Search results for: physico-chemical properties
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9082

Search results for: physico-chemical properties

2542 Comparison of Entropy Coefficient and Internal Resistance of Two (Used and Fresh) Cylindrical Commercial Lithium-Ion Battery (NCR18650) with Different Capacities

Authors: Sara Kamalisiahroudi, Zhang Jianbo, Bin Wu, Jun Huang, Laisuo Su

Abstract:

The temperature rising within a battery cell depends on the level of heat generation, the thermal properties and the heat transfer around the cell. The rising of temperature is a serious problem of Lithium-Ion batteries and the internal resistance of battery is the main reason for this heating up, so the heat generation rate of the batteries is an important investigating factor in battery pack design. The delivered power of a battery is directly related to its capacity, decreases in the battery capacity means the growth of the Solid Electrolyte Interface (SEI) layer which is because of the deposits of lithium from the electrolyte to form SEI layer that increases the internal resistance of the battery. In this study two identical cylindrical Lithium-Ion (NCR18650)batteries from the same company with noticeable different in capacity (a fresh and a used battery) were compared for more focusing on their heat generation parameters (entropy coefficient and internal resistance) according to Brandi model, by utilizing potentiometric method for entropy coefficient and EIS method for internal resistance measurement. The results clarify the effect of capacity difference on cell electrical (R) and thermal (dU/dT) parameters. It can be very noticeable in battery pack design for its Safety.

Keywords: heat generation, Solid Electrolyte Interface (SEI), potentiometric method, entropy coefficient

Procedia PDF Downloads 449
2541 Characterization of Zn-Ni Alloy Elaborated Under Low and High Magnetic Field Immersed in Corrosive Medium

Authors: Sabiha Chouchane, Azzedine Hani, Jean-Paul Chopart, Alexandra Levesque

Abstract:

The electrodeposition of Zn-Ni alloy is mostly studied for its high degree of corrosion and mechanical properties. In this work, the zinc–nickel alloy coatings elaborated from sulfate bath have been carried out under low and high applied magnetic field. The effect of alloy stuctural parameters upon corrosion behavior is studied. It has been found that the magnetically induced convection changes the phase composition, promoting the zinc phase in spite of the γ-Ni₅Zn₂₁. Low magnetic field acts also on the morphology of the deposits as a levelling agent and a refiner by lowering the deposit roughness Ra and the spot size. For alloy obtained with low magnetic field (up to 1T) superimposition, surface morphology modification has no significant influence on corrosion behavior whereas for low nickel content alloy, the modification of phase composition, induced by applied magnetic field, favours higher polarization resistance. When high magnetic field amplitude is involved (up to12T), the phase composition modifications are the same that for low applied B and the morphology is not largely modified. In this case, the hydrogen reduction current dramatically decreases that leads to a large shift of the corrosion potential. It is suggested that the surface reactivity of electrodeposited alloys depends on the magnetically induced convection that is efficient during the codeposition process.

Keywords: magnetic field, Zn-Ni alloy, corrosion, corrosive medium

Procedia PDF Downloads 32
2540 Assessing the Impact of Urbanization on Flood Risk: A Case Study

Authors: Talha Ahmed, Ishtiaq Hassan

Abstract:

Urban areas or metropolitan is portrayed by the very high density of population due to the result of these economic activities. Some critical elements, such as urban expansion and climate change, are driving changes in cities with exposure to the incidence and impacts of pluvial floods. Urban communities are recurrently developed by huge spaces by which water cannot enter impermeable surfaces, such as man-made permanent surfaces and structures, which do not cause the phenomena of infiltration and percolation. Urban sprawl can result in increased run-off volumes, flood stage and flood extents during heavy rainy seasons. The flood risks require a thorough examination of all aspects affecting to severe an event in order to accurately estimate their impacts and other risk factors associated with them. For risk evaluation and its impact due to urbanization, an integrated hydrological modeling approach is used on the study area in Islamabad (Pakistan), focusing on a natural water body that has been adopted in this research. The vulnerability of the physical elements at risk in the research region is analyzed using GIS and SOBEK. The supervised classification of land use containing the images from 1980 to 2020 is used. The modeling of DEM with selected return period is used for modeling a hydrodynamic model for flood event inundation. The selected return periods are 50,75 and 100 years which are used in flood modeling. The findings of this study provided useful information on high-risk places and at-risk properties.

Keywords: urbanization, flood, flood risk, GIS

Procedia PDF Downloads 160
2539 Development of Light-Weight Fibre-Based Materials for Building Envelopes

Authors: René Čechmánek, Vladan Prachař, Ludvík Lederer, Jiří Loskot

Abstract:

Thin-walled elements with a matrix set on a base of high-valuable Portland cement with dispersed reinforcement from alkali-resistant glass fibres are used in a range of applications as claddings of buildings and infrastructure constructions as well as various architectural elements of residential buildings. Even if their elementary thickness and therefore total weight is quite low, architects and building companies demand on even further decreasing of the bulk density of these fibre-cement elements for the reason of loading elimination of connected superstructures and easier assembling in demand conditions. By the means of various kinds of light-weight aggregates it is possible to achieve light-weighing of thin-walled fibre-cement composite elements. From the range of possible fillers with different material properties granulated expanded glass worked the best. By the means of laboratory testing an effect of two fillers based on expanded glass on the fibre reinforced cement composite was verified. Practical applicability was tested in the production of commonly manufactured glass fibre reinforced concrete elements, such as channels for electrical cable deposition, products for urban equipment and especially various cladding elements. Even if these are not structural elements, it is necessary to evaluate also strength characteristics and resistance to environment for their durability in certain applications.

Keywords: fibre-cement composite, granulated expanded glass, light-weighing

Procedia PDF Downloads 280
2538 Phytochemical Study and Antimicrobial Activity of Nigella sativa L. (Renunculaceae) in Algeria

Authors: L. Bendifallah, F. Acheuk, M. Djouabi, M. Oukili, R. Ghezraoui, W. Lakhdari, R. Allouane

Abstract:

Nigella sativa L. (Renunculaceae) native to the Mediterranean region and Western Asia, Black cumin is grown to India, through Sudan and Ethiopia. It is widely cultivated in Egypt, the Middle East, Saudi Arabia, Turkey, Sudan, Afghanistan and Europe. It is among the most important medicinal plants in Algeria that is known for its antifungal and antimicrobial properties. Despite its plethora of uses for treating various diseases, it has garnered very little scientific interest so far, particularly in Algeria. For this study, the seeds of Algerian Nigella sativa L cultivated in the area of Magra (M’sila) in northern Algeria, were collected in summer. In such a propitious context, the aim of this study was to enhance Nigella sativa as a medicinal herb. The phytochemical screening methods are used. For their antimicrobial activity, extracts of tannin and polyphenols were screened against four pathogenic bacterial strains and two pathogenic yeast strains. The phytochemical analysis results showed a remarkable combination of chemical components including a high content in tannins, in flavonoïds, and in alkaloids. The tannins and the polyphenols have strong antimicrobial activity against all the species. The maximum zone of inhibition was noted for polyphenol and tannin extracts against Escerichia coli (14 mm, 12.33 mm) and an antifungic activity against Aspergillus niger (11.66 mm, 9 mm). These results indicate to some benefits of Nigella sativa seeds which can use to treatment the microbial infection.

Keywords: Nigella sativa, phytochemistry, antimicrobial activity, Algeria

Procedia PDF Downloads 306
2537 Phytochemical Study and Antimicrobial Activity of Nigella Sativa L. (Renunculaceae) in Algeria

Authors: L. Bendifallah, F.Acheuk, M. Djouabi, M. Oukili, R. Ghezraoui, W. Lakhdari, R. Allouane

Abstract:

Nigella sativa L. (Renunculaceae) native to the Mediterranean region and Western Asia, Black cumin is grown to India, through Sudan and Ethiopia. It is widely cultivated in Egypt, the Middle East, Saudi Arabia, Turkey, Sudan, Afghanistan and Europe. It is among the most important medicinal plants in Algeria that is known for its antifungal and antimicrobial properties. Despite its plethora of uses for treating various diseases, it has garnered very little scientific interest so far, particularly in Algeria. For this study, the seeds of Algerian Nigella sativa L cultivated in the area of Magra (M’sila) in northern Algeria, were collected in summer. In such a propitious context, the aim of this study was to enhance Nigella sativa as a medicinal herb. The phytochemical screening methods are used. For their antimicrobial activity, extracts of tannin and polyphenols were screened against four pathogenic bacterial strains and two pathogenic yeast strains. The phytochemical analysis results showed a remarkable combination of chemical components including a high content in tannins, in flavonoïds, and in alkaloids. The tannins and the polyphenols have strong antimicrobial activity against all the species. The maximum zone of inhibition was noted for polyphenol and tannin extracts against Escerichia coli (14 mm, 12.33 mm) and an antifungic activity against Aspergillus niger (11.66 mm, 9 mm). These results indicate to some benefits of Nigella sativa seeds which can use to treatment the microbial infection.

Keywords: Algeria, antimicrobial activity, Nigella sativa, phytochemistry

Procedia PDF Downloads 549
2536 Microbial Load of Fecal Material of Broiler Birds Administered with Lagenaria Breviflora Extract

Authors: Adeleye O. O., T. M. Obuotor, A. O. Kolawole, I. O. Opowoye, M. I. Olasoju, L. T. Egbeyale, R. A. Ajadi

Abstract:

This study investigated the effect of Lagenaria breviflora on broiler poultry birds, including its effect on the microbial count of the poultry droppings. A total of 240-day-old broiler chicks were randomly assigned to six groups, with four replicates per group. The first group was the control, while the other four groups were fed water containing 300g/L and 500g/L concentrations of Lagenaria breviflora twice and thrice daily. The microbial load was determined using the plate count method. The results showed that the administration of Lagenaria breviflora in the water of broiler birds significantly improved their growth performance with an average weight gain range of 1.845g - 2.241g. Mortality rate was at 0%. The study also found that Lagenaria breviflora had a significant effect on the microbial count of the poultry droppings with colony count values from 3.5 x 10-7 - 9.9 x10-7CFU/ml, The total coliforms (Escherichia coli, and Salmonella sp.) was obtained as 1 x 10 -5CFU/ml. The reduction in microbial counts of the poultry droppings could be attributed to the antimicrobial properties of Lagenaria breviflora, which contain phytochemicals reported to possess antimicrobial activity. Therefore, the inclusion of Lagenaria breviflora in the diets of broiler poultry could be an effective strategy for improving growth performance and immune function and reducing the microbial load of poultry droppings, which can help to mitigate the risk of disease transmission to humans and other animals.

Keywords: gut microbes, bacterial count, lagenaria breviflora, coliforms

Procedia PDF Downloads 81
2535 Characterization of High Carbon Ash from Pulp and Paper mill for Potential Utilization

Authors: Ruma Rano, Firoza Sultana, Bishal Bhuyan, Nurul Alam Mazumder

Abstract:

Fly ash collected from Cachar Paper Mill, Assam, India has been thoroughly characterized in respect of its physico-chemical, morphological and mineralogical features were concerned by using density, LOI, FTIR, XRD, SEM-EDS etc. The results reveal that there is a striking difference in the features and properties of the coarser and finer fractions .The high carbon ash consists of large unburnt carbon (chars), irregular carbonaceous particles in the coarser fraction, which appear to be porous and may be used as domestic fuel. The percentage of char albeit the carbon content decreases with decrease in size of particles. The various fractions essentially contain quartz and mullite as the main mineral phases. For suggesting the potential utilization channels, number of experiments were performed correlating the total characteristic features. Water holding capacities of different size classified fractions were determined, the coarser fractions have unexpectedly higher water holding capacities than the finer ones. An attempt has been made to correlate the results obtained with potential use in agriculture. Another potential application of coarser particles is used as adsorbent for effluents containing waste organic materials. Thus thorough characterization leads to not only a definite direction about the uses of the value added components but also gives useful information regarding the prevailing combustion process.

Keywords: chars, porous, water holding capacity, combustion process

Procedia PDF Downloads 350
2534 A New Correlation Between SPT-N and SSPT-N values for Various Soil Types in Peninsular Malaysia

Authors: Abdull Halim

Abstract:

The Standard Penetration Test (SPT-N) is the most common in situ test for soil investigations. The Shearing Seismic Standard Penetration Test (SSPT-N), on the other hand, is a new method using shearing wave with propagation exponent equation between the shearing wave, Vs., and hardness, N values without any need for borehole data. Due to the fast and accurate results that can be obtained, the SSPT has found many applications such as in the field rectification buried pipe line, the acid tank settlement and foundation design analyses, and the quality control assessment. Many geotechnical regimes and properties have attempted to correlate both the SSPT and the SPT-N values. Various foundation design methods have been developed based on the outcomes of these tests. Hence, it is pertinent to correlate these tests so that either one of the test can be used in the absence of the other, especially for preliminary evaluation and design purposes. The primary purpose of this study was to investigate the relationship between the SSPT-N and SPT-N values for different types of cohesive soil in Peninsular Malaysia. Data were collected from four different sites, and the correlations were established between the hardness N values, principal stress-strain Mohr circle curve, cohesion, friction angle and vertical effective stress. A positive exponent relationship was found between the shearing wave, sVs., and the hardness N values of the soil. In general, the SSPT-N value was slightly lower than the SPT-N value due to the upper limit boundary of the soil layer.

Keywords: InsituSoil determination; shearing wave; hardness; correlation, SSPT-N, SPT-N

Procedia PDF Downloads 170
2533 Influence of Displacement Amplitude and Vertical Load on the Horizontal Dynamic and Static Behavior of Helical Wire Rope Isolators

Authors: Nicolò Vaiana, Mariacristina Spizzuoco, Giorgio Serino

Abstract:

In this paper, the results of experimental tests performed on a Helical Wire Rope Isolator (HWRI) are presented in order to describe the dynamic and static behavior of the selected metal device in three different displacements ranges, namely small, relatively large, and large displacements ranges, without and under the effect of a vertical load. A testing machine, allowing to apply horizontal displacement or load histories to the tested bearing with a constant vertical load, has been adopted to perform the dynamic and static tests. According to the experimental results, the dynamic behavior of the tested device depends on the applied displacement amplitude. Indeed, the HWRI displays a softening and a hardening stiffness at small and relatively large displacements, respectively, and a stronger nonlinear stiffening behavior at large displacements. Furthermore, the experimental tests reveal that the application of a vertical load allows to have a more flexible device with higher damping properties and that the applied vertical load affects much less the dynamic response of the metal device at large displacements. Finally, a decrease in the static to dynamic effective stiffness ratio with increasing displacement amplitude has been observed.

Keywords: base isolation, earthquake engineering, experimental hysteresis loops, wire rope isolators

Procedia PDF Downloads 421
2532 Preservative Potentials of Piper Guineense on Roma Tomato (Solanum lycopersicum) Fruit

Authors: Grace O. Babarinde, Adegoke O.Gabriel, Rahman Akinoso, Adekanye Bosede R.

Abstract:

Health risks associated with the use of synthetic chemicals to control post-harvest losses in fruit calls for use of natural biodegradable compounds. The potential of Piper guineense as postharvest preservative for Roma tomato (Solanum lycopersicum L.) was investigated. Freshly harvested red tomato (200 g) was dipped into five concentrations (1, 2, 3, 4 and 5% w/v) of P. guineense aqueous extract, while untreated fruits served as control. The samples were stored under refrigeration and analysed at 5-day interval for physico-chemical properties. P. guineense essential oil (EO) was characterised using GC-MS and its tomato preservative potential was evaluated. Percentage weight loss (PWL) in extract-treated tomato ranged from 0.0-0.68% compared to control (0.3-19.97%) during storage. Values obtained for firmness ranged from 8.23-16.88 N and 8.4 N in extract-treated and control. pH reduced from 5.4 to 4.5 and 3.7 in extract-treated and untreated samples, respectively. Highest value of Total Soluble Solid (1.8 °Brix) and maximum retention of Ascorbic acid (13.0 mg/100 g) were observed in 4% P. guineense-treated samples. Predominant P. guineense EO components were zingiberene (9.9%), linalool (10.7%), β-caryophyllene (12.6%), 1, 5-Heptadiene, 6-methyl-2-(4-methyl-3-cyclohexene-l-yl) (16.4%) and β-sesquiphellandrene (23.7%). Tomatoes treated with EO had lower PWL (5.2%) and higher firmness (14.2 N) than controls (15.3% and 11.9 N) respectively. The result indicates that P. guineense can be incorporated in to post harvest technology of Roma tomato fruit.

Keywords: aqueous extract, essential oil, piper guineense, Roma tomato, storage condition

Procedia PDF Downloads 453
2531 In Vivo Evaluation of the Therapeutic Effect on Intestinal Disorders by Thermophilic Streptococcus Isolated from Camel Milk

Authors: A. T. Laiche, M. L. Tlil, Benine B., S. Bechoua

Abstract:

The aim of this study is to isolate and select, from camel milk from El-Oued region in Algeria, a strains of lactic acid bacteria and possessing probiotic properties ; and to evaluate their potential effect on intestinal disorders in Wistar ratsmThe results relating to the selection of probiotic strains confirms that the Thermophilic streptococcus exhibits the best probiotic activity performance, with a resistance important to different degrees of pH and to bile salts, and a remarkable antibacterial activity and resistance to antibiotics compared to the other four isolated strains. In the in vivo study, diseases are induced in rats at the level of the digestive system, it was reported that the administration of Escherichia coli and castor oil caused an intestinal disorders. The microscopic observation of the histological section of the intestine showed a damaged intestinal structure and some symptoms of its irritation, including a decrease in the height of the villi and the presence of others destroyed cells, and after treatment with Streptococcus thermophilus, the microscopic observation of the cut of the histological section of the intestine showed almost complete disappearance of the mentioned symptoms, The dosage of the hematological parameters by complete blood count (CBC) is in agreement with the results of the histological sections.

Keywords: camel milk, probiotic, pathogenic bacteria, intestinal disorders, lactic acid bacteria

Procedia PDF Downloads 144
2530 Synthesis, Crystallography and Anti-TB Activity of Substituted Benzothiazole Analogues

Authors: Katharigatta N. Venugopala, Melendhran Pillay, Bander E. Al-Dhubiab

Abstract:

Tuberculosis (TB) infection is caused mainly by Mycobacterium tuberculosis (MTB) and it is one of the most threatening and wide spread infectious diseases in the world. Benzothiazole derivatives are found to have diverse chemical reactivity and broad spectrum of pharmacological activity. Some of the important pharmacological activities shown by the benzothiazole analogues are antitumor, anti-inflammatory, antimicrobial, anti-tubercular, anti-leishmanial, anticonvulsant and anti-HIV properties. Keeping all these facts in mind in the present investigation it was envisaged to synthesize a series of novel {2-(benzo[d]-thiazol-2-yl-methoxy)-substitutedaryl}-(substitutedaryl)-methanones (4a-f) and characterize by IR, NMR (1H and 13C), HRMS and single crystal x-ray studies. The title compounds are investigated for in vitro anti-tubercular activity against two TB strains such as H37Rv (ATCC 25177) and MDR-MTB (multi drug resistant MTB resistant to Isoniazid, Rifampicin and Ethambutol) by agar diffusion method. Among the synthesized compounds in the series, test compound {2-(benzo[d]thiazol-2-yl-methoxy)-5-fluorophenyl}-(4-chlorophenyl)-methanone (2c) was found to exhibit significant activity with MICs of 1 µg/mL and 2 µg/mL against H37Rv and MDR-MTB, respectively when compared to standard drugs. Single crystal x-ray studies was used to study intra and intermolecular interactions, including polymorphism behavior of the test compounds, but none of the compounds exhibited polymorphism behavior.

Keywords: benzothiazole analogues, characterization, crystallography, anti-TB activity

Procedia PDF Downloads 266
2529 Investigating the Potential for Introduction of Warm Mix Asphalt in Kuwait Using the Volcanic Ash

Authors: H. Al-Baghli, F. Al-Asfour

Abstract:

The current applied asphalt technology for Kuwait roads pavement infrastructure is the hot mix asphalt (HMA) pavement, including both pen grade and polymer modified bitumen (PMBs), that is produced and compacted at high temperature levels ranging from 150 to 180 °C. There are no current specifications for warm and cold mix asphalts in Kuwait’s Ministry of Public Works (MPW) asphalt standard and specifications. The process of the conventional HMA is energy intensive and directly responsible for the emission of greenhouse gases and other environmental hazards into the atmosphere leading to significant environmental impacts and raising health risk to labors at site. Warm mix asphalt (WMA) technology, a sustainable alternative preferred in multiple countries, has many environmental advantages because it requires lower production temperatures than HMA by 20 to 40 °C. The reduction of temperatures achieved by WMA originates from multiple technologies including foaming and chemical or organic additives that aim to reduce bitumen and improve mix workability. This paper presents a literature review of WMA technologies and techniques followed by an experimental study aiming to compare the results of produced WMA samples, using a water containing additive (foaming process), at different compaction temperatures with the HMA control volumetric properties mix designed in accordance to the new MPW’s specifications and guidelines.

Keywords: warm-mix asphalt, water-bearing additives, foaming-based process, chemical additives, organic additives

Procedia PDF Downloads 113
2528 Electrodynamic Principles for Generation and Wireless Transfer of Energy

Authors: Steven D. P. Moore

Abstract:

An electrical discharge in the air induces an electromagnetic (EM) wave capable of wireless transfer, reception, and conversion back into electrical discharge at a distant location. Following Norton’s ground wave principles, EM wave radiation (EMR) runs parallel to the Earth’s surface. Energy in an EMR wave can move through the air and be focused to create a spark at a distant location, focused by a receiver to generate a local electrical discharge. This local discharge can be amplified and stored but also has the propensity to initiate another EMR wave. In addition to typical EM waves, lightning is also associated with atmospheric events, trans-ionospheric pulse pairs, the most powerful natural EMR signal on the planet. With each lightning strike, regardless of global position, it generates naturally occurring pulse-pairs that are emitted towards space within a narrow cone. An EMR wave can self-propagate, travel at the speed of light, and, if polarized, contain vector properties. If this reflective pulse could be directed by design through structures that have increased probabilities for lighting strikes, it could theoretically travel near the surface of the Earth at light speed towards a selected receiver for local transformation into electrical energy. Through research, there are several influencing parameters that could be modified to model, test, and increase the potential for adopting this technology towards the goal of developing a global grid that utilizes natural sources of energy.

Keywords: electricity, sparkgap, wireless, electromagnetic

Procedia PDF Downloads 174
2527 Failure Mechanisms in Zirconium Alloys during Wear and Corrosion

Authors: Bharat Kumar, Deepak Kumar, Vijay Chaudhry

Abstract:

Zirconium alloys are used as core components of nuclear reactors due to their high wear resistance, good corrosion properties, and good mechanical stability at high temperatures. Water flows inside the pressure tube through fuel claddings, which produces vibration of these core components and results in the wear of some components. Some components are subjected to the environment of coolant water containing LiOH which results in the corrosion of these components. The present work simulates some of these conditions to determine the failure mechanisms under these conditions and the effect of various parameters on them. Friction and wear experiments were performed varying the surrounding environment (room temperature, high temperature, and water submerged), duration, frequency, and displacement amplitude. Electrochemical corrosion experiments were performed by varying the concentration of LiOH in water. The worn and corroded surfaces were analyzed using scanning electron microscopy (SEM) to analyze the wear and corrosion mechanism and energy dispersive x-ray spectroscopy (EDS) and Raman spectroscopy to analyze the tribo-oxide layer formed during the wear and oxide layer formed during the corrosion. Wear increases with frequency and amplitude, and corrosion increases with LiOH concentration in water.

Keywords: zirconium alloys, wear, oxide layer, corrosion, EIS, linear polarization

Procedia PDF Downloads 48
2526 Effect of Nanoparticles Concentration, pH and Agitation on Bioethanol Production by Saccharomyces cerevisiae BY4743: An Optimization Study

Authors: Adeyemi Isaac Sanusi, Gueguim E. B. Kana

Abstract:

Nanoparticles have received attention of the scientific community due to their biotechnological potentials. They exhibit advantageous size, shape and concentration-dependent catalytic, stabilizing, immunoassays and immobilization properties. This study investigates the impact of metallic oxide nanoparticles (NPs) on ethanol production by Saccharomyces cerevisiae BY4743. Nine different nanoparticles were synthesized using precipitation method and microwave treatment. The nanoparticles synthesized were characterized by Fourier Transform Infra-Red spectroscopy (FTIR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Fermentation processes were carried out at varied NPs concentrations (0 – 0.08 wt%). Highest ethanol concentrations were achieved after 24 h using Cobalt NPs (5.07 g/l), Copper NPs (4.86 g/l) and Manganese NPs (4.74 g/l) at 0.01 wt% NPs concentrations, which represent 13%, 8.7% and 5.4% increase respectively over the control (4.47 g/l). The lowest ethanol concentration (0.17 g/l) was obtained when 0.08 wt% of Silver NPs was used. And lower ethanol concentrations were observed at higher NPs concentration. Ethanol concentration decrease after 24 h for all the processes. In all set up with NPs, the pH was observed to be stable and the stability was directly proportional to nanoparticles concentrations. These findings suggest that the presence of some of the NPs in the bioprocesses has catalytic and pH stabilizing potential. Ethanol production by Saccharomyces cerevisiae BY4743 was enhanced in the presence of Cobalt NPs, Copper NPs and Manganese NPs. Optimization study using response surface methodology (RSM) will further elucidate the impact of these nanoparticles on bioethanol production.

Keywords: agitation, bioethanol, nanoparticles concentration, optimization, pH value

Procedia PDF Downloads 170
2525 Theoretical Investigation of the Origin of Interfacial Ferromagnetism of (LaNiO₃)n/(CaMnO₃)m Superlattices

Authors: Jiwuer Jilili, Iogann Tolbatov, Mousumi U. Kahaly

Abstract:

Metal to insulator transition and interfacial magnetism of the LaNiO₃ based superlattice are main interest due to thickness dependent electronic response and tunable magnetic behavior. We investigate the structural, electronic, and magnetic properties of recently experimentally synthesized (LaNiO₃)n/(CaMnO₃)m superlattices with varying LaNiO₃ thickness using density functional theory. The effect of the on-site Coulomb interaction is discussed. In switching from zero to finite U value for Ni atoms, LaNiO₃ shows transitions from half-metallic to metallic character, while spinning ordering changes from paramagnetic to ferromagnetic (FM). For CaMnO₃, U < 3 eV on Mn atoms results in G-type anti-FM spin ordering whereas increasing U value yields FM ordering. In superlattices, metal to insulator transition was achieved with a reduction of LaNiO₃ thickness. The system with one layer of LaNiO₃ yields insulating character. Increasing LaNiO₃ to two layers and above results in the onset of the metallic character with a major contribution from Ni and Mn 3d eg states. Our results for interfacial ferromagnetism, induced Ni magnetic moments and novel antiferromagnetically coupled Ni atoms are consistent with the recent experimental findings. The possible origin of the emergent magnetism is proposed in terms of the exchange interaction and Anderson localization.

Keywords: density functional theory, interfacial magnetism, metal-insulator transition, Ni magnetism.

Procedia PDF Downloads 212
2524 Independent Control over Surface Charge and Wettability Using Polyelectrolyte Architecture

Authors: Shanshan Guo, Xiaoying Zhu, Dominik Jańczewski, Koon Gee Neoh

Abstract:

Surface charge and wettability are two prominent physical factors governing cell adhesion and have been extensively studied in the literature. However, a comparison between the two driving forces in terms of their independent and cooperative effects in affecting cell adhesion is rarely explored on a systematic and quantitative level. Herein, we formulate a protocol which allows two-dimensional and independent control over both surface charge and wettability. This protocol enables the unambiguous comparison of the effects of these two properties on cell adhesion. This strategy is implemented by controlling both the relative thickness of polyion layers in the layer-by-layer assembly and the polyion side chain chemical structures. The 2D property matrix spans surface isoelectric point ranging from 5 to 9 and water contact angle from 35º to 70º, with other interferential factors (e.g. roughness) eliminated. The interplay between these two surface variables influences 3T3 fibroblast cell adhesion. The results show that both surface charge and wettability have an effect on its adhesion. The combined effects of positive charge and hydrophilicity led to the highest cell adhesion whereas negative charge and hydrophobicity led to the lowest cell adhesion. Our design strategy can potentially form the basis for studying the distinct behaviors of electrostatic force or wettability driven interfacial phenomena and serving as a reference in future studies assessing cell adhesion to surfaces with known charge and wettability within the property range studied here.

Keywords: cell adhesion, layer-by-layer, surface charge, surface wettability

Procedia PDF Downloads 254
2523 The Role of Graphene Oxide on Titanium Dioxide Performance for Photovoltaic Applications

Authors: Abdelmajid Timoumi, Salah Alamri, Hatem Alamri

Abstract:

TiO₂ Graphene Oxide (TiO₂-GO) nanocomposite was prepared using the spin coating technique of suspension of Graphene Oxide (GO) nanosheets and Titanium Tetra Isopropoxide (TIP). The prepared nanocomposites samples were characterized by X-ray diffractometer, Scanning Electron Microscope and Atomic Force Microscope to examine their structures and morphologies. UV-vis transmittance and reflectance spectroscopy was employed to estimate band gap energies. From the TiO₂-GO samples, a 0.25 μm thin layer on a piece of glass 2x2 cm was created. The X-ray diffraction analysis revealed that the as-deposited layers are amorphous in nature. The surface morphology images demonstrate that the layers grew in distributed with some spherical/rod-like and partially agglomerated TiGO on the surface of the composite. The Atomic Force Microscopy indicated that the films are smooth with slightly larger surface roughness. The analysis of optical absorption data of the layers showed that the values of band gap energy decreased from 3.46 eV to 1.40 eV, depending on the grams of GO doping. This reduction might be attributed to electron and/or hole trapping at the donor and acceptor levels in the TiO₂ band structure. Observed results have shown that the inclusion of GO in the TiO₂ matrix have exhibited significant and excellent properties, which would be promising for application in the photovoltaic application.

Keywords: titanium dioxide, graphene oxide, thin films, solar cells

Procedia PDF Downloads 147
2522 Industrial Applications of Additive Manufacturing and 3D Printing Technology: A Review from South Africa Perspective

Authors: Micheal O. Alabi

Abstract:

Additive manufacturing (AM) is the official industry standard term (ASTM F2792) for all applications of the technology which is also known as 3D printing technology. It is defined as the process of joining materials to make objects from 3D model data, and it is usually layer upon layer, as opposed to subtractive manufacturing methodologies. This technology has gained significant interest within the academic, research institute and industry because of its ability to create complex geometries with customizable material properties. Despite the late adoption of the technology, additive manufacturing has been active in South Africa for past 21 years and it is predicted that additive manufacturing technology will play a significant and game-changing role in the fourth industrial revolution and in particular it promises to play an ever-growing role in efforts to re-industrialize the economy of South Africa. At the end of 2006, there are approximately ninety 3D printers in South Africa and in 2015 it was estimated that there are 3500 additive manufacturing systems and 3D printers in circulation in South Africa. A reasonable number of these additive manufacturing machines are in the high end of the market, in science councils and higher education institutions and this shows that the future of additive manufacturing in South Africa is very brighter compared to other African countries. This paper reviews the past and current industrial applications of additive manufacturing in South Africa from the academic research and industry perspective and what are the benefits of this technology to manufacturing companies and industrial sectors in the country.

Keywords: additive manufacturing, 3D printing technology, industrial applications, manufacturing

Procedia PDF Downloads 457
2521 Synthesis of Amorphous Nanosilica Anode Material from Philippine Waste Rice Hull for Lithium Battery Application

Authors: Emie A. Salamangkit-Mirasol, Rinlee Butch M. Cervera

Abstract:

Rice hull or rice husk (RH) is an agricultural waste obtained from milling rice grains. Since RH has no commercial value and is difficult to use in agriculture, its volume is often reduced through open field burning which is an environmental hazard. In this study, amorphous nanosilica from Philippine waste RH was prepared via acid precipitation method. The synthesized samples were fully characterized for its microstructural properties. X-ray diffraction pattern reveals that the structure of the prepared sample is amorphous in nature while Fourier transform infrared spectrum showed the different vibration bands of the synthesized sample. Scanning electron microscopy (SEM) and particle size analysis (PSA) confirmed the presence of agglomerated silica particles. On the other hand, transmission electron microscopy (TEM) revealed an amorphous sample with grain sizes of about 5 to 20 nanometer range and has about 95 % purity according to EDS analyses. The elemental mapping also suggests that leaching of rice hull ash effectively removed the metallic impurity such as potassium element in the material. Hence, amorphous nanosilica was successfully prepared via a low-cost acid precipitation method from Philippine waste rice hull. In addition, initial electrode performance of the synthesized samples as an anode material in Lithium Battery have been investigated.

Keywords: agricultural waste, anode material, nanosilica, rice hull

Procedia PDF Downloads 271
2520 Phenolic Compounds and Antimicrobial Properties of Pomegranate (Punica granatum) Peel Extracts

Authors: P. Rahnemoon, M. Sarabi Jamab, M. Javanmard Dakheli, A. Bostan

Abstract:

In recent years, tendency to use of natural antimicrobial agents in food industry has increased. Pomegranate peels containing phenolic compounds and anti-microbial agents, are counted as valuable source for extraction of these compounds. In this study, the extraction of pomegranate peel extract was carried out at different ethanol/water ratios (40:60, 60:40, and 80:20), temperatures (25, 40, and 55 ˚C), and time durations (20, 24, and 28 h). The extraction yield, phenolic compounds, flavonoids, and anthocyanins were measured. ‎Antimicrobial activity of pomegranate peel extracts were determined against some food-borne ‎microorganisms such as Salmonella enteritidis, Escherichia coli, Listeria monocytogenes, ‎‎Staphylococcus aureus, Aspergillus niger, and Saccharomyces cerevisiae by agar diffusion and MIC methods. Results showed that at ethanol/water ratio 60:40, 25 ˚C and 24 h maximum amount of phenolic compounds ‎(‎‎349.518‎‏ ‏mg gallic acid‏/‏g dried extract), ‎flavonoids (250.124 mg rutin‏/‏g dried extract), anthocyanins (252.047 ‎‏‏mg ‎cyanidin‎3‎glucoside‏/‏‎100 g dried extract), and the strongest antimicrobial activity were obtained. ‎All extracts’ antimicrobial activities were demonstrated against every tested ‎‎microorganisms.‎Staphylococcus aureus showed the highest sensitivity among the tested ‎‎‎microorganisms.

Keywords: antimicrobial agents, phenolic compounds, pomegranate peel, solvent extraction‎

Procedia PDF Downloads 244
2519 Selected Ethnomedicinal Plants of Northern Surigao Del Sur: Their Antioxidant Activities in Terms of Total Phenolics, ABTS Radical Cation Decolorization Power, and Ferric Reducing Ability

Authors: Gemma A. Gruyal

Abstract:

Plants can contain a wide variety of substances with antioxidative properties which are associated to important health benefits. These positive health effects are of great importance at a time when the environment is laden with many toxic substances. Five selected herbal plants namely, Mimosa pudica, Phyllanthus niruri, Ceiba pentandra, Eleusine polydactyla and Trema amboinensis, were chosen for the experiment to investigate their total phenolics content and antioxidant activities using ABTS radical cation decolorization power, and ferric reducing antioxidant power. The total phenolic content of each herbal plants ranges from 0.84 to 42.59 mg gallic acid equivalent/g. The antioxidant activity in the ABTS radical cation decolorization power varies from 0.005 to 0.362 mg trolox equivalent/g and the FRAP ranges from 0.30 to 28.42 mg gallic acid equivalent/g. Among the five medicinal plants, Mimosa pudica has been an excellent performer in terms of the 3 parameters measured; it is followed by Phyllanthus niruri. The five herbal plants do not have equivalent antioxidant power. The relative high values for M. pudica and P. niruri supports the medicinal value of both plants. The total phenolics, ABTS and FRAP correlate strongly with one another.

Keywords: ABTS, FRAP, Leaf extracts, phenol

Procedia PDF Downloads 419
2518 Highly Sensitive Nanostructured Chromium Oxide Sensor for Analysis of Diabetic Patient’s Breath

Authors: Nipin Kohli, Ravi Chand Singh

Abstract:

Diabetes mellitus is a serious illness and can be life-threatening if left untreated. Acetone present in the exhaled breath of a diabetic person is a biomarker of patients suffering from diabetes mellitus and is higher than its usual concentration present in the breath of healthy people. In the present work, a portable gas sensor system based on chromium oxide (Cr₂O₃) nanoparticles has been developed that can analyze diabetic patient’s breath. Undoped and indium (In) doped Cr₂O₃ nanoparticles were synthesized by a chemical route and characterized by X-ray diffraction, scanning electron microscopy, Raman spectroscopy, UV-visible spectroscopy, and photoluminescence spectroscopy for their structural, morphological and optical properties. Thick film gas sensors were fabricated out of synthesized samples. To diagnose diabetes, the sensors’ response to low concentrations of acetone was measured, and it was found that the addition of indium dramatically enhances the acetone gas sensing response. Moreover, the fabricated sensors were highly stable, reproducible and resistant to humidity. Enhancement of sensor response of doped sensors towards acetone can be ascribed to increase in defects due to addition of a dopant, and it was found that in-doped Cr₂O₃ sensors are more useful for analysis of breath of diabetic patients.

Keywords: Diabetes mellitus, nanoparticles, raman spectroscopy, sensor

Procedia PDF Downloads 132
2517 Investigation of an Alkanethiol Modified Au Electrode as Sensor for the Antioxidant Activity of Plant Compounds

Authors: Dana A. Thal, Heike Kahlert, Fritz Scholz

Abstract:

Thiol molecules are known to easily form self-assembled monolayers (SAM) on Au surfaces. Depending on the thiol’s structure, surface modifications via SAM can be used for electrode sensor development. In the presented work, 1-decanethiol coated polycrystalline Au electrodes were applied to indirectly assess the radical scavenging potential of plant compounds and extracts. Different plant compounds with reported antioxidant properties as well as an extract from the plant Gynostemma pentaphyllum were tested for their effectiveness to prevent SAM degradation on the sensor electrodes via photolytically generated radicals in aqueous media. The SAM degradation was monitored over time by differential pulse voltammetry (DPV) measurements. The results were compared to established antioxidant assays. The obtained data showed an exposure time and concentration dependent degradation process of the SAM at the electrode’s surfaces. The tested substances differed in their capacity to prevent SAM degradation. Calculated radical scavenging activities of the tested plant compounds were different for different assays. The presented method poses a simple system for radical scavenging evaluation and, considering the importance of the test system in antioxidant activity evaluation, might be taken as a bridging tool between in-vivo and in-vitro antioxidant assay in order to obtain more biologically relevant results in antioxidant research.

Keywords: alkanethiol SAM, plant antioxidant, polycrystalline Au, radical scavenger

Procedia PDF Downloads 286
2516 Resistance to Sulfuric Acid Attacks of Self-Consolidating Concrete: Effect Metakaolin and Various Cements Types

Authors: Kianoosh Samimi, Farhad Estakhr, Mahdi Mahdikhani, Faramaz Moodi

Abstract:

Due to their fluidity and simplicity of use, self-compacting concretes (SCCs) have undeniable advantages. In recent years, the role of metakaolin as a one of pozzolanic materials in concrete has been considered by researchers. It can modify various properties of concrete, due to high pozzolanic reactions and also makes a denser microstructure. The objective of this paper is to examine the influence of three type of Portland cement and metakaolin on fresh state, compressive strength and sulfuric acid attacks in self- consolidating concrete at early age up to 90 days of curing in lime water. Six concrete mixtures were prepared with three types of different cement as Portland cement type II, Portland Slag Cement (PSC), Pozzolanic Portland Cement (PPC) and 15% substitution of metakaolin by every cement. The results show that the metakaolin admixture increases the viscosity and the demand amount of superplasticizer. According to the compressive strength results, the highest value of compressive strength was achieved for PSC and without any metakaolin at age of 90 days. Conversely, the lowest level of compressive strength at all ages of conservation was obtained for PPC and containing 15% metakaolin. According to this study, the total substitution of PSC and PPC by Portland cement type II is beneficial to the increasing in the chemical resistance of the SCC with respect to the sulfuric acid attack. On the other hand, this increase is more noticeable by the use of 15% of metakaolin. Therefore, it can be concluded that metakaolin has a positive effect on the chemical resistance of SCC containing of Portland cement type II, PSC, and PPC.

Keywords: SCC, metakaolin, cement type, durability, compressive strength, sulfuric acid attacks

Procedia PDF Downloads 175
2515 The Utilization of FSI Technique and Two-Way Particle Coupling System on Particle Dynamics in the Human Alveoli

Authors: Hassan Athari, Abdurrahim Bolukbasi, Dogan Ciloglu

Abstract:

This study represented the respiratory alveoli system, and determined the trajectory of inhaled particles more accurately using the modified three-dimensional model with deformable walls of alveoli. The study also considered the tissue tension in the model to demonstrate the effect of lung. Tissue tensions are transferred by the lung parenchyma and produce the pressure gradient. This load expands the alveoli and establishes a sub-ambient (vacuum) pressure within the lungs. Thus, at the alveolar level, the flow field and movement of alveoli wall lead to an integrated effect. In this research, we assume that the three-dimensional alveolus has a visco-elastic tissue (walls). For accurate investigation of pulmonary tissue mechanical properties on particle transport and alveolar flow field, the actual relevance between tissue movement and airflow is solved by two-way FSI (Fluid Structure Interaction) simulation technique in the alveolus. Therefore, the essence of real simulation of pulmonary breathing mechanics can be achieved by developing a coupled FSI computational model. We, therefore conduct a series of FSI simulations over a range of tissue models and breathing rates. As a result, the fluid flows and streamlines have changed during present flexible model against the rigid models and also the two-way coupling particle trajectories have changed against the one-way particle coupling.

Keywords: FSI, two-way particle coupling, alveoli, CDF

Procedia PDF Downloads 238
2514 Natural Frequency Analysis of Spinning Functionally Graded Cylindrical Shells Subjected to Thermal Loads

Authors: Esmaeil Bahmyari

Abstract:

The natural frequency analysis of the functionally graded (FG) rotating cylindrical shells subjected to thermal loads is studied based on the three-dimensional elasticity theory. The temperature-dependent assumption of the material properties is graded in the thickness direction, which varies based on the simple power law distribution. The governing equations and the appropriate boundary conditions, which include the effects of initial thermal stresses, are derived employing Hamilton’s principle. The initial thermo-mechanical stresses are obtained by the thermo-elastic equilibrium equation’s solution. As an efficient and accurate numerical tool, the differential quadrature method (DQM) is adopted to solve the thermo-elastic equilibrium equations, free vibration equations and natural frequencies are obtained. The high accuracy of the method is demonstrated by comparison studies with those existing solutions in the literature. Ultimately, the parametric studies are performed to demonstrate the effects of boundary conditions, temperature rise, material graded index, the thickness-to-length and the aspect ratios for the rotating cylindrical shells on the natural frequency.

Keywords: free vibration, DQM, elasticity theory, FG shell, rotating cylindrical shell

Procedia PDF Downloads 67
2513 Luminescence and Local Environment: Identification of Thermal History

Authors: Veronique Jubera, Guillaume Salek, Manuel Gaudon, Alain Garcia, Alain Demourgues

Abstract:

Luminescence of transition metal and rare earth elements cover ultraviolet to far infrared wavelengths. Applications of phosphors are numerous. One can cite lighting, sensing, laser, energy, medical or military applications. But regarding each domain, specific criteria are required and they can be achieved with a strong control of the chemical composition. Emission of doped materials can be tailored with modifications of the local environment of the cations. For instance, the increase of the crystal field effect shifts the divalent manganese radiative transitions from the green to the red color. External factor as heat-treatment can induce changes of the doping element location or modify the unit cell crystalline symmetry. By controlling carefully the synthesis route, it is possible to initiate emission shift and to establish the thermal history of a compound. We propose to demonstrate through the luminescence of divalent manganese and trivalent rare earth doped oxide, that it is possible to follow the thermal history of a material. After optimization of the synthesis route, structural and optical properties are discussed. Finally, thermal calibration graphs are successfully established on these doped compounds. This makes these materials promising probe for thermal sensing.

Keywords: emission, thermal sensing, transition metal, rare eath element

Procedia PDF Downloads 371