Search results for: FRAP (Fluorescence Recovery After Photobleaching)
1759 Valorization Bio-Waste Argan Pulp for Green Synthesis of Silver Nanoparticles
Authors: Omar Drissi, Nadia El Harfaoui, Khalid Nouneh, Rachid Hsissou, Badre Daoudi
Abstract:
The pulp endures of having a lower importance, incompletely because of the way that it has been less studied, and it has been recognized as a pivotal product got from biomass that can be utilized in different fields. The current research focuses on pulp of Argania spinosa (L). To this end, the aim is to study the characteristics and properties of Argan pulp, such as shape, chemical and macromineral composition. As a result, X-Ray Fluorescence (XRF), Fourier transform infrared spectroscopy (FTIR), and Scanning Electron Microscopy (SEM) were used in the research.Keywords: argania spinose, argan pulp, argan bio-waste, green synthesis, silver nanoparticles, valorization
Procedia PDF Downloads 1201758 Management of Urine Recovery at the Building Level
Authors: Joao Almeida, Ana Azevedo, Myriam Kanoun-Boule, Maria Ines Santos, Antonio Tadeu
Abstract:
The effects of the increasing expansion of cities and climate changes have encouraged European countries and regions to adopt nature-based solutions with ability to mitigate environmental issues and improve life in cities. Among these strategies, green roofs and urban gardens have been considered ingenious solutions, since they have the desirable potential to improve air quality, prevent floods, reduce the heat island effect and restore biodiversity in cities. However, an additional consumption of fresh water and mineral nutrients is necessary to sustain larger green urban areas. This communication discusses the main technical features of a new system to manage urine recovery at the building level and its application in green roofs. The depletion of critical nutrients like phosphorus constitutes an emergency. In turn, their elimination through urine is one of the principal causes for their loss. Thus, urine recovery in buildings may offer numerous advantages, constituting a valuable fertilizer abundantly available in cities and reducing the load on wastewater treatment plants. Although several urine-diverting toilets have been developed for this purpose and some experiments using urine directly in agriculture have already been carried out in Europe, several challenges have emerged with this practice concerning collection, sanitization, storage and application of urine in buildings. To our best knowledge, current buildings are not designed to receive these systems and integrated solutions with ability to self-manage the whole process of urine recovery, including separation, maturation and storage phases, are not known. Additionally, if from a hygiene point of view human urine may be considered a relatively safe fertilizer, the risk of disease transmission needs to be carefully analysed. A reduction in microorganisms can be achieved by storing the urine in closed tanks. However, several factors may affect this process, which may result in a higher survival rate for some pathogens. In this work, urine effluent was collected under real conditions, stored in closed containers and kept in climatic chambers under variable conditions simulating cold, temperate and tropical climates. These samples were subjected to a first physicochemical and microbiological control, which was repeated over time. The results obtained so far suggest that maturation conditions were reached for all the three temperatures and that a storage period of less than three months is required to achieve a strong depletion of microorganisms. The authors are grateful for the Project WashOne (POCI-01-0247-FEDER-017461) funded by the Operational Program for Competitiveness and Internationalization (POCI) of Portugal 2020, with the support of the European Regional Development Fund (FEDER).Keywords: sustainable green roofs and urban gardens, urban nutrient cycle, urine-based fertilizers, urine recovery in buildings
Procedia PDF Downloads 1661757 Applying Big Data Analysis to Efficiently Exploit the Vast Unconventional Tight Oil Reserves
Authors: Shengnan Chen, Shuhua Wang
Abstract:
Successful production of hydrocarbon from unconventional tight oil reserves has changed the energy landscape in North America. The oil contained within these reservoirs typically will not flow to the wellbore at economic rates without assistance from advanced horizontal well and multi-stage hydraulic fracturing. Efficient and economic development of these reserves is a priority of society, government, and industry, especially under the current low oil prices. Meanwhile, society needs technological and process innovations to enhance oil recovery while concurrently reducing environmental impacts. Recently, big data analysis and artificial intelligence become very popular, developing data-driven insights for better designs and decisions in various engineering disciplines. However, the application of data mining in petroleum engineering is still in its infancy. The objective of this research aims to apply intelligent data analysis and data-driven models to exploit unconventional oil reserves both efficiently and economically. More specifically, a comprehensive database including the reservoir geological data, reservoir geophysical data, well completion data and production data for thousands of wells is firstly established to discover the valuable insights and knowledge related to tight oil reserves development. Several data analysis methods are introduced to analysis such a huge dataset. For example, K-means clustering is used to partition all observations into clusters; principle component analysis is applied to emphasize the variation and bring out strong patterns in the dataset, making the big data easy to explore and visualize; exploratory factor analysis (EFA) is used to identify the complex interrelationships between well completion data and well production data. Different data mining techniques, such as artificial neural network, fuzzy logic, and machine learning technique are then summarized, and appropriate ones are selected to analyze the database based on the prediction accuracy, model robustness, and reproducibility. Advanced knowledge and patterned are finally recognized and integrated into a modified self-adaptive differential evolution optimization workflow to enhance the oil recovery and maximize the net present value (NPV) of the unconventional oil resources. This research will advance the knowledge in the development of unconventional oil reserves and bridge the gap between the big data and performance optimizations in these formations. The newly developed data-driven optimization workflow is a powerful approach to guide field operation, which leads to better designs, higher oil recovery and economic return of future wells in the unconventional oil reserves.Keywords: big data, artificial intelligence, enhance oil recovery, unconventional oil reserves
Procedia PDF Downloads 2831756 Implementation of Enhanced Recovery after Surgery (ERAS) Protocols in Laparoscopic Sleeve Gastrectomy (LSG); A Systematic Review and Meta-analysis
Authors: Misbah Nizamani, Saira Malik
Abstract:
Introduction: Bariatric surgery is the most effective treatment for patients suffering from morbid obesity. Laparoscopic sleeve gastrectomy (LSG) accounts for over 50% of total bariatric procedures. The aim of our meta-analysis is to investigate the effectiveness and safety of Enhanced Recovery After Surgery (ERAS) protocols for patients undergoing laparoscopic sleeve gastrectomy. Method: To gather data, we searched PubMed, Google Scholar, ScienceDirect, and Cochrane Central. Eligible studies were randomized controlled trials and cohort studies involving adult patients (≥18 years) undergoing bariatric surgeries, i.e., Laparoscopic sleeve gastrectomy. Outcome measures included LOS, postoperative narcotic usage, postoperative pain score, postoperative nausea and vomiting, postoperative complications and mortality, emergency department visits and readmission rates. RevMan version 5.4 was used to analyze outcomes. Results: Three RCTs and three cohorts with 1522 patients were included in this study. ERAS group and control group were compared for eight outcomes. LOS was reduced significantly in the intervention group (p=0.00001), readmission rates had borderline differences (p=0.35) and higher postoperative complications in the control group, but the result was non-significant (p=0.68), whereas postoperative pain score was significantly reduced (p=0.005). Total MME requirements became significant after performing sensitivity analysis (p= 0.0004). Postoperative mortality could not be analyzed on account of invalid data showing 0% mortality in two cohort studies. Conclusion: This systemic review indicated the effectiveness of the application of ERAS protocols in LSG in reducing the length of stay, post-operative pain and total MME requirements postoperatively, indicating the feasibility and assurance of its application.Keywords: eras protocol, sleeve gastrectomy, bariatric surgery, enhanced recovery after surgery
Procedia PDF Downloads 401755 Encoded Nanospheres for the Fast Ratiometric Detection of Cystic Fibrosis
Authors: Iván Castelló, Georgiana Stoica, Emilio Palomares, Fernando Bravo
Abstract:
We present herein two colour encoded silica nanospheres (2nanoSi) for the fluorescence quantitative ratiometric determination of trypsin in humans. The system proved to be a faster (minutes) method, with two times higher sensitivity than the state-of-the-art biomarkers based sensors for cystic fibrosis (CF), allowing the quantification of trypsin concentrations in a wide range (0-350 mg/L). Furthermore, as trypsin is directly related to the development of cystic fibrosis, different human genotypes, i.e. healthy homozygotic (> 80 mg/L), CF homozygotic (< 50 mg/L), and heterozygotic (> 50 mg/L), respectively, can be determined using our 2nanoSi nanospheres.Keywords: cystic fibrosis, trypsin, quantum dots, biomarker, homozygote, heterozygote
Procedia PDF Downloads 4831754 The Impact of Black Rice Ash Nanoparticles on Foam Stability through Foam Scanning in Enhanced Oil Recovery
Authors: Ishaq Ahmad, Zhaomin Li, Liu Chengwen, Song Yan Li, Zihan Gu, Li Shaopeng
Abstract:
In order to manage gas mobility in the reservoir, only a small amount of surfactant or polymer is needed because nanoparticles have the potential to improve foam stability. The aim is to enhance foam formation and stability, so it was decided to investigate the foam stability and foam ability of black rice husk ash. Several characterization techniques were used to investigate the properties of black rice husk ash. The best-performing anionic foaming surfactants were combined with black rice husk ash at different concentrations (ppm). Sodium dodecyl benzene sulphonate was used as the anionic surfactant. This study demonstrates the value of black rice husk ash (BRHA), which has a high silica concentration, for foam stability and ability. For the test, black rice husk ash and raw ash were used with SDS (Sodium Dodecyl Sulfate) and SDBS (Sodium dodecyl benzenesulfonate) surfactants under different parameters. Different concentration percentages were utilized to create the foam, and the hydrophobic test and shaking method were applied. The foam scanner was used to observe the behavior of the black rice husk ash foam. The high silica content of black rice husk ash has the potential to improve foam stability, which is favorable and could possibly improve oil recovery.Keywords: black rice husk ash nanoparticle, surfactant, foam life, foam scanning
Procedia PDF Downloads 1521753 Optical Properties of TlInSe₂<AU> Si̇ngle Crystals
Authors: Gulshan Mammadova
Abstract:
This paper presents the results of studying the surface microrelief in 2D and 3D models and analyzing the spectroscopy of a three-junction TlInSe₂Keywords: optical properties, dielectric permittivity, real and imaginary dielectric permittivity, optical electrical conductivity
Procedia PDF Downloads 631752 Impact of Chemical Flooding on Displacement Efficiency in Shallow Carbonate Marine Reservoir (Case Study)
Authors: Tarek Duzan, Walid Eddib
Abstract:
The marine shallow carbonate reservoir (G- Eocene) is one of the biggest mature water drive reservoir of Waha Oil Company. The cumulative oil produced up to date is about to eighty percent of the booked original oil in place at ninety five percent of Water cut. However, the company believes that there is a good amount of remaining oil left need to be recovered. Many laboratory studies have been conducted to see the possibility drain the commercial oil left behind using two types of gases, namely, carbone dioxide and enriched hydrocarbon gas injection. The conclusions of those cases were inconclusive Technically and Economically. Therefore, the company has decided to verify another Tertiary Recovery (EOR) technique that may be applied to the interested reservoir. A global screening criteria and quick Laboratory chemical tests have been conducted by using many types of chemical injection into real rock samples. The outcomes were unique economically and provide a significant increase in the commercial oil left. Finally, the company has started conducting a sector pilot plan before proceeding with a full plan. There are many wellbores available to use in a potential field Enhanced Oil Recovery.Keywords: chemical lab. test, ASP, rock types, oil samples, and global screening criteria
Procedia PDF Downloads 1381751 Effect of Oil Viscosity and Brine Salinity/Viscosity on Water/Oil Relative Permeability and Residual Saturations
Authors: Sami Aboujafar
Abstract:
Oil recovery in petroleum reservoirs is greatly affected by fluid-rock and fluid-fluid interactions. These interactions directly control rock wettability, capillary pressure and relative permeability curves. Laboratory core-floods and centrifuge experiments were conducted on sandstone and carbonate cores to study the effect of low and high brine salinity and viscosity and oil viscosity on residual saturations and relative permeability. Drainage and imbibition relative permeability in two phase system were measured, refined lab oils with different viscosities, heavy and light, and several brine salinities were used. Sensitivity analysis with different values for the salinity and viscosity of the fluids,, oil and water, were done to investigate the effect of these properties on water/oil relative permeability, residual oil saturation and oil recovery. Experiments were conducted on core material from viscous/heavy and light oil fields. History matching core flood simulator was used to study how the relative permeability curves and end point saturations were affected by different fluid properties using several correlations. Results were compared with field data and literature data. The results indicate that there is a correlation between the oil viscosity and/or brine salinity and residual oil saturation and water relative permeability end point. Increasing oil viscosity reduces the Krw@Sor and increases Sor. The remaining oil saturation from laboratory measurements might be too high due to experimental procedures, capillary end effect and early termination of the experiment, especially when using heavy/viscous oil. Similarly the Krw@Sor may be too low. The effect of wettability on the observed results is also discussed. A consistent relationship has been drawn between the fluid parameters, water/oil relative permeability and residual saturations, and a descriptor may be derived to define different flow behaviors. The results of this work will have application to producing fields and the methodologies developed could have wider application to sandstone and carbonate reservoirs worldwide.Keywords: history matching core flood simulator, oil recovery, relative permeability, residual saturations
Procedia PDF Downloads 3371750 Design and Construction of a Home-Based, Patient-Led, Therapeutic, Post-Stroke Recovery System Using Iterative Learning Control
Authors: Marco Frieslaar, Bing Chu, Eric Rogers
Abstract:
Stroke is a devastating illness that is the second biggest cause of death in the world (after heart disease). Where it does not kill, it leaves survivors with debilitating sensory and physical impairments that not only seriously harm their quality of life, but also cause a high incidence of severe depression. It is widely accepted that early intervention is essential for recovery, but current rehabilitation techniques largely favor hospital-based therapies which have restricted access, expensive and specialist equipment and tend to side-step the emotional challenges. In addition, there is insufficient funding available to provide the long-term assistance that is required. As a consequence, recovery rates are poor. The relatively unexplored solution is to develop therapies that can be harnessed in the home and are formulated from technologies that already exist in everyday life. This would empower individuals to take control of their own improvement and provide choice in terms of when and where they feel best able to undertake their own healing. This research seeks to identify how effective post-stroke, rehabilitation therapy can be applied to upper limb mobility, within the physical context of a home rather than a hospital. This is being achieved through the design and construction of an automation scheme, based on iterative learning control and the Riener muscle model, that has the ability to adapt to the user and react to their level of fatigue and provide tangible physical recovery. It utilizes a SMART Phone and laptop to construct an iterative learning control (ILC) system, that monitors upper arm movement in three dimensions, as a series of exercises are undertaken. The equipment generates functional electrical stimulation to assist in muscle activation and thus improve directional accuracy. In addition, it monitors speed, accuracy, areas of motion weakness and similar parameters to create a performance index that can be compared over time and extrapolated to establish an independent and objective assessment scheme, plus an approximate estimation of predicted final outcome. To further extend its assessment capabilities, nerve conduction velocity readings are taken by the software, between the shoulder and hand muscles. This is utilized to measure the speed of response of neuron signal transfer along the arm and over time, an online indication of regeneration levels can be obtained. This will prove whether or not sufficient training intensity is being achieved even before perceivable movement dexterity is observed. The device also provides the option to connect to other users, via the internet, so that the patient can avoid feelings of isolation and can undertake movement exercises together with others in a similar position. This should create benefits not only for the encouragement of rehabilitation participation, but also an emotional support network potential. It is intended that this approach will extend the availability of stroke recovery options, enable ease of access at a low cost, reduce susceptibility to depression and through these endeavors, enhance the overall recovery success rate.Keywords: home-based therapy, iterative learning control, Riener muscle model, SMART phone, stroke rehabilitation
Procedia PDF Downloads 2641749 Effects of Sleep Deprivation on Athletic Performance in Nigeria Colleges of Education Games
Authors: Rasheed Owolabi Oloyede, Joseph Olusegun Adelusi, Seun Oluwadare
Abstract:
Sleep has been found to have many recuperative and restorative beneficial effects on athletic recovery. When a person is deprived of sleep this can have many effects on their immune and endocrine systems. Both of these systems are extremely important for the recovery process of any athlete and when we deprive ourselves of sleep, we are depriving ourselves of recovery. This study examined how sleep deprivation can hinder sport performance among selected athletes representing Adeyemi College of Education at Nigeria Colleges of Education Games (NICEGA) competitions at Minna. A total of 32 athletes were sampled for the study. They were exposed to two different activities. Each activity was performed before and after sleep deprivation, the activities were 100m dash, shuttle relay. The athletes were randomly assigned to two groups that are experimental and control groups. Pretest were conducted on both groups before apply treatment to the other group. A day before the activities to be performed the control group was denied of sleep between 10p.m to 5a.m for a period of 6 weeks. The analysis of the data showed that athletes performance in the two selected activities performed on equal basis before the sleep deprivation. After sleep deprivation the performance of experimental group was a little better than the control group that were denied of sleep. It was concluded that sleep allows the body to spend less energy resources on body processes needed while awake, it was concluded that sleep deprivation enables the body system work effectively. The body can expend needed energy, balance and adequate reaction time if it is allowed to have enough rest. Lack of adequate sleep results to dullness of the brain, nervousness and anxiety which all have negative effect on performance of activities by athletes. Based on the findings, it was recommended that extend nightly sleep for several week to reduce your sleep debt before competition. Maintain a low sleep debt by obtaining a sufficient amount of nightly sleep (seven to eight hours for adults, nine or more hours for teens and young adults). Keep a regular sleep-wake schedule, going to bed and waking up at the same times every day.Keywords: activities, deprivation, performance, sleep
Procedia PDF Downloads 3481748 Calculation of the Supersonic Air Intake with the Optimization of the Shock Wave System
Authors: Elena Vinogradova, Aleksei Pleshakov, Aleksei Yakovlev
Abstract:
During the flight of a supersonic aircraft under various conditions (altitude, Mach, etc.), it becomes necessary to coordinate the operating modes of the air intake and engine. On the supersonic aircraft, it’s been done by changing various control factors (the angle of rotation of the wedge panels and etc.). This paper investigates the possibility of using modern optimization methods to determine the optimal position of the supersonic air intake wedge panels in order to maximize the total pressure recovery coefficient. Modern software allows us to conduct auto-optimization, which determines the optimal position of the control elements of the investigated product to achieve its maximum efficiency. In this work, the flow in the supersonic aircraft inlet has investigated and optimized the operation of the flaps of the supersonic inlet in an aircraft in a 2-D setting. This work has done using ANSYS CFX software. The supersonic aircraft inlet is a flat adjustable external compression inlet. The braking surface is made in the form of a three-stage wedge. The IOSO NM software package was chosen for optimization. Change in the position of the panels of the input device is carried out by changing the angle between the first and second steps of the three-stage wedge. The position of the rest of the panels is changed automatically. Within the framework of the presented work, the position of the moving air intake panel was optimized under fixed flight conditions of the aircraft under a certain engine operating mode. As a result of the numerical modeling, the distribution of total pressure losses was obtained for various cases of the engine operation, depending on the incoming flow velocity and the flight altitude of the aircraft. The results make it possible to obtain the maximum total pressure recovery coefficient under given conditions. Also, the initial geometry was set with a certain angle between the first and second wedge panels. Having performed all the calculations, as well as the subsequent optimization of the aircraft input device, it can be concluded that the initial angle was set sufficiently close to the optimal angle.Keywords: optimal angle, optimization, supersonic air intake, total pressure recovery coefficient
Procedia PDF Downloads 2421747 The Effect of Online Analyzer Malfunction on the Performance of Sulfur Recovery Unit and Providing a Temporary Solution to Reduce the Emission Rate
Authors: Hamid Reza Mahdipoor, Mehdi Bahrami, Mohammad Bodaghi, Seyed Ali Akbar Mansoori
Abstract:
Nowadays, with stricter limitations to reduce emissions, considerable penalties are imposed if pollution limits are exceeded. Therefore, refineries, along with focusing on improving the quality of their products, are also focused on producing products with the least environmental impact. The duty of the sulfur recovery unit (SRU) is to convert H₂S gas coming from the upstream units to elemental sulfur and minimize the burning of sulfur compounds to SO₂. The Claus process is a common process for converting H₂S to sulfur, including a reaction furnace followed by catalytic reactors and sulfur condensers. In addition to a Claus section, SRUs usually consist of a tail gas treatment (TGT) section to decrease the concentration of SO₂ in the flue gas below the emission limits. To operate an SRU properly, the flow rate of combustion air to the reaction furnace must be adjusted so that the Claus reaction is performed according to stoichiometry. Accurate control of the air demand leads to an optimum recovery of sulfur during the flow and composition fluctuations in the acid gas feed. Therefore, the major control system in the SRU is the air demand control loop, which includes a feed-forward control system based on predetermined feed flow rates and a feed-back control system based on the signal from the tail gas online analyzer. The use of online analyzers requires compliance with the installation and operation instructions. Unfortunately, most of these analyzers in Iran are out of service for different reasons, like the low importance of environmental issues and a lack of access to after-sales services due to sanctions. In this paper, an SRU in Iran was simulated and calibrated using industrial experimental data. Afterward, the effect of the malfunction of the online analyzer on the performance of SRU was investigated using the calibrated simulation. The results showed that an increase in the SO₂ concentration in the tail gas led to an increase in the temperature of the reduction reactor in the TGT section. This increase in temperature caused the failure of TGT and increased the concentration of SO₂ from 750 ppm to 35,000 ppm. In addition, the lack of a control system for the adjustment of the combustion air caused further increases in SO₂ emissions. In some processes, the major variable cannot be controlled directly due to difficulty in measurement or a long delay in the sampling system. In these cases, a secondary variable, which can be measured more easily, is considered to be controlled. With the correct selection of this variable, the main variable is also controlled along with the secondary variable. This strategy for controlling a process system is referred to as inferential control" and is considered in this paper. Therefore, a sensitivity analysis was performed to investigate the sensitivity of other measurable parameters to input disturbances. The results revealed that the output temperature of the first Claus reactor could be used for inferential control of the combustion air. Applying this method to the operation led to maximizing the sulfur recovery in the Claus section.Keywords: sulfur recovery, online analyzer, inferential control, SO₂ emission
Procedia PDF Downloads 751746 Optimization of Gold Adsorption from Aqua-Regia Gold Leachate Using Baggase Nanoparticles
Authors: Oluwasanmi Teniola, Abraham Adeleke, Ademola Ibitoye, Moshood Shitu
Abstract:
To establish an economical and efficient process for the recovery of gold metal from refractory gold ore obtained from Esperando axis of Osun state Nigeria, the adsorption of gold (III) from aqua reqia leached solution of the ore using bagasse nanoparticles has been studied under various experimental variables using batch technique. The extraction percentage of gold (III) on the prepared bagasse nanoparticles was determined from its distribution coefficients as a function of solution pH, contact time, adsorbent, adsorbate concentrations, and temperature. The rate of adsorption of gold (III) on the prepared bagasse nanoparticles is dependent on pH, metal concentration, amount of adsorbate, stirring rate, and temperature. The adsorption data obtained fit into the Langmuir and Freundlich equations. Three different temperatures were used to determine the thermodynamic parameters of the adsorption of gold (III) on bagasse nanoparticles. The heat of adsorption was measured to be a positive value ΔHo = +51.23kJ/mol, which serves as an indication that the adsorption of gold (III) on bagasse nanoparticles is endothermic. Also, the negative value of ΔGo = -0.6205 kJ/mol at 318K shows the spontaneity of the process. As the temperature was increased, the value of ΔGo becomes more negative, indicating that an increase in temperature favors the adsorption process. With the application of optimal adsorption variables, the adsorption capacity of gold was 0.78 mg/g of the adsorbent, out of which 0.70 mg of gold was desorbed with 0.1 % thiourea solution.Keywords: adsorption, bagasse, extraction, nanoparticles, recovery
Procedia PDF Downloads 1541745 Thermal and Dielectric Breakdown Criterium for Low Voltage Switching Devices
Authors: Thomas Merciris, Mathieu Masquere, Yann Cressault, Pascale Petit
Abstract:
The goal of an alternative current (AC) switching device is to allow the arc (created during the opening phase of the contacts) to extinguish at the current zero. The plasma temperature rate of cooling down, the electrical characteristic of the arc (current-voltage), and the rise rate of the transient recovery voltage (TRV) are critical parameters which influence the performance of a switching device. To simulate the thermal extinction of the arc and to obtain qualitative data on the processes responsible for this phenomenon, a 1D MHD fluid model in the air was developed and coupled to an external electric circuit. After thermal extinction, the dielectric strength of the hot air (< 4kK) was then estimated by the Bolsig+ software and the critical electric fields method with the temperature obtained by the MHD simulation. The influence of copper Cu and silver Ag vapors was investigated on the thermal and dielectric part of the simulation with various current forms (100A to 1kA). Finally, those values of dielectric strength have been compared to the experimental values obtained in the case of two separating silver contacts. The preliminary results seem to indicate the dielectric strength after multiples hundreds of microseconds is the same order of magnitude as experimentally found.Keywords: MHD simulation, dielectric recovery, Bolsig+, silver vapors, copper vapors, breakers, electric arc
Procedia PDF Downloads 1141744 Data Collection Techniques for Robotics to Identify the Facial Expressions of Traumatic Brain Injured Patients
Authors: Chaudhary Muhammad Aqdus Ilyas, Matthias Rehm, Kamal Nasrollahi, Thomas B. Moeslund
Abstract:
This paper presents the investigation of data collection procedures, associated with robots when placed with traumatic brain injured (TBI) patients for rehabilitation purposes through facial expression and mood analysis. Rehabilitation after TBI is very crucial due to nature of injury and variation in recovery time. It is advantageous to analyze these emotional signals in a contactless manner, due to the non-supportive behavior of patients, limited muscle movements and increase in negative emotional expressions. This work aims at the development of framework where robots can recognize TBI emotions through facial expressions to perform rehabilitation tasks by physical, cognitive or interactive activities. The result of these studies shows that with customized data collection strategies, proposed framework identify facial and emotional expressions more accurately that can be utilized in enhancing recovery treatment and social interaction in robotic context.Keywords: computer vision, convolution neural network- long short term memory network (CNN-LSTM), facial expression and mood recognition, multimodal (RGB-thermal) analysis, rehabilitation, robots, traumatic brain injured patients
Procedia PDF Downloads 1551743 Determination of Inactivation and Recovery of Saccharomyces cerevisiae Cells after the Gas-Phase Plasma Treatment
Authors: Z. Herceg, V. Stulic, T. Vukusic, A. Rezek Jambrak
Abstract:
Gas phase plasma treatment is a new nonthermal technology used for food and water decontamination. In this study, we have investigated influence of the gas phase plasma treatment on yeast cells of S. cerevisiae. Sample was composed of 10 mL of yeast suspension and 190 mL of 0.01 M NaNO₃ with a medium conductivity of 100 µS/cm. Samples were treated in a glass reactor with a point- to-plate electrode configuration (high voltage electrode-titanium wire in the gas phase and grounded electrode in the liquid phase). Air or argon were injected into the headspace of the reactor at the gas flow of 5 L/min. Frequency of 60, 90 and 120 Hz, time of 5 and 10 min and positive polarity were defined parameters. Inactivation was higher with the applied higher frequency, longer treatment time and injected argon. Inactivation was not complete which resulted in complete recovery. Cellular leakage (260 nm and 280 nm) was higher with a longer treatment time and higher frequency. Leakage at 280 nm which defines a leakage of proteins was higher than leakage at 260 nm which defines a leakage of nucleic acids. The authors would like to acknowledge the support by Croatian Science Foundation and research project 'Application of electrical discharge plasma for preservation of liquid foods'.Keywords: Saccharomyces cerevisiae, inactivation, gas-phase plasma treatment, cellular leakage
Procedia PDF Downloads 2021742 Compared Psychophysiological Responses under Stress in Patients of Chronic Fatigue Syndrome and Depressive Disorder
Authors: Fu-Chien Hung, Chi‐Wen Liang
Abstract:
Background: People who suffer from chronic fatigue syndrome (CFS) frequently complain about continuous tiredness, weakness or lack of strength, but without apparent organic etiology. The prevalence rate of the CFS is nearly from 3% to 20%, yet more than 80% go undiagnosed or misdiagnosed as depression. The biopsychosocial model has suggested the associations among the CFS, depressive syndrome, and stress. This study aimed to investigate the difference between individuals with the CFS and with the depressive syndrome on psychophysiological responses under stress. Method: There were 23 participants in the CFS group, 14 participants in the depression group, and 23 participants in the healthy control group. All of the participants first completed the measures of demographic data, CFS-related symptoms, daily life functioning, and depressive symptoms. The participants were then asked to perform a stressful cognitive task. The participants’ psychophysiological responses including the HR, BVP and SC were measured during the task. These indexes were used to assess the reactivity and recovery rates of the automatic nervous system. Results: The stress reactivity of the CFS and depression groups was not different from that of the healthy control group. However, the stress recovery rate of the CFS group was worse than that of the healthy control group. Conclusion: The results from this study suggest that the CFS is a syndrome which can be independent from the depressive syndrome, although the depressive syndrome may include fatigue syndrome.Keywords: chronic fatigue syndrome, depression, stress response, misdiagnosis
Procedia PDF Downloads 4571741 A Review on Nuclear Desalination Technology
Authors: Aiswarya C. L, Swatantra Pratap Singh
Abstract:
In recent years, most desalination plants have been powered by fossil fuels, and to a lesser extent, by green energy. Greenhouse gases emitted by fossil-fuelled plants significantly impact the global climate. So scientists are forced to develop a powerful energy source to protect the environment with greater sustainability due to climate change issues. Nuclear energy can supply much more fresh water than what is currently available. Furthermore, it is more affordable and does not emit any greenhouse gases. This review compares conventional desalination plants with nuclear-powered desalination plants in terms of cost, energy consumption, water recovery, and environmental issues. On the basis of the review conducted, nuclear desalination has been demonstrated to be technically feasible and economically competitive with a variety of fossil fuels, renewable energy sources, and waste heat sources. Nuclear sources have been criticized due to their lack of safety. But studies show, if we were able to handle the issue with care, the problems could be eliminated. Here we're looking at the Seawater Reverse Osmosis Plant (SWROP) at Kudankulam Nuclear Power Plant in Tamil Nadu, India and review the further possibility of implementing nuclear desalination technology in other states of India.Keywords: energy consumption, environmental impacts, nuclear desalination, water recovery
Procedia PDF Downloads 2111740 Impact of Legs Geometry on the Efficiency of Thermoelectric Devices
Authors: Angel Fabian Mijangos, Jaime Alvarez Quintana
Abstract:
Key concepts like waste heat recycling or waste heat recovery are the basic ideas in thermoelectricity so as to the design the newest solid state sources of energy for a stable supply of electricity and environmental protection. According to several theoretical predictions; at device level, the geometry and configuration of the thermoelectric legs are crucial in the thermoelectric performance of the thermoelectric modules. Thus, in this work, it has studied the geometry effect of legs on the thermoelectric figure of merit ZT of the device. First, asymmetrical legs are proposed in order to reduce the overall thermal conductance of the device so as to increase the temperature gradient in the legs, as well as by harnessing the Thomson effect, which is generally neglected in conventional symmetrical thermoelectric legs. It has been developed a novel design of a thermoelectric module having asymmetrical legs, and by first time it has been validated experimentally its thermoelectric performance by realizing a proof-of-concept device which shows to have almost twofold the thermoelectric figure of merit as compared to conventional one. Moreover, it has been also varied the length of thermoelectric legs in order to analyze its effect on the thermoelectric performance of the device. Along with this, it has studied the impact of contact resistance in these systems. Experimental results show that device architecture can improve up to twofold the thermoelectric performance of the device.Keywords: asymmetrical legs, heat recovery, heat recycling, thermoelectric module, Thompson effect
Procedia PDF Downloads 2411739 Hypertensive Response to Maximal Exercise Test in Young and Middle Age Hypertensive on Blood Pressure Lowering Medication: Monotherapy vs. Combination Therapy
Authors: James Patrick A. Diaz, Raul E. Ramboyong
Abstract:
Background: Hypertensive response during maximal exercise test provides important information on the level of blood pressure control and evaluation of treatment. Method: A single center retrospective descriptive study was conducted among 117 young (aged 20 to 40) and middle age (aged 40 to 65) hypertensive patients, who underwent treadmill stress test. Currently on maintenance frontline medication either monotherapy (Angiotensin-converting enzyme inhibitor/Angiotensin receptor blocker [ACEi/ARB], Calcium channel blocker [CCB], Diuretic - Hydrochlorthiazide [HCTZ]) or combination therapy (ARB+CCB, ARB+HCTZ), who attained a maximal exercise on treadmill stress test (TMST) with hypertensive response (systolic blood pressure: male >210 mm Hg, female >190 mm Hg, diastolic blood pressure >100 mmHg, or increase of >10 mm Hg at any time during the test), on Bruce and Modified Bruce protocol. Exaggerated blood pressure response during exercise (systolic [SBP] and diastolic [DBP]), peak exercise blood pressure (SBP and DBP), recovery period (SBP and DBP) and test for ischemia and their antihypertensive medication/s were investigated. Analysis of variance and chi-square test were used for statistical analysis. Results: Hypertensive responses on maximal exercise test were seen mostly among female population (P < 0.000) and middle age (P < 0.000) patients. Exaggerated diastolic blood pressure responses were significantly lower in patients who were taking CCB (P < 0.004). A longer recovery period that showed a delayed decline in SBP was observed in patients taking ARB+HCTZ (P < 0.036). There were no significant differences in the level of exaggerated systolic blood pressure response and during peak exercise (both systolic and diastolic) in patients using either monotherapy or combination antihypertensives. Conclusion: Calcium channel blockers provided lower exaggerated diastolic BP response during maximal exercise test in hypertensive middle age patients. Patients on combination therapy using ARB+HCTZ exhibited a longer recovery period of systolic blood pressure.Keywords: antihypertensive, exercise test, hypertension, hyperytensive response
Procedia PDF Downloads 2841738 Quantifying Fatigue during Periods of Intensified Competition in Professional Ice Hockey Players: Magnitude of Fatigue in Selected Markers
Authors: Eoin Kirwan, Christopher Nulty, Declan Browne
Abstract:
The professional ice hockey season consists of approximately 60 regular season games with periods of fixture congestion occurring several times in the average season. These periods of congestion provide limited time for recovery, exposing the athletes to the risk of competing whilst not fully recovered. Although a body of research is growing with respect to monitoring fatigue, particularly during periods of congested fixtures in team sports such as rugby and soccer, it has received little to no attention thus far in ice hockey athletes. Consequently, there is limited knowledge on monitoring tools that might effectively detect a fatigue response and the magnitude of fatigue that can accumulate when recovery is limited by competitive fixtures. The benefit of quantifying and establishing fatigue status is the ability to optimise training and provide pertinent information on player health, injury risk, availability and readiness. Some commonly used methods to assess fatigue and recovery status of athletes include the use of perceived fatigue and wellbeing questionnaires, tests of muscular force and ratings of perceive exertion (RPE). These measures are widely used in popular team sports such as soccer and rugby and show promise as assessments of fatigue and recovery status for ice hockey athletes. As part of a larger study, this study explored the magnitude of changes in adductor muscle strength after game play and throughout a period of fixture congestion and examined the relationship between internal game load and perceived wellbeing with adductor muscle strength. Methods 8 professional ice hockey players from a British Elite League club volunteered to participate (age = 29.3 ± 2.49 years, height = 186.15 ± 6.75 cm, body mass = 90.85 ± 8.64 kg). Prior to and after competitive games each player performed trials of the adductor squeeze test at 0˚ hip flexion with the lead investigator using hand-held dynamometry. Rate of perceived exertion was recorded for each game and from data of total ice time individual session RPE was calculated. After each game players completed a 5- point questionnaire to assess perceived wellbeing. Data was collected from six competitive games, 1 practice and 36 hours post the final game, over a 10 – day period. Results Pending final data collection in February Conclusions Pending final data collection in February.Keywords: Conjested fixtures, fatigue monitoring, ice hockey, readiness
Procedia PDF Downloads 1421737 The Effects of Physiological Stress on Global and Regional Repolarisation in the Human Heart in Vivo
Authors: May Khei Hu, Kevin Leong, Fu Siong Ng, Nicholas Peter
Abstract:
Introduction: Sympathetic stimulation has been recognised as a potent stimulus of arrhythmogenesis in various cardiac pathologies, possibly by augmenting dispersion of repolarisation. The effects of sympathetic stimulation in healthy subjects however remain unclear. It is, therefore, crucial to first establish the effects of physiological stress on dispersion of repolarisation in healthy subjects before understanding these effects in pathological cardiac conditions. We hypothesised that activation-recovery interval (ARI; which is a surrogate of action potential duration) and dispersion of repolarisation decrease on sympathetic stimulation. Methods: Eight patients aged 18-55 years with structurally normal hearts underwent head-up tilt test (HUTT) and exercise tolerance test (ETT) while wearing the electrocardiographic imaging (ECGi) vest. Patients later underwent CT scan and the epicardial potentials are reconstructed using the ECGi software. Activation and recovery times were determined from the acquired electrograms. ARI was calculated and later corrected using Bazett’s formula. Global and regional dispersion of repolarisation were determined from standard deviation of the corrected ARI (ARIc). One-way analysis of variance (ANOVA) and Wilcoxon test were used to evaluate statistical significance. Results: Global ARIc increased significantly [p<0.01] when patients were tilted upwards but decreased significantly after five minutes [p<0.01]. A subsequent post- hoc analysis revealed that the decrease in R-R was more substantial compared to the change in ARI, resulting in the observed increase in ARIc. Global ARIc decreased on peak exercise [p<0.01] but increased on recovery [p<0.01]. Global dispersion increased significantly on peak exercise [p<0.05] although there were no significant changes in regional dispersion. There were no significant changes in both global and regional dispersion during tilt. Conclusion: ARIc decreases upon sympathetic stimulation in healthy subjects. Global dispersion of repolarisation increases upon exercise although there were no changes in global or regional dispersion during orthostatic stress.Keywords: dispersion of repolarisation, sympathetic stimulation, Head-up tilt test (HUTT), Exercise tolerance test (ETT), Electrocardiographic imaging (ECGi)
Procedia PDF Downloads 1971736 Control of Biofilm Formation and Inorganic Particle Accumulation on Reverse Osmosis Membrane by Hypochlorite Washing
Authors: Masaki Ohno, Cervinia Manalo, Tetsuji Okuda, Satoshi Nakai, Wataru Nishijima
Abstract:
Reverse osmosis (RO) membranes have been widely used for desalination to purify water for drinking and other purposes. Although at present most RO membranes have no resistance to chlorine, chlorine-resistant membranes are being developed. Therefore, direct chlorine treatment or chlorine washing will be an option in preventing biofouling on chlorine-resistant membranes. Furthermore, if particle accumulation control is possible by using chlorine washing, expensive pretreatment for particle removal can be removed or simplified. The objective of this study was to determine the effective hypochlorite washing condition required for controlling biofilm formation and inorganic particle accumulation on RO membrane in a continuous flow channel with RO membrane and spacer. In this study, direct chlorine washing was done by soaking fouled RO membranes in hypochlorite solution and fluorescence intensity was used to quantify biofilm on the membrane surface. After 48 h of soaking the membranes in high fouling potential waters, the fluorescence intensity decreased to 0 from 470 using the following washing conditions: 10 mg/L chlorine concentration, 2 times/d washing interval, and 30 min washing time. The chlorine concentration required to control biofilm formation decreased as the chlorine concentration (0.5–10 mg/L), the washing interval (1–4 times/d), or the washing time (1–30 min) increased. For the sample solutions used in the study, 10 mg/L chlorine concentration with 2 times/d interval, and 5 min washing time was required for biofilm control. The optimum chlorine washing conditions obtained from soaking experiments proved to be applicable also in controlling biofilm formation in continuous flow experiments. Moreover, chlorine washing employed in controlling biofilm with suspended particles resulted in lower amounts of organic (0.03 mg/cm2) and inorganic (0.14 mg/cm2) deposits on the membrane than that for sample water without chlorine washing (0.14 mg/cm2 and 0.33 mg/cm2, respectively). The amount of biofilm formed was 79% controlled by continuous washing with 10 mg/L of free chlorine concentration, and the inorganic accumulation amount decreased by 58% to levels similar to that of pure water with kaolin (0.17 mg/cm2) as feed water. These results confirmed the acceleration of particle accumulation due to biofilm formation, and that the inhibition of biofilm growth can almost completely reduce further particle accumulation. In addition, effective hypochlorite washing condition which can control both biofilm formation and particle accumulation could be achieved.Keywords: reverse osmosis, washing condition optimization, hypochlorous acid, biofouling control
Procedia PDF Downloads 3511735 Repairing Broken Trust: The Influence of Positive Induced Emotion and Gender
Authors: Zach Banzon, Marina Caculitan, Gianne Laisac, Stephanie Lopez, Marguerite Villegas
Abstract:
The role of incidental positive emotions and gender on people’s trust decisions have been established by existing research. The aim of this experiment is to address the gap in the literature by examining whether these factors will have a similar effect on trust behavior even after the experience of betrayal. A total of 144 undergraduate students participated in a trust game involving the anonymous interaction of a participant and a transgressor. Of these participants, only 125 (63 males and 62 females) were included in the data analyses. A story was used to prime incidental positive emotions or emotions originally unrelated to the trustee. Recovered trust was measured by relating the proportion of the money passed before and after betrayal. Data was analyzed using two-way analysis of variance having two levels for gender (male, female) and two for priming (with, without), with trust propensity scores entered as a covariate. It was predicted that trust recovery will be more apparent in females than in males but the data obtained was not significantly different between the genders. Induced positive emotions, however, had a statistically significant effect on trust behavior even after betrayal. No significant interaction effect was found between induced positive emotion and gender. The experiment provides evidence that the manipulation of situational variables, to a certain extent, can facilitate the reparation of trust.Keywords: gender effect, positive emotions, trust game, trust recovery
Procedia PDF Downloads 2711734 Recovery of Polyphenolic Phytochemicals From Greek Grape Pomace (Vitis Vinifera L.)
Authors: Christina Drosou, Konstantina E. Kyriakopoulou, Andreas Bimpilas, Dimitrios Tsimogiannis, Magdalini C. Krokida
Abstract:
Rationale: Agiorgitiko is one of the most widely-grown and commercially well-established red wine varieties in Greece. Each year viticulture industry produces a large amount of waste consisting of grape skins and seeds (pomace) during a short period. Grapes contain polyphenolic compounds which are partially transferred to wine during winemaking. Therefore, winery wastes could be an alternative cheap source for obtaining such compounds with important antioxidant activity. Specifically, red grape waste contains anthocyanins and flavonols which are characterized by multiple biological activities, including cardioprotective, anti-inflammatory, anti-carcinogenic, antiviral and antibacterial properties attributed mainly to their antioxidant activity. Ultrasound assisted extraction (UAE) is considered an effective way to recover phenolic compounds, since it combines the advantage of mechanical effect with low temperature. Moreover, green solvents can be used in order to recover extracts intended for used in the food and nutraceutical industry. Apart from the extraction, pre-treatment process like drying can play an important role on the preservation of the grape pomace and the enhancement of its antioxidant capacity. Objective: The aim of this study is to recover natural extracts from winery waste with high antioxidant capacity using green solvents so they can be exploited and utilized as enhancers in food or nutraceuticals. Methods: Agiorgitiko grape pomace was dehydrated by air drying (AD) and accelerated solar drying (ASD) in order to explore the effect of the pre-treatment on the recovery of bioactive compounds. UAE was applied in untreated and dried samples using water and water: ethanol (1:1) as solvents. The total antioxidant potential and phenolic content of the extracts was determined using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay and Folin-Ciocalteu method, respectively. Finally, the profile of anthocyanins and flavonols was specified using HPLC-DAD analysis. The efficiency of processes was determined in terms of extraction yield, antioxidant activity, phenolic content and the anthocyanins and flavovols profile. Results & Discussion: The experiments indicated that the pre-treatment was essential for the recovery of highly nutritious compounds from the pomace as long as the extracts samples showed higher phenolic content and antioxidant capacity. Water: ethanol (1:1) was considered a more effective solvent on the recovery of phenolic compounds. Moreover, ASD grape pomace extracted with the solvent system exhibited the highest antioxidant activity (IC50=0.36±0.01mg/mL) and phenolic content (TPC=172.68±0.01mgGAE/g dry extract), followed by AD and untreated pomace. The major compounds recovered were malvidin3-O-glucoside and quercetin3-O-glucoside according to the HPLC analysis. Conclusions: Winery waste can be exploited for the recovery of nutritious compounds using green solvents such as water or ethanol. The pretreatment of the pomace can significantly affect the concentration of phenolic compounds, while UAE is considered a highly effective extraction process.Keywords: agiorgitico grape pomace, antioxidants, phenolic compounds, ultrasound assisted extraction
Procedia PDF Downloads 3931733 Spectrum of Acute Kidney Injury in Obstetrics
Authors: Seema Chopra, Amandeep Kaur, Vanita Suri, Shalini Gainder, Minakshi Rohilla
Abstract:
Background: Acute kidney injury (AKI) associated with pregnancy is a serious medical complication which can lead to significant maternal as well as perinatal morbidity and mortality. Material and methods: This prospective observational study was carried out in the Obstetrics and Gynaecology department and dialysis unit of Nephrology department of PGIMER, Chandigarh from July 2013 to June 2014. Forty antenatal/postnatal/postabortal patients who fulfilled the AKIN criteria were enrolled in the study. All patients were followed up till 3 months postpartum. Results: Majority of the patients 23/40 (57.5%) with AKI presented in postpartum period, 14/40 (35%) developed AKI in antenatal period, and 3/40 (7.5%) were postabortal. AKI was attributable mostly to sepsis in 11/40 (27.5%) and PPH in 5/40 (12.5%). Hypertension and its complications causing AKI included eclampsia in 5/40 (12.5%) followed by 3/40 (7.5%) as HELLP syndrome and abruption placentae in 2/40(5%) patients. Three patients each (7.5%) had AFLP, TMA, and HEV as the cause of AKI. Renal replacement therapy in the form of hemodialysis was the treatment in majority of them (28 (70%)). After the acute event, 25 (62.5%) had complete recovery of their renal functions at 3 months follow up. Maternal mortality was seen in 25% (n=10) of the study patients. Conclusion: Timely initiation of RRT in patients with AKI associated with pregnancy has a good maternal outcome in the form of complete recovery of renal functions in 62.5% (25/40) of patients.Keywords: AKI, dialysis, hypertension, sepsis, renal parameters
Procedia PDF Downloads 1621732 Geochemical Evaluation of Metal Content and Fluorescent Characterization of Dissolved Organic Matter in Lake Sediments
Authors: Fani Sakellariadou, Danae Antivachis
Abstract:
Purpose of this paper is to evaluate the environmental status of a coastal Mediterranean lake, named Koumoundourou, located in the northeastern coast of Elefsis Bay, in the western region of Attiki in Greece, 15 km far from Athens. It is preserved from ancient times having an important archaeological interest. Koumoundourou lake is also considered as a valuable wetland accommodating an abundant flora and fauna, with a variety of bird species including a few world’s threatened ones. Furthermore, it is a heavily modified lake, affected by various anthropogenic pollutant sources which provide industrial, urban and agricultural contaminants. The adjacent oil refineries and the military depot are the major pollution providers furnishing with crude oil spills and leaks. Moreover, the lake accepts a quantity of groundwater leachates from the major landfill of Athens. The environmental status of the lake results from the intensive land uses combined with the permeable lithology of the surrounding area and the existence of karstic springs which discharge calcareous mountains. Sediment samples were collected along the shoreline of the lake using a Van Veen grab stainless steel sampler. They were studied for the determination of the total metal content and the metal fractionation in geochemical phases as well as the characterization of the dissolved organic matter (DOM). These constituents have a significant role in the ecological consideration of the lake. Metals may be responsible for harmful environmental impacts. The metal partitioning offers comprehensive information for the origin, mode of occurrence, biological and physicochemical availability, mobilization and transport of metals. Moreover, DOM has a multifunctional importance interacting with inorganic and organic contaminants leading to biogeochemical and ecological effects. The samples were digested using microwave heating with a suitable laboratory microwave unit. For the total metal content, the samples were treated with a mixture of strong acids. Then, a sequential extraction procedure was applied for the removal of exchangeable, carbonate hosted, reducible, organic/sulphides and residual fractions. Metal content was determined by an ICP-MS (Perkin Elmer, ICP MASS Spectrophotometer NexION 350D). Furthermore, the DOM was removed via a gentle extraction procedure and then it was characterized by fluorescence spectroscopy using a Perkin-Elmer LS 55 luminescence spectrophotometer equipped with the WinLab 4.00.02 software for data processing (Agilent, Cary Eclipse Fluorescence). Mono dimensional emission, excitation, synchronous-scan excitation and total luminescence spectra were recorded for the classification of chromophoric units present in the aqueous extracts. Total metal concentrations were determined and compared with those of the Elefsis gulf sediments. Element partitioning showed the anthropogenic sources and the contaminant bioavailability. All fluorescence spectra, as well as humification indices, were evaluated in detail to find out the nature and origin of DOM. All the results were compared and interpreted to evaluate the environmental quality of Koumoundourou lake and the need for environmental management and protection.Keywords: anthropogenic contaminant, dissolved organic matter, lake, metal, pollution
Procedia PDF Downloads 1571731 The Comparison and Optimization of the Analytic Method for Canthaxanthin, Food Colorants
Authors: Hee-Jae Suh, Kyung-Su Kim, Min-Ji Kim, Yeon-Seong Jeong, Ok-Hwan Lee, Jae-Wook Shin, Hyang-Sook Chun, Chan Lee
Abstract:
Canthaxanthin is keto-carotenoid produced from beta-carotene and it has been approved to be used in many countries as a food coloring agent. Canthaxanthin has been analyzed using High Performance Liquid Chromatography (HPLC) system with various ways of pretreatment methods. Four official methods for verification of canthaxanthin at FSA (UK), AOAC (US), EFSA (EU) and MHLW (Japan) were compared to improve its analytical and the pretreatment method. The Linearity, the limit of detection (LOD), the limit of quantification (LOQ), the accuracy, the precision and the recovery ratio were determined from each method with modification in pretreatment method. All HPLC methods exhibited correlation coefficients of calibration curves for canthaxanthin as 0.9999. The analysis methods from FSA, AOAC, and MLHW showed the LOD of 0.395 ppm, 0.105 ppm, and 0.084 ppm, and the LOQ of 1.196 ppm, 0.318 ppm, 0.254 ppm, respectively. Among tested methods, HPLC method of MHLW with modification in pretreatments was finally selected for the analysis of canthaxanthin in lab, because it exhibited the resolution factor of 4.0 and the selectivity of 1.30. This analysis method showed a correlation coefficients value of 0.9999 and the lowest LOD and LOQ. Furthermore, the precision ratio was lower than 1 and the accuracy was almost 100%. The method presented the recovery ratio of 90-110% with modification in pretreatment method. The cross-validation of coefficient variation was 5 or less among tested three institutions in Korea.Keywords: analytic method, canthaxanthin, food colorants, pretreatment method
Procedia PDF Downloads 6831730 Measuring Resource Recovery and Environmental Benefits of Global Waste Management System Using the Zero Waste Index
Authors: Atiq Uz Zaman
Abstract:
Sustainable waste management is one of the major global challenges that we face today. A poor waste management system not only symbolises the inefficiency of our society but also depletes valuable resources and emits pollutions to the environment. Presently, we extract more natural resources than ever before in order to meet the demand for constantly growing resource consumption. It is estimated that around 71 tonnes of ‘upstream’ materials are used for every tonne of MSW. Therefore, resource recovery from waste potentially offsets a significant amount of upstream resource being depleted. This study tries to measure the environmental benefits of global waste management systems by applying a tool called the Zero Waste Index (ZWI). The ZWI measures the waste management performance by accounting for the potential amount of virgin material that can be offset by recovering resources from waste. In addition, the ZWI tool also considers the energy, GHG and water savings by offsetting virgin materials and recovering energy from waste. This study analyses the municipal solid waste management system of 172 countries from all over the globe and the population covers in the study is 3.37 billion. This study indicates that we generated around 1.47 billion tonnes (436kg/cap/year) of municipal solid waste each year and the waste generation is increasing over time. This study also finds a strong and positive correlation (R2=0.29, p = < .001) between income (GDP/capita/year) and amount of waste generated (kg/capita/year). About 84% of the waste is collected globally and only 15% of the collected waste is recycled. The ZWI of the world is measured in this study of 0.12, which means that the current waste management system potentially offsets only 12% of the total virgin material substitution potential from waste. Annually, an average person saved around 219kWh of energy, emitted around 48kg of GHG and saved around 38l of water. Findings of this study are very important to measure the current waste management performance in a global context. In addition, the study also analysed countries waste management performance based on their income level.Keywords: global performance, material substitution; municipal waste, resource recovery, waste management, zero waste index
Procedia PDF Downloads 244