65 years, 71%). The women from the both groups who were engaging into regular activities for this one-year period all experience an improvement of the quality of life. These results show that older patients understand the necessity of the physical activity for their health. The comparison of the output data to the scales of physical activity, durability, body pain, vitality, social activity and emotional stability has found an improvement at the end of the period in all patients. The osteodensitometry showed general improvement of the T-score. Patients with additional visits to their rheumatologist have better results. Conclusion: Combination of regular physical activity in accordance to the recommendations of WHO and medical treatment including anti-osteoporotic drugs improves the quality of life of women with postmenopausal osteoporosis.

Keywords: elderly patients, osteoporosis, physical activity, quality of life

Procedia PDF Downloads 332
7216 Implementation of an Image Processing System Using Artificial Intelligence for the Diagnosis of Malaria Disease

Authors: Mohammed Bnebaghdad, Feriel Betouche, Malika Semmani

Abstract:

Image processing become more sophisticated over time due to technological advances, especially artificial intelligence (AI) technology. Currently, AI image processing is used in many areas, including surveillance, industry, science, and medicine. AI in medical image processing can help doctors diagnose diseases faster, with minimal mistakes, and with less effort. Among these diseases is malaria, which remains a major public health challenge in many parts of the world. It affects millions of people every year, particularly in tropical and subtropical regions. Early detection of malaria is essential to prevent serious complications and reduce the burden of the disease. In this paper, we propose and implement a scheme based on AI image processing to enhance malaria disease diagnosis through automated analysis of blood smear images. The scheme is based on the convolutional neural network (CNN) method. So, we have developed a model that classifies infected and uninfected single red cells using images available on Kaggle, as well as real blood smear images obtained from the Central Laboratory of Medical Biology EHS Laadi Flici (formerly El Kettar) in Algeria. The real images were segmented into individual cells using the watershed algorithm in order to match the images from the Kaagle dataset. The model was trained and tested, achieving an accuracy of 99% and 97% accuracy for new real images. This validates that the model performs well with new real images, although with slightly lower accuracy. Additionally, the model has been embedded in a Raspberry Pi4, and a graphical user interface (GUI) was developed to visualize the malaria diagnostic results and facilitate user interaction.

Keywords: medical image processing, malaria parasite, classification, CNN, artificial intelligence

Procedia PDF Downloads 22
7215 An ALM Matrix Completion Algorithm for Recovering Weather Monitoring Data

Authors: Yuqing Chen, Ying Xu, Renfa Li

Abstract:

The development of matrix completion theory provides new approaches for data gathering in Wireless Sensor Networks (WSN). The existing matrix completion algorithms for WSN mainly consider how to reduce the sampling number without considering the real-time performance when recovering the data matrix. In order to guarantee the recovery accuracy and reduce the recovery time consumed simultaneously, we propose a new ALM algorithm to recover the weather monitoring data. A lot of experiments have been carried out to investigate the performance of the proposed ALM algorithm by using different parameter settings, different sampling rates and sampling models. In addition, we compare the proposed ALM algorithm with some existing algorithms in the literature. Experimental results show that the ALM algorithm can obtain better overall recovery accuracy with less computing time, which demonstrate that the ALM algorithm is an effective and efficient approach for recovering the real world weather monitoring data in WSN.

Keywords: wireless sensor network, matrix completion, singular value thresholding, augmented Lagrange multiplier

Procedia PDF Downloads 385