Search results for: Optimal operation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5735

Search results for: Optimal operation

5105 Determination of Frequency Relay Setting during Distributed Generators Islanding

Authors: Tarek Kandil, Ameen Ali

Abstract:

Distributed generation (DG) has recently gained a lot of momentum in power industry due to market deregulation and environmental concerns. One of the most technical challenges facing DGs is islanding of distributed generators. The current industry practice is to disconnect all distributed generators immediately after the occurrence of islands within 200 to 350 ms after loss of main supply. To achieve such goal, each DG must be equipped with an islanding detection device. Frequency relays are one of the most commonly used loss of mains detection method. However, distribution utilities may be faced with concerns related to false operation of these frequency relays due to improper settings. The commercially available frequency relays are considering standard tight setting. This paper investigates some factors related to relays internal algorithm that contribute to their different operating responses. Further, the relay operation in the presence of multiple distributed at the same network is analyzed. Finally, the relay setting can be accurately determined based on these investigation and analysis.

Keywords: frequency relay, distributed generation, islanding detection, relay setting

Procedia PDF Downloads 536
5104 Optimal Harmonic Filters Design of Taiwan High Speed Rail Traction System

Authors: Ying-Pin Chang

Abstract:

This paper presents a method for combining a particle swarm optimization with nonlinear time-varying evolution and orthogonal arrays (PSO-NTVEOA) in the planning of harmonic filters for the high speed railway traction system with specially connected transformers in unbalanced three-phase power systems. The objective is to minimize the cost of the filter, the filters loss, the total harmonic distortion of currents and voltages at each bus simultaneously. An orthogonal array is first conducted to obtain the initial solution set. The set is then treated as the initial training sample. Next, the PSO-NTVEOA method parameters are determined by using matrix experiments with an orthogonal array, in which a minimal number of experiments would have an effect that approximates the full factorial experiments. This PSO-NTVEOA method is then applied to design optimal harmonic filters in Taiwan High Speed Rail (THSR) traction system, where both rectifiers and inverters with IGBT are used. From the results of the illustrative examples, the feasibility of the PSO-NTVEOA to design an optimal passive harmonic filter of THSR system is verified and the design approach can greatly reduce the harmonic distortion. Three design schemes are compared that V-V connection suppressing the 3rd order harmonic, and Scott and Le Blanc connection for the harmonic improvement is better than the V-V connection.

Keywords: harmonic filters, particle swarm optimization, nonlinear time-varying evolution, orthogonal arrays, specially connected transformers

Procedia PDF Downloads 396
5103 Bi-objective Network Optimization in Disaster Relief Logistics

Authors: Katharina Eberhardt, Florian Klaus Kaiser, Frank Schultmann

Abstract:

Last-mile distribution is one of the most critical parts of a disaster relief operation. Various uncertainties, such as infrastructure conditions, resource availability, and fluctuating beneficiary demand, render last-mile distribution challenging in disaster relief operations. The need to balance critical performance criteria like response time, meeting demand and cost-effectiveness further complicates the task. The occurrence of disasters cannot be controlled, and the magnitude is often challenging to assess. In summary, these uncertainties create a need for additional flexibility, agility, and preparedness in logistics operations. As a result, strategic planning and efficient network design are critical for an effective and efficient response. Furthermore, the increasing frequency of disasters and the rising cost of logistical operations amplify the need to provide robust and resilient solutions in this area. Therefore, we formulate a scenario-based bi-objective optimization model that integrates pre-positioning, allocation, and distribution of relief supplies extending the general form of a covering location problem. The proposed model aims to minimize underlying logistics costs while maximizing demand coverage. Using a set of disruption scenarios, the model allows decision-makers to identify optimal network solutions to address the risk of disruptions. We provide an empirical case study of the public authorities’ emergency food storage strategy in Germany to illustrate the potential applicability of the model and provide implications for decision-makers in a real-world setting. Also, we conduct a sensitivity analysis focusing on the impact of varying stockpile capacities, single-site outages, and limited transportation capacities on the objective value. The results show that the stockpiling strategy needs to be consistent with the optimal number of depots and inventory based on minimizing costs and maximizing demand satisfaction. The strategy has the potential for optimization, as network coverage is insufficient and relies on very high transportation and personnel capacity levels. As such, the model provides decision support for public authorities to determine an efficient stockpiling strategy and distribution network and provides recommendations for increased resilience. However, certain factors have yet to be considered in this study and should be addressed in future works, such as additional network constraints and heuristic algorithms.

Keywords: humanitarian logistics, bi-objective optimization, pre-positioning, last mile distribution, decision support, disaster relief networks

Procedia PDF Downloads 84
5102 A Reinforcement Learning Approach for Evaluation of Real-Time Disaster Relief Demand and Network Condition

Authors: Ali Nadi, Ali Edrissi

Abstract:

Relief demand and transportation links availability is the essential information that is needed for every natural disaster operation. This information is not in hand once a disaster strikes. Relief demand and network condition has been evaluated based on prediction method in related works. Nevertheless, prediction seems to be over or under estimated due to uncertainties and may lead to a failure operation. Therefore, in this paper a stochastic programming model is proposed to evaluate real-time relief demand and network condition at the onset of a natural disaster. To address the time sensitivity of the emergency response, the proposed model uses reinforcement learning for optimization of the total relief assessment time. The proposed model is tested on a real size network problem. The simulation results indicate that the proposed model performs well in the case of collecting real-time information.

Keywords: disaster management, real-time demand, reinforcement learning, relief demand

Procedia PDF Downloads 322
5101 A Heuristic Approach for the General Flowshop Scheduling Problem to Minimize the Makespan

Authors: Mohsen Ziaee

Abstract:

Almost all existing researches on the flowshop scheduling problems focus on the permutation schedules and there is insufficient study dedicated to the general flowshop scheduling problems in the literature, since the modeling and solving of the general flowshop scheduling problems are more difficult than the permutation ones, especially for the large-size problem instances. This paper considers the general flowshop scheduling problem with the objective function of the makespan (F//Cmax). We first find the optimal solution of the problem by solving a mixed integer linear programming model. An efficient heuristic method is then presented to solve the problem. An ant colony optimization algorithm is also proposed for the problem. In order to evaluate the performance of the methods, computational experiments are designed and performed. Numerical results show that the heuristic algorithm can result in reasonable solutions with low computational effort and even achieve optimal solutions in some cases.

Keywords: scheduling, general flow shop scheduling problem, makespan, heuristic

Procedia PDF Downloads 211
5100 Valorization of Local Materials in the Waterproofing Technique of Landfills Site "TLS"

Authors: M. Debieche, F. Kaoua

Abstract:

This paper deals with the use two locals materials abundant in our country, with the view to use a mixture in the waterproofing the landfills. Our interest comes from the necessity to the environment protection, which has recently considerably grown. The site's waterproofing technique, in the landfills sites, is nowadays a very necessary condition to protect the environment, which requires the use of appropriate materials. To this end, an optimal mixture ensuring good performance in terms of hydraulic conductivity, durability and shear strength, mixtures based of sand at different concentrations of sodium bentonite, at compact state are prepared and studied. This study showed that a low permeability of mixture (sand / bentonite) can be achieved 6% of sodium bentonite. This mixture confers also good mechanical behavior, expressed by the recorded, reduction of friction (φ) and the increase of the cohesion (C). Thus, the selected formulation represents an optimal mixture for waterproofing systems. It guarantees an economical and ecological advantages.

Keywords: hydraulic conductivity, sand, sodium bentonite, sustainability

Procedia PDF Downloads 280
5099 The Optimal Indirect Vector Controller Design via an Adaptive Tabu Search Algorithm

Authors: P. Sawatnatee, S. Udomsuk, K-N. Areerak, K-L. Areerak, A. Srikaew

Abstract:

The paper presents how to design the indirect vector control of three-phase induction motor drive systems using the artificial intelligence technique called the adaptive tabu search. The results from the simulation and the experiment show that the drive system with the controller designed from the proposed method can provide the best output speed response compared with those of the conventional method. The controller design using the proposed technique can be used to create the software package for engineers to achieve the optimal controller design of the induction motor speed control based on the indirect vector concept.

Keywords: indirect vector control, induction motor, adaptive tabu search, control design, artificial intelligence

Procedia PDF Downloads 402
5098 Applying Simulation-Based Digital Teaching Plans and Designs in Operating Medical Equipment

Authors: Kuo-Kai Lin, Po-Lun Chang

Abstract:

Background: The Emergency Care Research Institute released a list for the top 10 medical technology hazards in 2017, with the following hazard topping the list: ‘infusion errors can be deadly if simple safety steps are overlooked.’ In addition, hospitals use various assessment items to evaluate the safety of their medical equipment, confirming the importance of medical equipment safety. In recent years, the topic of patient safety has garnered increasing attention. Accordingly, various agencies have established patient safety-related committees to coordinate, collect, and analyze information regarding abnormal events associated with medical practice. Activities to promote and improve employee training have been introduced to diminish the recurrence of medical malpractice. Objective: To allow nursing personnel to acquire the skills needed to operate common medical equipment and update and review such skills whenever necessary to elevate medical care quality and reduce patient injuries caused by medical equipment operation errors. Method: In this study, a quasi-experimental design was adopted and nurses from a regional teaching hospital were selected as the study sample. Online videos instructing the operation method of common medical equipment were made and quick response codes were designed for the nursing personnel to quickly access the videos when necessary. Senior nursing supervisors and equipment experts were invited to formulate a ‘Scale-based Questionnaire for Assessing Nursing Personnel’s Operational Knowledge of Common Medical Equipment’ to evaluate the nursing personnel’s literacy regarding the operation of the medical equipment. From March to October 2017, an employee training on medical equipment operation and a practice course (simulation course) were implemented, after which the effectiveness of the training and practice course were assessed. Results: Prior to and after the training and practice course, the 66 participating nurses scored 58 and 87 on ‘operational knowledge of common medical equipment,’ respectively (showing a significant statistical difference; t = -9.407, p < .001); 53.5 and 86.3 on ‘operational knowledge of 12-lead electrocardiography’ (z = -2.087, p < .01), respectively; 40 and 79.5 on ‘operational knowledge of cardiac defibrillators’ (z = -3.849, p < .001), respectively; 90 and 98 on ‘operational knowledge of Abbott pumps’ (z = -1.841, p = 0.066), respectively; and 8.7 and 13.7 on ‘perceived competence’ (showing a significant statistical difference; t = -2.77, p < .05). In the participating hospital, medical equipment operation errors were observed in both 2016 and 2017. However, since the implementation of the intervention, medical equipment operation errors have not yet been observed up to October 2017, which can be regarded as the secondary outcome of this study. Conclusion: In this study, innovative teaching strategies were adopted to effectively enhance the professional literacy and skills of nursing personnel in operating medical equipment. The training and practice course also elevated the nursing personnel’s related literacy and perceived competence of operating medical equipment. The nursing personnel was thus able to accurately operate the medical equipment and avoid operational errors that might jeopardize patient safety.

Keywords: medical equipment, digital teaching plan, simulation-based teaching plan, operational knowledge, patient safety

Procedia PDF Downloads 141
5097 Optimization of the Mechanical Performance of Fused Filament Fabrication Parts

Authors: Iván Rivet, Narges Dialami, Miguel Cervera, Michele Chiumenti

Abstract:

Process parameters in Additive Manufacturing (AM) play a critical role in the mechanical performance of the final component. In order to find the input configuration that guarantees the optimal performance of the printed part, the process-performance relationship must be found. Fused Filament Fabrication (FFF) is the selected demonstrative AM technology due to its great popularity in the industrial manufacturing world. A material model that considers the different printing patterns present in a FFF part is used. A voxelized mesh is built from the manufacturing toolpaths described in the G-Code file. An Adaptive Mesh Refinement (AMR) based on the octree strategy is used in order to reduce the complexity of the mesh while maintaining its accuracy. High-fidelity and cost-efficient Finite Element (FE) simulations are performed and the influence of key process parameters in the mechanical performance of the component is analyzed. A robust optimization process based on appropriate failure criteria is developed to find the printing direction that leads to the optimal mechanical performance of the component. The Tsai-Wu failure criterion is implemented due to the orthotropy and heterogeneity constitutive nature of FFF components and because of the differences between the strengths in tension and compression. The optimization loop implements a modified version of an Anomaly Detection (AD) algorithm and uses the computed metrics to obtain the optimal printing direction. The developed methodology is verified with a case study on an industrial demonstrator.

Keywords: additive manufacturing, optimization, printing direction, mechanical performance, voxelization

Procedia PDF Downloads 67
5096 Optimal Policies in a Two-Level Supply Chain with Defective Product and Price Dependent Demand

Authors: Samira Mohabbatdar, Abbas Ahmadi, Mohsen S. Sajadieh

Abstract:

This paper deals with a two-level supply chain consisted of one manufacturer and one retailer for single-type product. The demand function of the customers depends on price. We consider an integrated production inventory system where the manufacturer processes raw materials in order to deliver finished product with imperfect quality to the retailer. Then retailer inspects the products and after that delivers perfect products to customers. The proposed model is based on the joint total profit of both the manufacturer and the retailer, and it determines the optimal ordering lot-size, number of shipment and selling price of the retailer. A numerical example is provided to analyse and illustrate the behaviour and application of the model. Finally, sensitivity analysis of the key parameters are presented to test feasibility of the model.

Keywords: supply chain, pricing policy, defective quality, joint economic lot sizing

Procedia PDF Downloads 339
5095 Stochastic Control of Decentralized Singularly Perturbed Systems

Authors: Walid S. Alfuhaid, Saud A. Alghamdi, John M. Watkins, M. Edwin Sawan

Abstract:

Designing a controller for stochastic decentralized interconnected large scale systems usually involves a high degree of complexity and computation ability. Noise, observability, and controllability of all system states, connectivity, and channel bandwidth are other constraints to design procedures for distributed large scale systems. The quasi-steady state model investigated in this paper is a reduced order model of the original system using singular perturbation techniques. This paper results in an optimal control synthesis to design an observer based feedback controller by standard stochastic control theory techniques using Linear Quadratic Gaussian (LQG) approach and Kalman filter design with less complexity and computation requirements. Numerical example is given at the end to demonstrate the efficiency of the proposed method.

Keywords: decentralized, optimal control, output, singular perturb

Procedia PDF Downloads 374
5094 A Performance Comparison between Conventional and Flexible Box Erecting Machines Using Dispatching Rules

Authors: Min Kyu Kim, Eun Young Lee, Dong Woo Son, Yoon Seok Chang

Abstract:

In this paper, we introduce a flexible box erecting machine (BEM) that swiftly and automatically transforms cardboard into a three dimensional box. Recently, the parcel service and home-shopping industries have grown rapidly, and there is an increasing need for various box types to ship various products. However, workers cannot fold thousands of boxes manually in a day. As such, automatic BEMs are garnering greater attention. This study takes equipment operation into consideration as well as mechanical improvements in order to design a BEM that is able to outperform its conventional counterparts. We analyzed six dispatching rules – First In First Out (FIFO), Shortest Processing Time (SPT), Earliest Due Date (EDD), Setup Avoidance, EDD + SPT, and EDD + Setup Avoidance – to determine which one was most suitable for BEM operation. Consequently, SPT and Setup Avoidance were found to be the most critical rules, followed by EDD + Setup Avoidance, EDD + SPT, EDD, and FIFO. This hierarchy was valid for both our conventional BEM and our new flexible BEM from the viewpoint of processing time. We believe that this research can contribute to flexible BEM management, which has the potential to increase productivity and convenience.

Keywords: automation, box erecting machine, dispatching rule, setup time

Procedia PDF Downloads 367
5093 Experimental Analysis of the Performance of a System for Freezing Fish Products Equipped with a Modulating Vapour Injection Scroll Compressor

Authors: Domenico Panno, Antonino D’amico, Hamed Jafargholi

Abstract:

This paper presents an experimental analysis of the performance of a system for freezing fish products equipped with a modulating vapour injection scroll compressor operating with R448A refrigerant. Freezing is a critical process for the preservation of seafood products, as it influences quality, food safety, and environmental sustainability. The use of a modulating scroll compressor with vapour injection, associated with the R448A refrigerant, is proposed as a solution to optimize the performance of the system, reducing energy consumption and mitigating the environmental impact. The stream injection modulating scroll compressor represents an advanced technology that allows you to adjust the compressor capacity based on the actual cooling needs of the system. Vapour injection allows the optimization of the refrigeration cycle, reducing the evaporation temperature and improving the overall efficiency of the system. The use of R448A refrigerant, with a low Global Warming Potential (GWP), is part of an environmental sustainability perspective, helping to reduce the climate impact of the system. The aim of this research was to evaluate the performance of the system through a series of experiments conducted on a pilot plant for the freezing of fish products. Several operational variables were monitored and recorded, including evaporation temperature, condensation temperature, energy consumption, and freezing time of seafood products. The results of the experimental analysis highlighted the benefits deriving from the use of the modulating vapour injection scroll compressor with the R448A refrigerant. In particular, a significant reduction in energy consumption was recorded compared to conventional systems. The modulating capacity of the compressor made it possible to adapt the cold production to variations in the thermal load, ensuring optimal operation of the system and reducing energy waste. Furthermore, the use of an electronic expansion valve highlighted greater precision in the control of the evaporation temperature, with minimal deviation from the desired set point. This helped ensure better quality of the final product, reducing the risk of damage due to temperature changes and ensuring uniform freezing of the fish products. The freezing time of seafood has been significantly reduced thanks to the configuration of the entire system, allowing for faster production and greater production capacity of the plant. In conclusion, the use of a modulating vapour injection scroll compressor operating with R448A has proven effective in improving the performance of a system for freezing fish products. This technology offers an optimal balance between energy efficiency, temperature control, and environmental sustainability, making it an advantageous choice for food industries.

Keywords: scroll compressor, vapor injection, refrigeration system, EER

Procedia PDF Downloads 53
5092 Optimization and Design of Current-Mode Multiplier Circuits with Applications in Analog Signal Processing for Gas Industrial Package Systems

Authors: Mohamad Baqer Heidari, Hefzollah.Mohammadian

Abstract:

This brief presents two original implementations of improved accuracy current-mode multiplier/divider circuits. Besides the advantage of their simplicity, these original multiplier/divider structures present the advantage of very small linearity errors that can be obtained as a result of the proposed design techniques (0.75% and 0.9%, respectively, for an extended range of the input currents). The original multiplier/divider circuits permit a facile reconfiguration, the presented structures representing the functional basis for implementing complex function synthesizer circuits. The proposed computational structures are designed for implementing in 0.18-µm CMOS technology, with a low-voltage operation (a supply voltage of 1.2 V). The circuits’ power consumptions are 60 and 75 µW, respectively, while their frequency bandwidths are 79.6 and 59.7 MHz, respectively.

Keywords: analog signal processing, current-mode operation, functional core, multiplier, reconfigurable circuits, industrial package systems

Procedia PDF Downloads 376
5091 Analytical Study on the Shape of T-Type Girder Modular Bridge Connection by Using Parametric

Authors: Jongho Park, Jinwoong Choi, Sungnam Hong, Seung-Kyung Kye, Sun-Kyu Park

Abstract:

Recently, to cope with the rapidly changing construction trend because of aging infrastructures, modular bridge technology has been studied actively. Modular bridge is easily constructed by assembling standardized precast structure members in the field. It will be possible to construct rapidly and reduce construction cost efficiently. However, the shape examination of the transverse connection of T-type girder newly developed between the segmented modules is not performed. Therefore, the investigation of the connection shape is needed. In this study, shape of the modular T-girder bridge transverse connection was analyzed by finite element model that was verified in study which was verification of model for transverse connection using Abaqus. Connection angle was chosen as the parameter. The result of analyses showed that optimal value of angle is 130 degree.

Keywords: modular bridge, optimal transverse shape, parameter, FEM

Procedia PDF Downloads 654
5090 Probabilistic Fracture Evaluation of Reactor Pressure Vessel Subjected to Pressurized Thermal Shock

Authors: Jianguo Chen, Fenggang Zang, Yu Yang, Liangang Zheng

Abstract:

Reactor Pressure Vessel (RPV) is an important security barrier in nuclear power plant. Crack like defects may be produced on RPV during the whole operation lifetime due to the harsh operation condition and irradiation embrittlement. During the severe loss of coolant accident, thermal shock happened as the injection of emergency cooling water into RPV, which results in re-pressurization of the vessel and very high tension stress on the vessel wall, this event called Pressurized Thermal Shock (PTS). Crack on the vessel wall may propagate even penetrate the vessel, so the safety of the RPV would undergo great challenge. Many assumptions in structure integrity evaluation make the result of deterministic fracture mechanics very conservative, which affect the operation lifetime of the plant. Actually, many parameters in the evaluation process, such as fracture toughness and nil-ductility transition temperature, have statistical distribution characteristics. So it is necessary to assess the structural integrity of RPV subjected to PTS event by means of Probabilistic Fracture Mechanics (PFM). Structure integrity evaluation methods of RPV subjected to PTS event are summarized firstly, then evaluation method based on probabilistic fracture mechanics are presented by considering the probabilistic characteristics of material and structure parameters. A comprehensive analysis example is carried out at last. The results show that the probability of crack penetrates through wall increases gradually with the growth of fast neutron irradiation flux. The results give advice for reactor life extension.

Keywords: fracture toughness, integrity evaluation, pressurized thermal shock, probabilistic fracture mechanics, reactor pressure vessel

Procedia PDF Downloads 254
5089 The Duty of Sea Carrier to Transship the Cargo in Case of Vessel Breakdown

Authors: Mojtaba Eshraghi Arani

Abstract:

Concluding the contract for carriage of cargo with the shipper (through bill of lading or charterparty), the carrier must transport the cargo from loading port to the port of discharge and deliver it to the consignee. Unless otherwise agreed in the contract, the carrier must avoid from any deviation, transfer of cargo to another vessel or unreasonable stoppage of carriage in-transit. However, the vessel might break down in-transit for any reason and becomes unable to continue its voyage to the port of discharge. This is a frequent incident in the carriage of goods by sea which leads to important dispute between the carrier/owner and the shipper/charterer (hereinafter called “cargo interests”). It is a generally accepted rule that in such event, the carrier/owner must repair the vessel after which it will continue its voyage to the destination port. The dispute will arise in the case that temporary repair of the vessel cannot be done in the short or reasonable term. There are two options for the contract parties in such a case: First, the carrier/owner is entitled to repair the vessel while having the cargo onboard or discharged in the port of refugee, and the cargo interests must wait till the breakdown is rectified at any time, whenever. Second, the carrier/owner will be responsible to charter another vessel and transfer the entirety of cargo to the substitute vessel. In fact, the main question revolves around the duty of carrier/owner to perform transfer of cargo to another vessel. Such operation which is called “trans-shipment” or “transhipment” (in terms of the oil industry it is usually called “ship-to-ship” or “STS”) needs to be done carefully and with due diligence. In fact, the transshipment operation for various cargoes might be different as each cargo requires its own suitable equipment for transfer to another vessel, so this operation is often costly. Moreover, there is a considerable risk of collision between two vessels in particular in bulk carriers. Bulk cargo is also exposed to the shortage and partial loss in the process of transshipment especially during bad weather. Concerning tankers which carry oil and petrochemical products, transshipment, is most probably followed by sea pollution. On the grounds of the above consequences, the owners are afraid of being held responsible for such operation and are reluctant to perform in the relevant disputes. The main argument raised by them is that no regulation has recognized such duty upon their shoulders so any such operation must be done under the auspices of the cargo interests and all costs must be reimbursed by themselves. Unfortunately, not only the international conventions including Hague rules, Hague-Visby Rules, Hamburg rules and Rotterdam rules but also most domestic laws are silent in this regard. The doctrine has yet to analyse the issue and no legal researches was found out in this regard. A qualitative method with the concept of interpretation of data collection has been used in this paper. The source of the data is the analysis of regulations and cases. It is argued in this article that the paramount rule in the maritime law is “the accomplishment of the voyage” by the carrier/owner in view of which, if the voyage can only be finished by transshipment, then the carrier/owner will be responsible to carry out this operation. The duty of carrier/owner to apply “due diligence” will strengthen this reasoning. Any and all costs and expenses will also be on the account pf the owner/carrier, unless the incident is attributable to any cause arising from the cargo interests’ negligence.

Keywords: cargo, STS, transshipment, vessel, voyage

Procedia PDF Downloads 124
5088 Mean-Field Type Modeling of Non-Local Congestion in Pedestrian Crowd Dynamics

Authors: Alexander Aurell

Abstract:

One of the latest trends in the modeling of human crowds is the mean-field game approach. In the mean-field game approach, the motion of a human crowd is described by a nonstandard stochastic optimal control problem. It is nonstandard since congestion is considered, introduced through a dependence in the performance functional on the distribution of the crowd. This study extends the class of mean-field pedestrian crowd models to allow for non-local congestion and arbitrary, but finitely, many interacting crowds. The new congestion feature grants pedestrians a 'personal space' where crowding is undesirable. The model is treated as a mean-field type game which is derived from a particle picture. This, in contrast to a mean-field game, better describes a situation where the crowd can be controlled by a central planner. The latter is suitable for decentralized situations. Solutions to the mean-field type game are characterized via a Pontryagin-type Maximum Principle.

Keywords: congestion, crowd dynamics, interacting populations, mean-field approximation, optimal control

Procedia PDF Downloads 447
5087 The Whale Optimization Algorithm and Its Implementation in MATLAB

Authors: S. Adhirai, R. P. Mahapatra, Paramjit Singh

Abstract:

Optimization is an important tool in making decisions and in analysing physical systems. In mathematical terms, an optimization problem is the problem of finding the best solution from among the set of all feasible solutions. The paper discusses the Whale Optimization Algorithm (WOA), and its applications in different fields. The algorithm is tested using MATLAB because of its unique and powerful features. The benchmark functions used in WOA algorithm are grouped as: unimodal (F1-F7), multimodal (F8-F13), and fixed-dimension multimodal (F14-F23). Out of these benchmark functions, we show the experimental results for F7, F11, and F19 for different number of iterations. The search space and objective space for the selected function are drawn, and finally, the best solution as well as the best optimal value of the objective function found by WOA is presented. The algorithmic results demonstrate that the WOA performs better than the state-of-the-art meta-heuristic and conventional algorithms.

Keywords: optimization, optimal value, objective function, optimization problems, meta-heuristic optimization algorithms, Whale Optimization Algorithm, implementation, MATLAB

Procedia PDF Downloads 377
5086 Ranking of Optimal Materials for Building Walls from the Perspective of Cost and Waste of Electricity and Gas Energy Using AHP-TOPSIS 1 Technique: Study Example: Sari City

Authors: Seyedomid Fatemi

Abstract:

The walls of the building, as the main intermediary between the outside and the inside of the building, play an important role in controlling the environmental conditions and ensuring the comfort of the residents, thus reducing the heating and cooling loads. Therefore, the use of suitable materials is considered one of the simplest and most effective ways to reduce the heating and cooling loads of the building, which will also save energy. Therefore, in order to achieve the goal of the research "Ranking of optimal materials for building walls," optimal materials for building walls in a temperate and humid climate (case example: Sari city) from the perspective of embodied energy, waste of electricity and gas energy, cost and reuse been investigated to achieve sustainable architecture. In this regard, using information obtained from Sari Municipality, design components have been presented by experts using the Delphi method. Considering the criteria of experts' opinions (cost and reuse), the amount of embodied energy of the materials, as well as the amount of waste of electricity and gas of different materials of the walls, with the help of the AHP weighting technique and finally with the TOPSIS technique, the best type of materials in the order of 1- 3-D Panel 2-ICF-, 3-Cement block with pumice, 4-Wallcrete block, 5-Clay block, 6-Autoclaved Aerated Concrete (AAC), 7-Foam cement block, 8-Aquapanel and 9-Reinforced concrete wall for use in The walls of the buildings were proposed in Sari city.

Keywords: optimum materials, building walls, moderate and humid climate, sustainable architecture, AHP-TOPSIS technique

Procedia PDF Downloads 80
5085 Identification of Bayesian Network with Convolutional Neural Network

Authors: Mohamed Raouf Benmakrelouf, Wafa Karouche, Joseph Rynkiewicz

Abstract:

In this paper, we propose an alternative method to construct a Bayesian Network (BN). This method relies on a convolutional neural network (CNN classifier), which determinates the edges of the network skeleton. We train a CNN on a normalized empirical probability density distribution (NEPDF) for predicting causal interactions and relationships. We have to find the optimal Bayesian network structure for causal inference. Indeed, we are undertaking a search for pair-wise causality, depending on considered causal assumptions. In order to avoid unreasonable causal structure, we consider a blacklist and a whitelist of causality senses. We tested the method on real data to assess the influence of education on the voting intention for the extreme right-wing party. We show that, with this method, we get a safer causal structure of variables (Bayesian Network) and make to identify a variable that satisfies the backdoor criterion.

Keywords: Bayesian network, structure learning, optimal search, convolutional neural network, causal inference

Procedia PDF Downloads 180
5084 Improving the LDMOS Temperature Compensation Bias Circuit to Optimize Back-Off

Authors: Antonis Constantinides, Christos Yiallouras, Christakis Damianou

Abstract:

The application of today's semiconductor transistors in high power UHF DVB-T linear amplifiers has evolved significantly by utilizing LDMOS technology. This fact provides engineers with the option to design a single transistor signal amplifier which enables output power and linearity that was unobtainable previously using bipolar junction transistors or later type first generation MOSFETS. The quiescent current stability in terms of thermal variations of the LDMOS guarantees a robust operation in any topology of DVB-T signal amplifiers. Otherwise, progressively uncontrolled heat dissipation enhancement on the LDMOS case can degrade the amplifier’s crucial parameters in regards to the gain, linearity, and RF stability, resulting in dysfunctional operation or a total destruction of the unit. This paper presents one more sophisticated approach from the traditional biasing circuits used so far in LDMOS DVB-T amplifiers. It utilizes a microprocessor control technology, providing stability in topologies where IDQ must be perfectly accurate.

Keywords: LDMOS, amplifier, back-off, bias circuit

Procedia PDF Downloads 343
5083 Combustion Improvements by C4/C5 Bio-Alcohol Isomer Blended Fuels Combined with Supercharging and EGR in a Diesel Engine

Authors: Yasufumi Yoshimoto, Enkhjargal Tserenochir, Eiji Kinoshita, Takeshi Otaka

Abstract:

Next generation bio-alcohols produced from non-food based sources like cellulosic biomass are promising renewable energy sources. The present study investigates engine performance, combustion characteristics, and emissions of a small single cylinder direct injection diesel engine fueled by four kinds of next generation bio-alcohol isomer and diesel fuel blends with a constant blending ratio of 3:7 (mass). The tested bio-alcohol isomers here are n-butanol and iso-butanol (C4 alcohol), and n-pentanol and iso-pentanol (C5 alcohol). To obtain simultaneous reductions in NOx and smoke emissions, the experiments employed supercharging combined with EGR (Exhaust Gas Recirculation). The boost pressures were fixed at two conditions, 100 kPa (naturally aspirated operation) and 120 kPa (supercharged operation) provided with a roots blower type supercharger. The EGR rates were varied from 0 to 25% using a cooled EGR technique. The results showed that both with and without supercharging, all the bio-alcohol blended diesel fuels improved the trade-off relation between NOx and smoke emissions at all EGR rates while maintaining good engine performance, when compared with diesel fuel operation. It was also found that regardless of boost pressure and EGR rate, the ignition delays of the tested bio-alcohol isomer blends are in the order of iso-butanol > n-butanol > iso-pentanol > n-pentanol. Overall, it was concluded that, except for the changes in the ignition delays the influence of bio-alcohol isomer blends on the engine performance, combustion characteristics, and emissions are relatively small.

Keywords: alternative fuel, butanol, diesel engine, EGR (Exhaust Gas Recirculation), next generation bio-alcohol isomer blended fuel, pentanol, supercharging

Procedia PDF Downloads 171
5082 Automated Driving Deep Neural Networks Model Accuracy and Performance Assessment in a Simulated Environment

Authors: David Tena-Gago, Jose M. Alcaraz Calero, Qi Wang

Abstract:

The evolution and integration of automated vehicles have become more and more tangible in recent years. State-of-the-art technological advances in the field of camera-based Artificial Intelligence (AI) and computer vision greatly favor the performance and reliability of the Advanced Driver Assistance System (ADAS), leading to a greater knowledge of vehicular operation and resembling human behavior. However, the exclusive use of this technology still seems insufficient to control vehicular operation at 100%. To reveal the degree of accuracy of the current camera-based automated driving AI modules, this paper studies the structure and behavior of one of the main solutions in a controlled testing environment. The results obtained clearly outline the lack of reliability when using exclusively the AI model in the perception stage, thereby entailing using additional complementary sensors to improve its safety and performance.

Keywords: accuracy assessment, AI-driven mobility, artificial intelligence, automated vehicles

Procedia PDF Downloads 116
5081 Auto Surgical-Emissive Hand

Authors: Abhit Kumar

Abstract:

The world is full of master slave Telemanipulator where the doctor’s masters the console and the surgical arm perform the operations, i.e. these robots are passive robots, what the world needs to focus is that in use of these passive robots we are acquiring doctors for operating these console hence the utilization of the concept of robotics is still not fully utilized ,hence the focus should be on active robots, Auto Surgical-Emissive Hand use the similar concept of active robotics where this anthropomorphic hand focuses on the autonomous surgical, emissive and scanning operation, enabled with the vision of 3 way emission of Laser Beam/-5°C < ICY Steam < 5°C/ TIC embedded in palm of the anthropomorphic hand and structured in a form of 3 way disc. Fingers of AS-EH (Auto Surgical-Emissive Hand) as called, will have tactile, force, pressure sensor rooted to it so that the mechanical mechanism of force, pressure and physical presence on the external subject can be maintained, conversely our main focus is on the concept of “emission” the question arises how all the 3 non related methods will work together that to merged in a single programmed hand, all the 3 methods will be utilized according to the need of the external subject, the laser if considered will be emitted via a pin sized outlet, this radiation is channelized via a thin channel which further connect to the palm of the surgical hand internally leading to the pin sized outlet, here the laser is used to emit radiation enough to cut open the skin for removal of metal scrap or any other foreign material while the patient is in under anesthesia, keeping the complexity of the operation very low, at the same time the TIC fitted with accurate temperature compensator will be providing us the real time feed of the surgery in the form of heat image, this gives us the chance to analyze the level, also ATC will help us to determine the elevated body temperature while the operation is being proceeded, the thermal imaging camera in rooted internally in the AS-EH while also being connected to the real time software externally to provide us live feedback. The ICY steam will provide the cooling effect before and after the operation, however for more utilization of this concept we can understand the working of simple procedure in which If a finger remain in icy water for a long time it freezes the blood flow stops and the portion become numb and isolated hence even if you try to pinch it will not provide any sensation as the nerve impulse did not coordinated with the brain hence sensory receptor did not got active which means no sense of touch was observed utilizing the same concept we can use the icy stem to be emitted via a pin sized hole on the area of concern ,temperature below 273K which will frost the area after which operation can be done, this steam can also be use to desensitized the pain while the operation in under process. The mathematical calculation, algorithm, programming of working and movement of this hand will be installed in the system prior to the procedure, since this AS-EH is a programmable hand it comes with the limitation hence this AS-EH robot will perform surgical process of low complexity only.

Keywords: active robots, algorithm, emission, icy steam, TIC, laser

Procedia PDF Downloads 359
5080 The Combined Effect of Methane and Methanol on Growth and PHB Production in the Alphaproteobacterial Methanotroph Methylocystis Sp. Rockwell

Authors: Lazic Marina, Sugden Scott, Sharma Kanta Hem, Sauvageau Dominic, Stein Lisa

Abstract:

Methane is a highly potent greenhouse gas mostly released through anthropogenic activities. Methane represents a low-cost and sustainable feedstock used for the biological production of value-added compounds by bacteria known as methanotrophs. In addition to methane, these organisms can utilize methanol, another cheap carbon source that is a common industrial by-product. Alphaproteobacteria methanotrophs can utilize both methane and methanol to produce the biopolymer polyhydroxybutyrate. The goal of this study was to examine the effect of methanol on polyhydroxybutyrate production in Methylocystis sp. Rockwell and to identify the optimal methane: methanol ratio that will improve PHB without reducing biomass production. Three methane: methanol ratios (4, 2.5., and 0.5) and three nitrogen source (ammonium or nitrate) concentrations (10 mM, 1 mM, and 0.1 mM) were combined to generate 18 growing conditions (9 per carbon source). The production of polyhydroxybutyrate and biomass was analyzed at the end of growth. Overall, the methane: methanol ratios that promoted polyhydroxybutyrate synthesis without reducing biomass were 4 and 2.5 and the optimal nitrogen concentration was 1 mM for both ammonium and nitrate. The physiological mechanism behind the beneficial effect of combining methane and methanol as carbon sources remain to be discovered. One possibility is that methanol has a dual role as a carbon source at lower concentrations and as a stringent response trigger at higher concentrations. Nevertheless, the beneficial effect of methanol and optimal nitrogen concentration for PHB production was confirmed, providing a basis for future physiological analysis and conditions for process scale-up.

Keywords: methane, methanol, methanotrophs, polyhydroxybutyrate, methylocystis sp. rockwell, single carbon bioconversions

Procedia PDF Downloads 174
5079 Dual Set Point Governor Control Structure with Common Optimum Temporary Droop Settings for both Islanded and Grid Connected Modes

Authors: Deepen Sharma, Eugene F. Hill

Abstract:

For nearly 100 years, hydro-turbine governors have operated with only a frequency set point. This natural governor action means that the governor responds with changing megawatt output to disturbances in system frequency. More and more, power system managers are demanding that governors operate with constant megawatt output. One way of doing this is to introduce a second set point in the control structure called a power set point. The control structure investigated and analyzed in this paper is unique in the way that it utilizes a power reference set point in addition to the conventional frequency reference set point. An optimum set of temporary droop parameters derived based on the turbine-generator inertia constant and the penstock water start time for stable islanded operation are shown to be also equally applicable for a satisfactory rate of generator loading during its grid connected mode. A theoretical development shows why this is the case. The performance of the control structure has been investigated and established based on the simulation study made in MATLAB/Simulink as well as through testing the real time controller performance on a 15 MW Kaplan Turbine and generator. Recordings have been made using the labVIEW data acquisition platform. The hydro-turbine governor control structure and its performance investigated in this paper thus eliminates the need to have a separate set of temporary droop parameters, one valid for islanded mode and the other for interconnected operations mode.

Keywords: frequency set point, hydro governor, interconnected operation, isolated operation, power set point

Procedia PDF Downloads 369
5078 Modeling and Power Control of DFIG Used in Wind Energy System

Authors: Nadia Ben Si Ali, Nadia Benalia, Nora Zerzouri

Abstract:

Wind energy generation has attracted great interests in recent years. Doubly Fed Induction Generator (DFIG) for wind turbines are largely deployed because variable-speed wind turbines have many advantages over fixed-speed generation such as increased energy capture, operation at maximum power point, improved efficiency, and power quality. This paper presents the operation and vector control of a Doubly-fed Induction Generator (DFIG) system where the stator is connected directly to a stiff grid and the rotor is connected to the grid through bidirectional back-to-back AC-DC-AC converter. The basic operational characteristics, mathematical model of the aerodynamic system and vector control technique which is used to obtain decoupled control of powers are investigated using the software Mathlab/Simulink.

Keywords: wind turbine, Doubly Fed Induction Generator, wind speed controller, power system stability

Procedia PDF Downloads 381
5077 Effect of Nitrogen Gaseous Plasma on Cotton Fabric Dyed with Reactive Yellow105

Authors: Mohammad Mirjalili, Hamid Akbarpour

Abstract:

In this work, a bleached well cotton sample was dyed with reactive yellow105 dye and subsequently, the dyed sample was exposed to the plasma condition containing Nitrogen gas at 1 and 5 minutes of plasma exposure time, respectively. The effect of plasma on surface morphology fabric was studied by Scanning Electronic Microscope (SEM). CIELab, K/S, and %R of samples (treated and untreated samples) were measured by a reflective spectrophotometer, and consequently, the experiments show that the sample dyed with Reactive yellow 105 after being washed, with the increase in the operation time of plasma, its dye fastness decreases. In addition, the increase in plasma operation time at constant pressure would increase the destructing effect on the surface morphology of samples dyed with reactive yellow105.

Keywords: cotton fabric, nitrogen cold plasma, reflective spectrophotometer, scanning electronic microscope (SEM), reactive yellow105 dye

Procedia PDF Downloads 260
5076 Effect of Punch Diameter on Optimal Loading Profiles in Hydromechanical Deep Drawing Process

Authors: Mehmet Halkaci, Ekrem Öztürk, Mevlüt Türköz, H. Selçuk Halkacı

Abstract:

Hydromechanical deep drawing (HMD) process is an advanced manufacturing process used to form deep parts with only one forming step. In this process, sheet metal blank can be drawn deeper by means of fluid pressure acting on sheet surface in the opposite direction of punch movement. High limiting drawing ratio, good surface quality, less springback characteristic and high dimensional accuracy are some of the advantages of this process. The performance of the HMD process is affected by various process parameters such as fluid pressure, blank holder force, punch-die radius, pre-bulging pressure and height, punch diameter, friction between sheet-die and sheet-punch. The fluid pressure and bank older force are the main loading parameters and affect the formability of HMD process significantly. The punch diameter also influences the limiting drawing ratio (the ratio of initial sheet diameter to punch diameter) of the sheet metal blank. In this research, optimal loading (fluid pressure and blank holder force) profiles were determined for AA 5754-O sheet material through fuzzy control algorithm developed in previous study using LS-DYNA finite element analysis (FEA) software. In the preceding study, the fuzzy control algorithm was developed utilizing geometrical criteria such as thinning and wrinkling. In order to obtain the final desired part with the developed algorithm in terms of the punch diameter requested, the effect of punch diameter, which is the one of the process parameters, on loading profiles was investigated separately using blank thickness of 1 mm. Thus, the practicality of the previously developed fuzzy control algorithm with different punch diameters was clarified. Also, thickness distributions of the sheet metal blank along a curvilinear distance were compared for the FEA in which different punch diameters were used. Consequently, it was found that the use of different punch diameters did not affect the optimal loading profiles too much.

Keywords: Finite Element Analysis (FEA), fuzzy control, hydromechanical deep drawing, optimal loading profiles, punch diameter

Procedia PDF Downloads 434