Search results for: MQL technique
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6577

Search results for: MQL technique

97 Synthesis, Growth, Characterization and Quantum Chemical Investigations of an Organic Single Crystal: 2-Amino- 4-Methylpyridinium Quinoline- 2-Carboxylate

Authors: Anitha Kandasamy, Thirumurugan Ramaiah

Abstract:

Interestingly, organic materials exhibit large optical nonlinearity with quick responses and having the flexibility of molecular tailoring using computational modelling and favourable synthetic methodologies. Pyridine based organic compounds and carboxylic acid contained aromatic compounds play a crucial role in crystal engineering of NCS complexes that displays admirable optical nonlinearity with fast response and favourable physicochemical properties such as low dielectric constant, wide optical transparency and large laser damage threshold value requires for optoelectronics device applications. Based on these facts, it was projected to form an acentric molecule of π-conjugated system interaction with appropriately replaced electron donor and acceptor groups for achieving higher SHG activity in which quinoline-2-carboyxlic acid is chosen as an electron acceptor and capable of acting as an acid as well as a base molecule, while 2-amino-4-methylpyridine is used as an electron donor and previously employed in numerous proton transfer complexes for synthesis of NLO materials for optoelectronic applications. 2-amino-4-mehtylpyridinium quinoline-2-carboxylate molecular complex (2AQ) is having π-donor-acceptor groups in which 2-amino-4-methylpyridine donates one of its electron to quinoline -2-carboxylic acid thereby forming a protonated 2-amino-4-methyl pyridinium moiety and mono ionized quinoline-2-carboxylate moiety which are connected via N-H…O intermolecular interactions with non-centrosymmetric crystal packing arrangement at microscopic scale is accountable to the enhancement of macroscopic second order NLO activity. The 2AQ crystal was successfully grown by a slow evaporation solution growth technique and its structure was determined in orthorhombic crystal system with acentric, P212121, space group. Hirshfeld surface analysis reveals that O…H intermolecular interactions primarily contributed with 31.0 % to the structural stabilization of 2AQ. The molecular structure of title compound has been confirmed by 1H and 13C NMR spectral studies. The vibrational modes of functional groups present in 2AQ have been assigned by using FTIR and FT-Raman spectroscopy. The grown 2AQ crystal exhibits high optical transparency with lower cut-off wavelength (275 nm) within the region of 275-1500 nm. The laser study confirmed that 2AQ exhibits high SHG efficiency of 12.6 times greater than that of KDP. TGA-DTA analysis revealed that 2AQ crystal had a thermal stability of 223 °C. The low dielectric constant and low dielectric loss at higher frequencies confirmed good crystalline nature with fewer defects of grown 2AQ crystal. The grown crystal exhibits soft material and positive photoconduction behaviour. Mulliken atomic distribution and FMOs analysis suggested that the strong intermolecular hydrogen bonding which lead to the enhancement of NLO activity. These properties suggest that 2AQ crystal is a suitable material for optoelectronic and laser frequency conversion applications.

Keywords: crystal growth, NLO activity, proton transfer complex, quantum chemical investigation

Procedia PDF Downloads 122
96 Remote Sensing of Urban Land Cover Change: Trends, Driving Forces, and Indicators

Authors: Wei Ji

Abstract:

This study was conducted in the Kansas City metropolitan area of the United States, which has experienced significant urban sprawling in recent decades. The remote sensing of land cover changes in this area spanned over four decades from 1972 through 2010. The project was implemented in two stages: the first stage focused on detection of long-term trends of urban land cover change, while the second one examined how to detect the coupled effects of human impact and climate change on urban landscapes. For the first-stage study, six Landsat images were used with a time interval of about five years for the period from 1972 through 2001. Four major land cover types, built-up land, forestland, non-forest vegetation land, and surface water, were mapped using supervised image classification techniques. The study found that over the three decades the built-up lands in the study area were more than doubled, which was mainly at the expense of non-forest vegetation lands. Surprisingly and interestingly, the area also saw a significant gain in surface water coverage. This observation raised questions: How have human activities and precipitation variation jointly impacted surface water cover during recent decades? How can we detect such coupled impacts through remote sensing analysis? These questions led to the second stage of the study, in which we designed and developed approaches to detecting fine-scale surface waters and analyzing coupled effects of human impact and precipitation variation on the waters. To effectively detect urban landscape changes that might be jointly shaped by precipitation variation, our study proposed “urban wetscapes” (loosely-defined urban wetlands) as a new indicator for remote sensing detection. The study examined whether urban wetscape dynamics was a sensitive indicator of the coupled effects of the two driving forces. To better detect this indicator, a rule-based classification algorithm was developed to identify fine-scale, hidden wetlands that could not be appropriately detected based on their spectral differentiability by a traditional image classification. Three SPOT images for years 1992, 2008, and 2010, respectively were classified with this technique to generate the four types of land cover as described above. The spatial analyses of remotely-sensed wetscape changes were implemented at the scales of metropolitan, watershed, and sub-watershed, as well as based on the size of surface water bodies in order to accurately reveal urban wetscape change trends in relation to the driving forces. The study identified that urban wetscape dynamics varied in trend and magnitude from the metropolitan, watersheds, to sub-watersheds in response to human impacts at different scales. The study also found that increased precipitation in the region in the past decades swelled larger wetlands in particular while generally smaller wetlands decreased mainly due to human development activities. These results confirm that wetscape dynamics can effectively reveal the coupled effects of human impact and climate change on urban landscapes. As such, remote sensing of this indicator provides new insights into the relationships between urban land cover changes and driving forces.

Keywords: urban land cover, human impact, climate change, rule-based classification, across-scale analysis

Procedia PDF Downloads 308
95 Decoding Kinematic Characteristics of Finger Movement from Electrocorticography Using Classical Methods and Deep Convolutional Neural Networks

Authors: Ksenia Volkova, Artur Petrosyan, Ignatii Dubyshkin, Alexei Ossadtchi

Abstract:

Brain-computer interfaces are a growing research field producing many implementations that find use in different fields and are used for research and practical purposes. Despite the popularity of the implementations using non-invasive neuroimaging methods, radical improvement of the state channel bandwidth and, thus, decoding accuracy is only possible by using invasive techniques. Electrocorticography (ECoG) is a minimally invasive neuroimaging method that provides highly informative brain activity signals, effective analysis of which requires the use of machine learning methods that are able to learn representations of complex patterns. Deep learning is a family of machine learning algorithms that allow learning representations of data with multiple levels of abstraction. This study explores the potential of deep learning approaches for ECoG processing, decoding movement intentions and the perception of proprioceptive information. To obtain synchronous recording of kinematic movement characteristics and corresponding electrical brain activity, a series of experiments were carried out, during which subjects performed finger movements at their own pace. Finger movements were recorded with a three-axis accelerometer, while ECoG was synchronously registered from the electrode strips that were implanted over the contralateral sensorimotor cortex. Then, multichannel ECoG signals were used to track finger movement trajectory characterized by accelerometer signal. This process was carried out both causally and non-causally, using different position of the ECoG data segment with respect to the accelerometer data stream. The recorded data was split into training and testing sets, containing continuous non-overlapping fragments of the multichannel ECoG. A deep convolutional neural network was implemented and trained, using 1-second segments of ECoG data from the training dataset as input. To assess the decoding accuracy, correlation coefficient r between the output of the model and the accelerometer readings was computed. After optimization of hyperparameters and training, the deep learning model allowed reasonably accurate causal decoding of finger movement with correlation coefficient r = 0.8. In contrast, the classical Wiener-filter like approach was able to achieve only 0.56 in the causal decoding mode. In the noncausal case, the traditional approach reached the accuracy of r = 0.69, which may be due to the presence of additional proprioceptive information. This result demonstrates that the deep neural network was able to effectively find a representation of the complex top-down information related to the actual movement rather than proprioception. The sensitivity analysis shows physiologically plausible pictures of the extent to which individual features (channel, wavelet subband) are utilized during the decoding procedure. In conclusion, the results of this study have demonstrated that a combination of a minimally invasive neuroimaging technique such as ECoG and advanced machine learning approaches allows decoding motion with high accuracy. Such setup provides means for control of devices with a large number of degrees of freedom as well as exploratory studies of the complex neural processes underlying movement execution.

Keywords: brain-computer interface, deep learning, ECoG, movement decoding, sensorimotor cortex

Procedia PDF Downloads 177
94 Predicting and Obtaining New Solvates of Curcumin, Demethoxycurcumin and Bisdemethoxycurcumin Based on the Ccdc Statistical Tools and Hansen Solubility Parameters

Authors: J. Ticona Chambi, E. A. De Almeida, C. A. Andrade Raymundo Gaiotto, A. M. Do Espírito Santo, L. Infantes, S. L. Cuffini

Abstract:

The solubility of active pharmaceutical ingredients (APIs) is challenging for the pharmaceutical industry. The new multicomponent crystalline forms as cocrystal and solvates present an opportunity to improve the solubility of APIs. Commonly, the procedure to obtain multicomponent crystalline forms of a drug starts by screening the drug molecule with the different coformers/solvents. However, it is necessary to develop methods to obtain multicomponent forms in an efficient way and with the least possible environmental impact. The Hansen Solubility Parameters (HSPs) is considered a tool to obtain theoretical knowledge of the solubility of the target compound in the chosen solvent. H-Bond Propensity (HBP), Molecular Complementarity (MC), Coordination Values (CV) are tools used for statistical prediction of cocrystals developed by the Cambridge Crystallographic Data Center (CCDC). The HSPs and the CCDC tools are based on inter- and intra-molecular interactions. The curcumin (Cur), target molecule, is commonly used as an anti‐inflammatory. The demethoxycurcumin (Demcur) and bisdemethoxycurcumin (Bisdcur) are natural analogues of Cur from turmeric. Those target molecules have differences in their solubilities. In this way, the work aimed to analyze and compare different tools for multicomponent forms prediction (solvates) of Cur, Demcur and Biscur. The HSP values were calculated for Cur, Demcur, and Biscur using the chemical group contribution methods and the statistical optimization from experimental data. The HSPmol software was used. From the HSPs of the target molecules and fifty solvents (listed in the HSP books), the relative energy difference (RED) was determined. The probability of the target molecules would be interacting with the solvent molecule was determined using the CCDC tools. A dataset of fifty molecules of different organic solvents was ranked for each prediction method and by a consensus ranking of different combinations: HSP, CV, HBP and MC values. Based on the prediction, 15 solvents were selected as Dimethyl Sulfoxide (DMSO), Tetrahydrofuran (THF), Acetonitrile (ACN), 1,4-Dioxane (DOX) and others. In a starting analysis, the slow evaporation technique from 50°C at room temperature and 4°C was used to obtain solvates. The single crystals were collected by using a Bruker D8 Venture diffractometer, detector Photon100. The data processing and crystal structure determination were performed using APEX3 and Olex2-1.5 software. According to the results, the HSPs (theoretical and optimized) and the Hansen solubility sphere for Cur, Demcur and Biscur were obtained. With respect to prediction analyses, a way to evaluate the predicting method was through the ranking and the consensus ranking position of solvates already reported in the literature. It was observed that the combination of HSP-CV obtained the best results when compared to the other methods. Furthermore, as a result of solvent selected, six new solvates, Cur-DOX, Cur-DMSO, Bicur-DOX, Bircur-THF, Demcur-DOX, Demcur-ACN and a new Biscur hydrate, were obtained. Crystal structures were determined for Cur-DOX, Biscur-DOX, Demcur-DOX and Bicur-Water. Moreover, the unit-cell parameter information for Cur-DMSO, Biscur-THF and Demcur-ACN were obtained. The preliminary results showed that the prediction method is showing a promising strategy to evaluate the possibility of forming multicomponent. It is currently working on obtaining multicomponent single crystals.

Keywords: curcumin, HSPs, prediction, solvates, solubility

Procedia PDF Downloads 63
93 Grisotti Flap as Treatment for Central Tumors of the Breast

Authors: R. Pardo, P. Menendez, MA Gil-Olarte, S. Sanchez, E. García, R. Quintana, J. Martín

Abstract:

Introduction : Within oncoplastic breast techniques there is increased interest in immediate partial breast reconstruction. The volume resected is greater than that of conventional conservative techniques. Central tumours of the breast have classically been treated with a mastectomy with regard to oncological safety and cosmetic secondary effects after wide central resection of the nipple and breast tissue beneath. Oncological results for central quadrantectomy have a recurrence level, disease- free period and survival identical to mastectomy. Grissoti flap is an oncoplastic surgical technique that allows the surgeon to perform a safe central quadrantectomy with excellent cosmetic results. Material and methods: The Grissoti flap is a glandular cutaneous advancement rotation flap that can fill the defect in the central portion of the excised breast. If the inferior border is affected by tumour and further surgery is decided upon at the Multidisciplinary Team Meeting, it will be necessary to perform a mastectomy. All patients with a Grisotti flap undergoing surgery since 2009 were reviewed obtaining the following data: age, hystopathological diagnosis, size, operating time, volume of tissue resected, postoperative admission time, re-excisions due to positive margins affected by tumour, wound dehiscence, complications and recurrence. Analysis and results of sentinel node biopsy were also obtained. Results: 12 patients underwent surgery between 2009-2015. The mean age was 54 years (34-67) . All had a preoperative diagnosis of ductal infiltrative carcinoma of less than 2 cm,. Diagnosis was made with Ultrasound, Mamography or both . Magnetic resonance was used in 5 cases. No patients had preoperative positive axilla after ultrasound exploration. Mean operating time was 104 minutes (84-130). Postoperative stay was 24 hours. Mean volume resected was 159 cc (70-286). In one patient the surgical border was affected by tumour and a further procedure with resection of the affected border was performed as ambulatory surgery. The sentinel node biopsy was positive for micrometastasis in only two cases. In one case lymphadenectomy was performed in 2009. In the other, treated in 2015, no lymphadenectomy was performed as the patient had a favourable histopathological prognosis and the multidisciplinary team meeting agreed that lymphadenectomy was not required. No recurrence has been diagnosed in any of the patients who underwent surgery and they are all disease free at present. Conclusions: Conservative surgery for retroareolar central tumours of the breast results in good local control of the disease with free surgical borders, including resection of the nipple areola complex and pectoral major muscle fascia. Reconstructive surgery with the inferior Grissoti flap adequately fills the defect after central quadrantectomy with creation of a new cutaneous disc where a new nipple areola complex is reconstructed with a local flap or micropigmentation. This avoids the need for contralateral symmetrization. Sentinel Node biopsy can be performed without added morbidity. When feasible, the Grissoti flap will avoid skin-sparing mastectomy for central breast tumours that will require the use of an expander, prosthesis or myocutaneous flap, with all the complications of a more complex operation.

Keywords: Grisotti flap, oncoplastic surgery, central tumours, breast

Procedia PDF Downloads 342
92 Formulation of a Submicron Delivery System including a Platelet Lysate to Be Administered in Damaged Skin

Authors: Sergio A. Bernal-Chavez, Sergio Alcalá-Alcalá, Doris A. Cerecedo-Mercado, Adriana Ganem-Rondero

Abstract:

The prevalence of people with chronic wounds has increased dramatically by many factors including smoking, obesity and chronic diseases, such as diabetes, that can slow the healing process and increase the risk of becoming chronic. Because of this situation, the improvement of chronic wound treatments is a necessity, which has led to the scientific community to focus on improving the effectiveness of current therapies and the development of new treatments. The wound formation is a physiological complex process, which is characterized by an inflammatory stage with the presence of proinflammatory cells that create a proteolytic microenvironment during the healing process, which includes the degradation of important growth factors and cytokines. This decrease of growth factors and cytokines provides an interesting strategy for wound healing if they are administered externally. The use of nanometric drug delivery systems, such as polymer nanoparticles (NP), also offers an interesting alternative around dermal systems. An interesting strategy would be to propose a formulation based on a thermosensitive hydrogel loaded with polymeric nanoparticles that allows the inclusion and application of a platelet lysate (PL) on damaged skin, with the aim of promoting wound healing. In this work, NP were prepared by a double emulsion-solvent evaporation technique, using polylactic-co-glycolic acid (PLGA) as biodegradable polymer. Firstly, an aqueous solution of PL was emulsified into a PLGA organic solution, previously prepared in dichloromethane (DCM). Then, this disperse system (W/O) was poured into a polyvinyl alcohol (PVA) solution to get the double emulsion (W/O/W), finally the DCM was evaporated by magnetic stirring resulting in the NP formation containing PL. Once the NP were obtained, these systems were characterized by morphology, particle size, Z-potential, encapsulation efficiency (%EE), physical stability, infrared spectrum, calorimetric studies (DSC) and in vitro release profile. The optimized nanoparticles were included in a thermosensitive gel formulation of Pluronic® F-127. The gel was prepared by the cold method at 4 °C and 20% of polymer concentration. Viscosity, sol-gel phase transition, time of no flow solid-gel at wound temperature, changes in particle size by temperature-effect using dynamic light scattering (DLS), occlusive effect, gel degradation, infrared spectrum and micellar point by DSC were evaluated in all gel formulations. PLGA NP of 267 ± 10.5 nm and Z-potential of -29.1 ± 1 mV were obtained. TEM micrographs verified the size of NP and evidenced their spherical shape. The %EE for the system was around 99%. Thermograms and in infrared spectra mark the presence of PL in NP. The systems did not show significant changes in the parameters mentioned above, during the stability studies. Regarding the gel formulation, the transition sol-gel occurred at 28 °C with a time of no flow solid-gel of 7 min at 33°C (common wound temperature). Calorimetric, DLS and infrared studies corroborated the physical properties of a thermosensitive gel, such as the micellar point. In conclusion, the thermosensitive gel described in this work, contains therapeutic amounts of PL and fulfills the technological properties to be used in damaged skin, with potential application in wound healing and tissue regeneration.

Keywords: growth factors, polymeric nanoparticles, thermosensitive hydrogels, tissue regeneration

Procedia PDF Downloads 172
91 Hyperspectral Imagery for Tree Speciation and Carbon Mass Estimates

Authors: Jennifer Buz, Alvin Spivey

Abstract:

The most common greenhouse gas emitted through human activities, carbon dioxide (CO2), is naturally consumed by plants during photosynthesis. This process is actively being monetized by companies wishing to offset their carbon dioxide emissions. For example, companies are now able to purchase protections for vegetated land due-to-be clear cut or purchase barren land for reforestation. Therefore, by actively preventing the destruction/decay of plant matter or by introducing more plant matter (reforestation), a company can theoretically offset some of their emissions. One of the biggest issues in the carbon credit market is validating and verifying carbon offsets. There is a need for a system that can accurately and frequently ensure that the areas sold for carbon credits have the vegetation mass (and therefore for carbon offset capability) they claim. Traditional techniques for measuring vegetation mass and determining health are costly and require many person-hours. Orbital Sidekick offers an alternative approach that accurately quantifies carbon mass and assesses vegetation health through satellite hyperspectral imagery, a technique which enables us to remotely identify material composition (including plant species) and condition (e.g., health and growth stage). How much carbon a plant is capable of storing ultimately is tied to many factors, including material density (primarily species-dependent), plant size, and health (trees that are actively decaying are not effectively storing carbon). All of these factors are capable of being observed through satellite hyperspectral imagery. This abstract focuses on speciation. To build a species classification model, we matched pixels in our remote sensing imagery to plants on the ground for which we know the species. To accomplish this, we collaborated with the researchers at the Teakettle Experimental Forest. Our remote sensing data comes from our airborne “Kato” sensor, which flew over the study area and acquired hyperspectral imagery (400-2500 nm, 472 bands) at ~0.5 m/pixel resolution. Coverage of the entire teakettle experimental forest required capturing dozens of individual hyperspectral images. In order to combine these images into a mosaic, we accounted for potential variations of atmospheric conditions throughout the data collection. To do this, we ran an open source atmospheric correction routine called ISOFIT1 (Imaging Spectrometer Optiman FITting), which converted all of our remote sensing data from radiance to reflectance. A database of reflectance spectra for each of the tree species within the study area was acquired using the Teakettle stem map and the geo-referenced hyperspectral images. We found that a wide variety of machine learning classifiers were able to identify the species within our images with high (>95%) accuracy. For the most robust quantification of carbon mass and the best assessment of the health of a vegetated area, speciation is critical. Through the use of high resolution hyperspectral data, ground-truth databases, and complex analytical techniques, we are able to determine the species present within a pixel to a high degree of accuracy. These species identifications will feed directly into our carbon mass model.

Keywords: hyperspectral, satellite, carbon, imagery, python, machine learning, speciation

Procedia PDF Downloads 130
90 Autonomous Strategic Aircraft Deconfliction in a Multi-Vehicle Low Altitude Urban Environment

Authors: Loyd R. Hook, Maryam Moharek

Abstract:

With the envisioned future growth of low altitude urban aircraft operations for airborne delivery service and advanced air mobility, strategies to coordinate and deconflict aircraft flight paths must be prioritized. Autonomous coordination and planning of flight trajectories is the preferred approach to the future vision in order to increase safety, density, and efficiency over manual methods employed today. Difficulties arise because any conflict resolution must be constrained by all other aircraft, all airspace restrictions, and all ground-based obstacles in the vicinity. These considerations make pair-wise tactical deconfliction difficult at best and unlikely to find a suitable solution for the entire system of vehicles. In addition, more traditional methods which rely on long time scales and large protected zones will artificially limit vehicle density and drastically decrease efficiency. Instead, strategic planning, which is able to respond to highly dynamic conditions and still account for high density operations, will be required to coordinate multiple vehicles in the highly constrained low altitude urban environment. This paper develops and evaluates such a planning algorithm which can be implemented autonomously across multiple aircraft and situations. Data from this evaluation provide promising results with simulations showing up to 10 aircraft deconflicted through a relatively narrow low-altitude urban canyon without any vehicle to vehicle or obstacle conflict. The algorithm achieves this level of coordination beginning with the assumption that each vehicle is controlled to follow an independently constructed flight path, which is itself free of obstacle conflict and restricted airspace. Then, by preferencing speed change deconfliction maneuvers constrained by the vehicles flight envelope, vehicles can remain as close to the original planned path and prevent cascading vehicle to vehicle conflicts. Performing the search for a set of commands which can simultaneously ensure separation for each pair-wise aircraft interaction and optimize the total velocities of all the aircraft is further complicated by the fact that each aircraft's flight plan could contain multiple segments. This means that relative velocities will change when any aircraft achieves a waypoint and changes course. Additionally, the timing of when that aircraft will achieve a waypoint (or, more directly, the order upon which all of the aircraft will achieve their respective waypoints) will change with the commanded speed. Put all together, the continuous relative velocity of each vehicle pair and the discretized change in relative velocity at waypoints resembles a hybrid reachability problem - a form of control reachability. This paper proposes two methods for finding solutions to these multi-body problems. First, an analytical formulation of the continuous problem is developed with an exhaustive search of the combined state space. However, because of computational complexity, this technique is only computable for pairwise interactions. For more complicated scenarios, including the proposed 10 vehicle example, a discretized search space is used, and a depth-first search with early stopping is employed to find the first solution that solves the constraints.

Keywords: strategic planning, autonomous, aircraft, deconfliction

Procedia PDF Downloads 95
89 Dietary Diversification and Nutritional Education: A Strategy to Improve Child Food Security Status in the Rural Mozambique

Authors: Rodriguez Diego, Del Valle Martin, Hargreaves Matias, Riveros Jose Luis

Abstract:

Nutrient deficiencies due to a diet low in quantitative and qualitative terms, are prevalent throughout the developing world, especially in sub-Saharan Africa. Children and women of childbearing age are especially vulnerable. Limited availability, access and intake of animal foods at home and lack of knowledge about their value in the diet and the role they play in health, contribute to poor diet quality. Poor bioavailability of micronutrients in diets based on foods high in fiber and phytates, the low content of some micronutrients in these foods are further factors to consider. Goats are deeply embedded in almost every Sub-Saharan African rural culture, generally kept for their milk, meat, hair or leather. Goats have played an important role in African social life, especially in food security. Goat meat has good properties for human wellbeing, with a special role in lower income households. It has a high-quality protein (20 protein g/100 meat g) including all essential amino acids, good unsaturated/satured fatty acids relationship, and it is an important B-vitamin source with high micronutrients bioavailability. Mozambique has major food security problems, with poor food access and utilization, undiversified diets, chronic poverty and child malnutrition. Our objective was to design a nutritional intervention based on a dietary diversification, nutritional education, cultural beliefs and local resources, aimed to strengthen food security of children at Barrio Broma village (15°43'58.78"S; 32°46'7.27"E) in Chitima, Mozambique. Two surveys were conducted first of socio-productive local databases and then to 100 rural households about livelihoods, food diversity and anthropometric measurements in children under 5 years. Our results indicate that the main economic activity is goat production, based on a native breed with two deliveries per year in the absence of any management. Adult goats weighted 27.2±10.5 kg and raised a height of 63.5±3.8 cm. Data showed high levels of poverty, with a food diversity score of 2.3 (0-12 points), where only 30% of households consume protein and 13% iron, zinc, and B12 vitamin. The main constraints to food security were poor access to water and low income to buy food. Our dietary intervention was based on improving diet quality by increasing the access to dried goat meat, fresh vegetables, and legumes, and its utilization by a nutritional education program. This proposal was based on local culture and living conditions characterized by the absence of electricity power and drinkable water. The drying process proposed would secure the food maintenance under local conditions guaranteeing food safety for a longer period. Additionally, an ancient local drying technique was rescued and used. Moreover, this kind of dietary intervention would be the most efficient way to improve the infant nutrition by delivering macro and micronutrients on time to these vulnerable populations.

Keywords: child malnutrition, dietary diversification, food security, goat meat

Procedia PDF Downloads 303
88 Bee Keeping for Human-Elephant Conflict Mitigation: A Success Story for Sustainable Tourism in Kibale National Park, Western Uganda

Authors: Dorothy Kagazi

Abstract:

The African elephant (Loxodonta africana) remains one of the most crop-damaging species around Kibale National Park, western Uganda. Elephant crop raiding deprives communities of food and incomes, consequently impacting livelihoods, attitude, and support for conservation. It also attracts an aggressive reaction from local communities including the retaliatory killing of a species that is already endangered and listed under Appendix I of the Convention on Endangered Species of Flora and Fauna (CITES). In order to mitigate against elephant crop raiding and minimize conflict, a number of interventions were devised by the government of Uganda such as physical guarding, scare-shooting, excavation of trenches, growing of unpalatable crops and fire lighting all of which have over the years been implemented around the park. These generated varying degrees of effectiveness but largely never solved the problem of elephants crossing into communities to destroy food and shelter which had a negative effect onto sustainable tourism of the communities who often resorted to killing these animals and hence contributing the falling numbers of these animals. It was until government discovered that there are far more effective ways of deterring these animals from crossing to communities that it commissioned a study to deploy the African honeybee (Apis mellifera scutellata) as a deterrent against elephant crop raiding and income enhancement for local people around the park. These efforts led to a number of projects around Kibale National Park where communities were facilitated to keep bees for human-elephant conflict mitigation and rural income enhancement through the sale of honey. These projects have registered tremendous success in reducing crop damage, enhance rural incomes, influence positive attitude change and ultimately secure community support for elephant and park conservation which is a clear manifestation of sustainable tourism development in the area. To address the issue of sustainability, the project was aligned with four major objectives that contributed to the overall goal of maintaining the areas around the parks and the national park itself in such a manner that it remains viable over an infinite period. Among these included determining deterrence effects of bees against elephant crop raiding, assessing the contribution of beekeeping towards rural income enhancement, determining the impact of community involvement of park conservation and management among others. The project deployed 500 improved hives by placing them at specific and previously identified and mapped out elephant crossing points along the park boundary. A control site was established without any intervention to facilitate comparison of findings and data was collected on elephant raiding frequency, patterns, honey harvested, and community attitude towards the park. A socio-economic assessment was also undertaken to ascertain the contribution of beekeeping to incomes and attitude change. In conclusion, human-wildlife conflicts have disturbed conservation and sustainable tourism development efforts. Such success stories like the beekeeping strategy should hence be extensively discussed and widely shared as a conservation technique for sustainable tourism.

Keywords: bees, communities, conservation, elephants

Procedia PDF Downloads 212
87 Challenges and Proposals for Public Policies Aimed At Increasing Energy Efficiency in Low-Income Communities in Brazil: A Multi-Criteria Approach

Authors: Anna Carolina De Paula Sermarini, Rodrigo Flora Calili

Abstract:

Energy Efficiency (EE) needs investments, new technologies, greater awareness and management on the side of citizens and organizations, and more planning. However, this issue is usually remembered and discussed only in moments of energy crises, and opportunities are missed to take better advantage of the potential of EE in the various sectors of the economy. In addition, there is little concern about the subject among the less favored classes, especially in low-income communities. Accordingly, this article presents suggestions for public policies that aim to increase EE for low-income housing and communities based on international and national experiences. After reviewing the literature, eight policies were listed, and to evaluate them; a multicriteria decision model was developed using the AHP (Analytical Hierarchy Process) and TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) methods, combined with fuzzy logic. Nine experts analyzed the policies according to 9 criteria: economic impact, social impact, environmental impact, previous experience, the difficulty of implementation, possibility/ease of monitoring and evaluating the policies, expected impact, political risks, and public governance and sustainability of the sector. The results found in order of preference are (i) Incentive program for equipment replacement; (ii) Community awareness program; (iii) EE Program with a greater focus on low income; (iv) Staggered and compulsory certification of social interest buildings; (v) Programs for the expansion of smart metering, energy monitoring and digitalization; (vi) Financing program for construction and retrofitting of houses with the emphasis on EE; (vii) Income tax deduction for investment in EE projects in low-income households made by companies; (viii) White certificates of energy for low-income. First, the policy of equipment substitution has been employed in Brazil and the world and has proven effective in promoting EE. For implementation, efforts are needed from the federal and state governments, which can encourage companies to reduce prices, and provide some type of aid for the purchase of such equipment. In second place is the community awareness program, promoting socio-educational actions on EE concepts and with energy conservation tips. This policy is simple to implement and has already been used by many distribution utilities in Brazil. It can be carried out through bids defined by the government in specific areas, being executed by third sector companies with public and private resources. Third on the list is the proposal to continue the Energy Efficiency Program (which obliges electric energy companies to allocate resources for research in the area) by suggesting the return of the mandatory investment of 60% of the resources in projects for low income. It is also relatively simple to implement, requiring efforts by the federal government to make it mandatory, and on the part of the distributors, compliance is needed. The success of the suggestions depends on changes in the established rules and efforts from the interested parties. For future work, we suggest the development of pilot projects in low-income communities in Brazil and the application of other multicriteria decision support methods to compare the results obtained in this study.

Keywords: energy efficiency, low-income community, public policy, multicriteria decision making

Procedia PDF Downloads 118
86 Impact of Water Interventions under WASH Program in the South-west Coastal Region of Bangladesh

Authors: S. M. Ashikur Elahee, Md. Zahidur Rahman, Md. Shofiqur Rahman

Abstract:

This study evaluated the impact of different water interventions under WASH program on access of household's to safe drinking water. Following survey method, the study was carried out in two Upazila of South-west coastal region of Bangladesh namely Koyra from Khulna and Shymnagar from Satkhira district. Being an explanatory study, a total of 200 household's selected applying random sampling technique were interviewed using a structured interview schedule. The predicted probability suggests that around 62 percent household's are out of year-round access to safe drinking water whereby, only 25 percent household's have access at SPHERE standard (913 Liters/per person/per year). Besides, majority (78 percent) of the household's have not accessed at both indicators simultaneously. The distance from household residence to the water source varies from 0 to 25 kilometer with an average distance of 2.03 kilometers. The study also reveals that the increase in monthly income around BDT 1,000 leads to additional 11 liters (coefficient 0.01 at p < 0.1) consumption of safe drinking water for a person/year. As expected, lining up time has significant negative relationship with dependent variables i.e., for higher lining up time, the probability of getting access for both SPHERE standard and year round access variables becomes lower. According to ordinary least square (OLS) regression results, water consumption decreases at 93 liters for per person/year of a household if one member is added to that household. Regarding water consumption intensity, ordered logistic regression (OLR) model shows that one-minute increase of lining up time for water collection tends to reduce water consumption intensity. On the other hand, as per OLS regression results, for one-minute increase of lining up time, the water consumption decreases by around 8 liters. Considering access to Deep Tube Well (DTW) as a reference dummy, in OLR, the household under Pond Sand Filter (PSF), Shallow Tube Well (STW), Reverse Osmosis (RO) and Rainwater Harvester System (RWHS) are respectively 37 percent, 29 percent, 61 percent and 27 percent less likely to ensure year round access of water consumption. In line of health impact, different type of water born diseases like diarrhea, cholera, and typhoid are common among the coastal community caused by microbial impurities i.e., Bacteria, Protozoa. High turbidity and TDS in pond water caused by reduction of water depth, presence of suspended particle and inorganic salt stimulate the growth of bacteria, protozoa, and algae causes affecting health hazard. Meanwhile, excessive growth of Algae in pond water caused by excessive nitrate in drinking water adversely effects on child health. In lieu of ensuring access at SPHERE standard, we need to increase the number of water interventions at reasonable distance, preferably a half kilometer away from the dwelling place, ensuring community peoples involved with its installation process where collectively owned water intervention is found more effective than privately owned. In addition, a demand-responsive approach to supply of piped water should be adopted to allow consumer demand to guide investment in domestic water supply in future.

Keywords: access, impact, safe drinking water, Sphere standard, water interventions

Procedia PDF Downloads 220
85 Finite Element Analysis of Mini-Plate Stabilization of Mandible Fracture

Authors: Piotr Wadolowski, Grzegorz Krzesinski, Piotr Gutowski

Abstract:

The aim of the presented investigation is to recognize the possible mechanical issues of mini-plate connection used to treat mandible fractures and to check the impact of different factors for the stresses and displacements within the bone-stabilizer system. The mini-plate osteosynthesis technique is a common type of internal fixation using metal plates connected to the fractured bone parts by a set of screws. The selected two types of plate application methodology used by maxillofacial surgeons were investigated in the work. Those patterns differ in location and number of plates. The bone geometry was modeled on the base of computed tomography scans of hospitalized patient done just after mini-plate application. The solid volume geometry consisting of cortical and cancellous bone was created based on gained cloud of points. Temporomandibular joint and muscle system were simulated to imitate the real masticatory system behavior. Finite elements mesh and analysis were performed by ANSYS software. To simulate realistic connection behavior nonlinear contact conditions were used between the connecting elements and bones. The influence of the initial compression of the connected bone parts or the gap between them was analyzed. Nonlinear material properties of the bone tissues and elastic-plastic model of titanium alloy were used. The three cases of loading assuming the force of magnitude of 100N acting on the left molars, the right molars and the incisors were investigated. Stress distribution within connecting plate shows that the compression of the bone parts in the connection results in high stress concentration in the plate and the screws, however the maximum stress levels do not exceed material (titanium) yield limit. There are no significant differences between negative offset (gap) and no-offset conditions. The location of the external force influences the magnitude of stresses around both the plate and bone parts. Two-plate system gives generally lower von Misses stress under the same loading than the one-plating approach. Von Mises stress distribution within the cortical bone shows reduction of high stress field for the cases without the compression (neutral initial contact). For the initial prestressing there is a visible significant stress increase around the fixing holes at the bottom mini-plate due to the assembly stress. The local stress concentration may be the reason of bone destruction in those regions. The performed calculations prove that the bone-mini-plate system is able to properly stabilize the fractured mandible bone. There is visible strong dependency between the mini-plate location and stress distribution within the stabilizer structure and the surrounding bone tissue. The results (stresses within the bone tissues and within the devices, relative displacements of the bone parts at the interface) corresponding to different models of the connection provide a basis for the mechanical optimization of the mini-plate connections. The results of the performed numerical simulations were compared to clinical observation. They provide information helpful for better understanding of the load transfer in the mandible with the stabilizer and for improving stabilization techniques.

Keywords: finite element modeling, mandible fracture, mini-plate connection, osteosynthesis

Procedia PDF Downloads 247
84 Developing a Machine Learning-based Cost Prediction Model for Construction Projects using Particle Swarm Optimization

Authors: Soheila Sadeghi

Abstract:

Accurate cost prediction is essential for effective project management and decision-making in the construction industry. This study aims to develop a cost prediction model for construction projects using Machine Learning techniques and Particle Swarm Optimization (PSO). The research utilizes a comprehensive dataset containing project cost estimates, actual costs, resource details, and project performance metrics from a road reconstruction project. The methodology involves data preprocessing, feature selection, and the development of an Artificial Neural Network (ANN) model optimized using PSO. The study investigates the impact of various input features, including cost estimates, resource allocation, and project progress, on the accuracy of cost predictions. The performance of the optimized ANN model is evaluated using metrics such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and R-squared. The results demonstrate the effectiveness of the proposed approach in predicting project costs, outperforming traditional benchmark models. The feature selection process identifies the most influential variables contributing to cost variations, providing valuable insights for project managers. However, this study has several limitations. Firstly, the model's performance may be influenced by the quality and quantity of the dataset used. A larger and more diverse dataset covering different types of construction projects would enhance the model's generalizability. Secondly, the study focuses on a specific optimization technique (PSO) and a single Machine Learning algorithm (ANN). Exploring other optimization methods and comparing the performance of various ML algorithms could provide a more comprehensive understanding of the cost prediction problem. Future research should focus on several key areas. Firstly, expanding the dataset to include a wider range of construction projects, such as residential buildings, commercial complexes, and infrastructure projects, would improve the model's applicability. Secondly, investigating the integration of additional data sources, such as economic indicators, weather data, and supplier information, could enhance the predictive power of the model. Thirdly, exploring the potential of ensemble learning techniques, which combine multiple ML algorithms, may further improve cost prediction accuracy. Additionally, developing user-friendly interfaces and tools to facilitate the adoption of the proposed cost prediction model in real-world construction projects would be a valuable contribution to the industry. The findings of this study have significant implications for construction project management, enabling proactive cost estimation, resource allocation, budget planning, and risk assessment, ultimately leading to improved project performance and cost control. This research contributes to the advancement of cost prediction techniques in the construction industry and highlights the potential of Machine Learning and PSO in addressing this critical challenge. However, further research is needed to address the limitations and explore the identified future research directions to fully realize the potential of ML-based cost prediction models in the construction domain.

Keywords: cost prediction, construction projects, machine learning, artificial neural networks, particle swarm optimization, project management, feature selection, road reconstruction

Procedia PDF Downloads 60
83 Combination of Modelling and Environmental Life Cycle Assessment Approach for Demand Driven Biogas Production

Authors: Juan A. Arzate, Funda C. Ertem, M. Nicolas Cruz-Bournazou, Peter Neubauer, Stefan Junne

Abstract:

— One of the biggest challenges the world faces today is global warming that is caused by greenhouse gases (GHGs) coming from the combustion of fossil fuels for energy generation. In order to mitigate climate change, the European Union has committed to reducing GHG emissions to 80–95% below the level of the 1990s by the year 2050. Renewable technologies are vital to diminish energy-related GHG emissions. Since water and biomass are limited resources, the largest contributions to renewable energy (RE) systems will have to come from wind and solar power. Nevertheless, high proportions of fluctuating RE will present a number of challenges, especially regarding the need to balance the variable energy demand with the weather dependent fluctuation of energy supply. Therefore, biogas plants in this content would play an important role, since they are easily adaptable. Feedstock availability varies locally or seasonally; however there is a lack of knowledge in how biogas plants should be operated in a stable manner by local feedstock. This problem may be prevented through suitable control strategies. Such strategies require the development of convenient mathematical models, which fairly describe the main processes. Modelling allows us to predict the system behavior of biogas plants when different feedstocks are used with different loading rates. Life cycle assessment (LCA) is a technique for analyzing several sides from evolution of a product till its disposal in an environmental point of view. It is highly recommend to use as a decision making tool. In order to achieve suitable strategies, the combination of a flexible energy generation provided by biogas plants, a secure production process and the maximization of the environmental benefits can be obtained by the combination of process modelling and LCA approaches. For this reason, this study focuses on the biogas plant which flexibly generates required energy from the co-digestion of maize, grass and cattle manure, while emitting the lowest amount of GHG´s. To achieve this goal AMOCO model was combined with LCA. The program was structured in Matlab to simulate any biogas process based on the AMOCO model and combined with the equations necessary to obtain climate change, acidification and eutrophication potentials of the whole production system based on ReCiPe midpoint v.1.06 methodology. Developed simulation was optimized based on real data from operating biogas plants and existing literature research. The results prove that AMOCO model can successfully imitate the system behavior of biogas plants and the necessary time required for the process to adapt in order to generate demanded energy from available feedstock. Combination with LCA approach provided opportunity to keep the resulting emissions from operation at the lowest possible level. This would allow for a prediction of the process, when the feedstock utilization supports the establishment of closed material circles within a smart bio-production grid – under the constraint of minimal drawbacks for the environment and maximal sustainability.

Keywords: AMOCO model, GHG emissions, life cycle assessment, modelling

Procedia PDF Downloads 189
82 Street Naming and Property Addressing Systems for New Development in Ghana: A Case Study of Nkawkaw in the Kwahu West Municipality

Authors: Jonathan Nii Laryea Ashong, Samuel Opare

Abstract:

Current sustainable cities debate focuses on the formidable problems for the Ghana’s largest urban and rural agglomerations, the majority of all urban dwellers continue to reside in far smaller urban settlements. It is estimated that by year 2030, almost all the Ghana’s population growth will likely be intense in urban areas including Nkawkaw in the Kwahu West Municipality of Ghana. Nkawkaw is situated on the road and former railway between Accra and Kumasi, and lies about halfway between these cities. It is also connected by road to Koforidua and Konongo. According to the 2013 census, Nkawkaw has a settlement population of 61,785. Many international agencies, government and private architectures’ are been asked to adequately recognize the naming of streets and property addressing system among the 170 districts across Ghana. The naming of streets and numbering of properties is to assist Metropolitan, Municipal and District Assemblies to manage the processes for establishing coherent address system nationally. Street addressing in the Nkawkaw in the Kwahu West Municipality which makes it possible to identify the location of a parcel of land, public places or dwellings on the ground based on system of names and numbers, yet agreement on how to progress towards it remains elusive. Therefore, reliable and effective development control for proper street naming and property addressing systems are required. The Intelligent Addressing (IA) technology from the UK is being used to name streets and properties in Ghana. The intelligent addressing employs the technique of unique property Reference Number and the unique street reference number which would transform national security and other service providers’ ability to respond rapidly to distress calls. Where name change is warranted following the review of existing streets names, the Physical Planning Department (PPDs) shall, in consultation with the relevant traditional authorities and community leadership (or relevant major stakeholders), select a street name in accordance with the provisions of the policy and the processes outlined for street name change for new development. In the case of existing streets with no names, the respective PPDs shall, in consultation with the relevant traditional authorities and community leadership (or relevant major stakeholders), select a street name in accordance with the requirements set out in municipality. Naming of access ways proposed for new developments shall be done at the time of developing sector layouts (subdivision maps) for the designated areas. In the case of private gated developments, the developer shall submit the names of the access ways as part of the plan and other documentation forwarded to the Municipal District Assembly for approval. The names shall be reviewed first by the PPD to avoid duplication and to ensure conformity to the required standards before submission to the Assembly’s Statutory Planning Committee for approval. The Kwahu West Municipality is supposed to be self-sustaining, providing basic services to inhabitants as a result of proper planning layouts, street naming and property addressing system that prevail in the area. The implications of these future projections are discussed.

Keywords: Nkawkaw, Kwahu west municipality, street naming, property, addressing system

Procedia PDF Downloads 545
81 Experimental Study of the Antibacterial Activity and Modeling of Non-isothermal Crystallization Kinetics of Sintered Seashell Reinforced Poly(Lactic Acid) And Poly(Butylene Succinate) Biocomposites Planned for 3D Printing

Authors: Mohammed S. Razali, Kamel Khimeche, Dahah Hichem, Ammar Boudjellal, Djamel E. Kaderi, Nourddine Ramdani

Abstract:

The use of additive manufacturing technologies has revolutionized various aspects of our daily lives. In particular, 3D printing has greatly advanced biomedical applications. While fused filament fabrication (FFF) technologies have made it easy to produce or prototype various medical devices, it is crucial to minimize the risk of contamination. New materials with antibacterial properties, such as those containing compounded silver nanoparticles, have emerged on the market. In a previous study, we prepared a newly sintered seashell filler (SSh) from bio-based seashells found along the Mediterranean coast using a suitable heat treatment process. We then prepared a series of polylactic acid (PLA) and polybutylene succinate (PBS) biocomposites filled with these SSh particles using a melt mixing technique with a twin-screw extruder to use them as feedstock filaments for 3D printing. The study consisted of two parts: evaluating the antibacterial activity of newly prepared biocomposites made of PLA and PBS reinforced with a sintered seashell in the first part and experimental and modeling analysis of the non-isothermal crystallization kinetics of these biocomposites in the second part. In the first part, the bactericidal activity of the biocomposites against three different bacteria, including Gram-negative bacteria such as (E. coli and Pseudomonas aeruginosa), as well as Gram-positive bacteria such as (Staphylococcus aureus), was examined. The PLA-based biocomposite containing 20 wt.% of SSh particles exhibited an inhibition zone with radial diameters of 8mm and 6mm against E. coli and Pseudo. Au, respectively, while no bacterial activity was observed against Staphylococcus aureus. In the second part, the focus was on investigating the effect of the sintered seashell filler particles on the non-isothermal crystallization kinetics of PLA and PBS 3D-printing composite materials. The objective was to understand the impact of the filler particles on the crystallization mechanism of both PLA and PBS during the cooling process of a melt-extruded filament in (FFF) to manage the dimensional accuracy and mechanical properties of the final printed part. We conducted a non-isothermal melt crystallization kinetic study of a series of PLA-SS and PBS-SS composites using differential scanning calorimetry at various cooling rates. We analyzed the obtained kinetic data using different crystallization kinetic models such as modified Avrami, Ozawa, and Mo's methods. Dynamic mode describes the relative crystallinity as a function of temperature; it found that time half crystallinity (t1/2) of neat PLA decreased from 17 min to 7.3 min for PLA+5 SSh and the (t1/2) of virgin PBS was reduced from 3.5 min to 2.8 min for the composite containing 5wt.% of SSh. We found that the coated SS particles with stearic acid acted as nucleating agents and had a nucleation activity, as observed through polarized optical microscopy. Moreover, we evaluated the effective energy barrier of the non-isothermal crystallization process using the Iso conversional methods of Flynn-Wall-Ozawa (F-W-O) and Kissinger-Akahira-Sunose (K-A-S). The study provides significant insights into the crystallization behavior of PLA and PBS biocomposites.

Keywords: avrami model, bio-based reinforcement, dsc, gram-negative bacteria, gram-positive bacteria, isoconversional methods, non-isothermal crystallization kinetics, poly(butylene succinate), poly(lactic acid), antbactirial activity

Procedia PDF Downloads 81
80 Assessment and Forecasting of the Impact of Negative Environmental Factors on Public Health

Authors: Nurlan Smagulov, Aiman Konkabayeva, Akerke Sadykova, Arailym Serik

Abstract:

Introduction. Adverse environmental factors do not immediately lead to pathological changes in the body. They can exert the growth of pre-pathology characterized by shifts in physiological, biochemical, immunological and other indicators of the body state. These disorders are unstable, reversible and indicative of body reactions. There is an opportunity to objectively judge the internal structure of the adaptive body reactions at the level of individual organs and systems. In order to obtain a stable response of the body to the chronic effects of unfavorable environmental factors of low intensity (compared to production environment factors), a time called the «lag time» is needed. The obtained results without considering this factor distort reality and, for the most part, cannot be a reliable statement of the main conclusions in any work. A technique is needed to reduce methodological errors and combine mathematical logic using statistical methods and a medical point of view, which ultimately will affect the obtained results and avoid a false correlation. Objective. Development of a methodology for assessing and predicting the environmental factors impact on the population health considering the «lag time.» Methods. Research objects: environmental and population morbidity indicators. The database on the environmental state was compiled from the monthly newsletters of Kazhydromet. Data on population morbidity were obtained from regional statistical yearbooks. When processing static data, a time interval (lag) was determined for each «argument-function» pair. That is the required interval, after which the harmful factor effect (argument) will fully manifest itself in the indicators of the organism's state (function). The lag value was determined by cross-correlation functions of arguments (environmental indicators) with functions (morbidity). Correlation coefficients (r) and their reliability (t), Fisher's criterion (F) and the influence share (R2) of the main factor (argument) per indicator (function) were calculated as a percentage. Results. The ecological situation of an industrially developed region has an impact on health indicators, but it has some nuances. Fundamentally opposite results were obtained in the mathematical data processing, considering the «lag time». Namely, an expressed correlation was revealed after two databases (ecology-morbidity) shifted. For example, the lag period was 4 years for dust concentration, general morbidity, and 3 years – for childhood morbidity. These periods accounted for the maximum values of the correlation coefficients and the largest percentage of the influencing factor. Similar results were observed in relation to the concentration of soot, dioxide, etc. The comprehensive statistical processing using multiple correlation-regression variance analysis confirms the correctness of the above statement. This method provided the integrated approach to predicting the degree of pollution of the main environmental components to identify the most dangerous combinations of concentrations of leading negative environmental factors. Conclusion. The method of assessing the «environment-public health» system (considering the «lag time») is qualitatively different from the traditional (without considering the «lag time»). The results significantly differ and are more amenable to a logical explanation of the obtained dependencies. The method allows presenting the quantitative and qualitative dependence in a different way within the «environment-public health» system.

Keywords: ecology, morbidity, population, lag time

Procedia PDF Downloads 81
79 Higher-Level Return to Female Karate Competition Following Multiple Patella Dislocations

Authors: A. Maso, C. Bellissimo, G. Facchinetti, N. Milani, D. Panzin, D. Pogliana, L. Garlaschelli, L. Rivaroli, S. Rivaroli, M. Zurek, J. Konin

Abstract:

15 year-old female karate athlete experienced two unilateral patella dislocations: one contact and one non-contact. This challenged her from competing as planned at the regional and national competitions as a result of her inability to perform at a high level. Despite these injuries and other complicated factors, she was able to modify her training timeline and successfully perform, winning third at the National Cup. Initial pain numeric rating scale 8/10 during karate training isometric figures, taking the stairs, long walking, a positive rasp test, palpation pain on the lateral patella joint 9/10, pain performing open kinetic chain 0°-45° and close kinetic chain 30°-90°, tensor fascia lata, vastus lateralis, psoas muscles retraction/stiffness. Foot hyper pronation, internally rotated femur, and knee flexion 15° were the postural findings. Exercise prescription for three days/week for three weeks to include exercise-based rehabilitation and soft tissue mobilization with massage and foam rolling. After three weeks, the pain was improved during activity daily living 5/10, and soft tissue stiffness decreased. An additional four weeks of exercise-based rehabilitation was continued. At this time, axial x-rays and TA-GT TAC were taken, and an orthopaedic medical check was recommended to continue conservative treatment. At week seven, she performed 2/4 karate position technique without pain and 2/4 with pain. An isokinetic test was performed at week 12, demonstrating a 10% strength deficit and 6% resistance deficit both to the left hamstrings. Moreover, an 8% strength and resistance surplus to the left quadriceps was found. No pain was present during activity, daily living and sports activity, allowing a return to play training to begin. A plan for the return to play framework collaborated with her trainer, her father, a physiotherapist, a sports scientist, an osteopath, and a nutritionist. Within 4 and 5 months, both non-athlete and athlete movement quality analysis tests were performed. The plan agreed to establish a return to play goal of 7 months and the highest level return to competition goal of 9 months from the start of rehabilitation. This included three days/week of training and repeated testing of movement quality before return to competition with detectable improvements from 77% to 93%. Beginning goals of the rehabilitation plan included the importance of a team approach. The patient’s father and trainer were important to collaborate with to assure a safe and timely return to competition. The possibility of achieving the goals was strongly related to orthopaedic decision-making and progress during the first weeks of rehabilitation. Without complications or setbacks, the patient can successfully return to her highest level of competition. The patient returned to participation after five months of rehabilitation and training, and then she returned to competition at the national level in nine months. The successful return was the result of a team approach and a compliant patient with clear goals.

Keywords: karate, knee, performance, rehabilitation

Procedia PDF Downloads 106
78 Differential Survival Rates of Pseudomonas aeruginosa Strains on the Wings of Pantala flavescens

Authors: Banu Pradheepa Kamarajan, Muthusamy Ananthasubramanian

Abstract:

Biofilm forming Pseudomonads occupy the top third position in causing hospital acquired infections. P. aeruginosa is notoriously known for its tendency to develop drug resistance. Major classes of drug such as β-lactams, aminoglycosides, quinolones, and polymyxins are found ineffective against multi-drug resistance Pseudomonas. To combat the infections, rather than administration of a single antibiotic, use of combinations (tobramycin and essential oils from plants and/or silver nanoparticles, chitosan, nitric oxide, cis-2-decenoic acid) in single formulation are suggested to control P. aeruginosa biofilms. Conventional techniques to prevent hospital-acquired implant infections such as coatings with antibiotics, controlled release of antibiotics from the implant material, contact-killing surfaces, coating the implants with functional DNase I and, coating with glycoside hydrolase are being followed. Coatings with bioactive components besides having limited shelf-life, require cold-chain and, are likely to fail when bacteria develop resistance. Recently identified nano-scale physical architectures on the insect wings are expected to have potential bactericidal property. Nanopillars are bactericidal to Staphylococcus aureus, Bacillus subtilis, K. pnuemoniae and few species of Pseudomonas. Our study aims to investigate the survival rate of biofilm forming Pseudomonas aeruginosa strain over non-biofilm forming strain on the nanopillar architecture of dragonfly (Pantala flavescens) wing. Dragonflies were collected near house-hold areas and, insect identification was carried out by the Department of Entomology, Tamilnadu Agricultural University, Coimbatore, India. Two strains of P. aeruginosa such as PAO1 (potent biofilm former) and MTCC 1688 (non-weak biofilm former) were tested against the glass coverslip (control) and wings of dragonfly (test) for 48 h. The wings/glass coverslips were incubated with bacterial suspension in 48-well plate. The plates were incubated at 37 °C under static condition. Bacterial attachment on the nanopillar architecture of the wing surface was visualized using FESEM. The survival rate of P. aeruginosa was tested using colony counting technique and flow cytometry at 0.5 h, 1 h, 2 h, 7 h, 24 h, and 48 h post-incubation. Cell death was analyzed using propidium iodide staining and DNA quantification. The results indicated that the survival rate of non-biofilm forming P. aeruginosa is 0.2 %, whilst that of biofilm former is 45 % on the dragonfly wings at the end of 48 h. The reduction in the survival rate of biofilm and non-biofilm forming P. aeruginosa was 20% and 40% respectively on the wings compared to the glass coverslip. In addition, Fourier Transformed Infrared Radiation was used to study the modification in the surface chemical composition of the wing during bacterial attachment and, post-sonication. This result indicated that the chemical moieties are not involved in the bactericidal property of nanopillars by the conserved characteristic peaks of chitin pre and post-sonication. The nanopillar architecture of the dragonfly wing efficiently deters the survival of non-biofilm forming P. aeruginosa, but not the biofilm forming strain. The study highlights the ability of biofilm formers to survive on wing architecture. Understanding this survival strategy will help in designing the architecture that combats the colonization of biofilm forming pathogens.

Keywords: biofilm, nanopillars, Pseudomonas aeruginosa, survival rate

Procedia PDF Downloads 175
77 Investigation of Different Electrolyte Salts Effect on ZnO/MWCNT Anode Capacity in LIBs

Authors: Şeyma Dombaycıoğlu, Hilal Köse, Ali Osman Aydın, Hatem Akbulut

Abstract:

Rechargeable lithium ion batteries (LIBs) have been considered as one of the most attractive energy storage choices for laptop computers, electric vehicles and cellular phones owing to their high energy and power density. Compared with conventional carbonaceous materials, transition metal oxides (TMOs) have attracted great interests and stand out among versatile novel anode materials due to their high theoretical specific capacity, wide availability and good safety performance. ZnO, as an anode material for LIBs, has a high theoretical capacity of 978 mAh g-1, much higher than that of the conventional graphite anode (∼370 mAhg-1). However, several major problems such as poor cycleability, resulting from the severe volume expansion and contraction during the alloying-dealloying cycles with Li+ ions and the associated charge transfer process, the pulverization and the agglomeration of individual particles, which drastically reduces the total entrance/exit sites available for Li+ ions still hinder the practical use of ZnO powders as an anode material for LIBs. Therefore, a great deal of effort has been devoted to overcome these problems, and many methods have been developed. In most of these methods, it is claimed that carbon nanotubes (CNTs) will radically improve the performance of batteries, because their unique structure may especially enhance the kinetic properties of the electrodes and result in an extremely high specific charge compared with the theoretical limits of graphitic carbon. Due to outstanding properties of CNTs, MWCNT buckypaper substrate is considered a buffer material to prevent mechanical disintegration of anode material during the battery applications. As the bridge connecting the positive and negative electrodes, the electrolyte plays a critical role affecting the overall electrochemical performance of the cell including rate, capacity, durability and safety. Commercial electrolytes for Li-ion batteries normally consist of certain lithium salts and mixed organic linear and cyclic carbonate solvents. Most commonly, LiPF6 is attributed to its remarkable features including high solubility, good ionic conductivity, high dissociation constant and satisfactory electrochemical stability for commercial fabrication. Besides LiPF6, LiBF4 is well known as a conducting salt for LIBs. LiBF4 shows a better temperature stability in organic carbonate based solutions and less moisture sensitivity compared to LiPF6. In this work, free standing zinc oxide (ZnO) and multiwalled carbon nanotube (MWCNT) nanocomposite materials were prepared by a sol gel technique giving a high capacity anode material for lithium ion batteries. Electrolyte solutions (including 1 m Li+ ion) were prepared with different Li salts in glove box. For this purpose, LiPF6 and LiBF4 salts and also mixed of these salts were solved in EC:DMC solvents (1:1, w/w). CR2016 cells were assembled by using these prepared electrolyte solutions, the ZnO/MWCNT buckypaper nanocomposites as working electrodes, metallic lithium as cathode and polypropylene (PP) as separator. For investigating the effect of different Li salts on the electrochemical performance of ZnO/MWCNT nanocomposite anode material electrochemical tests were performed at room temperature.

Keywords: anode, electrolyte, Li-ion battery, ZnO/MWCNT

Procedia PDF Downloads 231
76 Automated Facial Symmetry Assessment for Orthognathic Surgery: Utilizing 3D Contour Mapping and Hyperdimensional Computing-Based Machine Learning

Authors: Wen-Chung Chiang, Lun-Jou Lo, Hsiu-Hsia Lin

Abstract:

This study aimed to improve the evaluation of facial symmetry, which is crucial for planning and assessing outcomes in orthognathic surgery (OGS). Facial symmetry plays a key role in both aesthetic and functional aspects of OGS, making its accurate evaluation essential for optimal surgical results. To address the limitations of traditional methods, a different approach was developed, combining three-dimensional (3D) facial contour mapping with hyperdimensional (HD) computing to enhance precision and efficiency in symmetry assessments. The study was conducted at Chang Gung Memorial Hospital, where data were collected from 2018 to 2023 using 3D cone beam computed tomography (CBCT), a highly detailed imaging technique. A large and comprehensive dataset was compiled, consisting of 150 normal individuals and 2,800 patients, totaling 5,750 preoperative and postoperative facial images. These data were critical for training a machine learning model designed to analyze and quantify facial symmetry. The machine learning model was trained to process 3D contour data from the CBCT images, with HD computing employed to power the facial symmetry quantification system. This combination of technologies allowed for an objective and detailed analysis of facial features, surpassing the accuracy and reliability of traditional symmetry assessments, which often rely on subjective visual evaluations by clinicians. In addition to developing the system, the researchers conducted a retrospective review of 3D CBCT data from 300 patients who had undergone OGS. The patients’ facial images were analyzed both before and after surgery to assess the clinical utility of the proposed system. The results showed that the facial symmetry algorithm achieved an overall accuracy of 82.5%, indicating its robustness in real-world clinical applications. Postoperative analysis revealed a significant improvement in facial symmetry, with an average score increase of 51%. The mean symmetry score rose from 2.53 preoperatively to 3.89 postoperatively, demonstrating the system's effectiveness in quantifying improvements after OGS. These results underscore the system's potential for providing valuable feedback to surgeons and aiding in the refinement of surgical techniques. The study also led to the development of a web-based system that automates facial symmetry assessment. This system integrates HD computing and 3D contour mapping into a user-friendly platform that allows for rapid and accurate evaluations. Clinicians can easily access this system to perform detailed symmetry assessments, making it a practical tool for clinical settings. Additionally, the system facilitates better communication between clinicians and patients by providing objective, easy-to-understand symmetry scores, which can help patients visualize the expected outcomes of their surgery. In conclusion, this study introduced a valuable and highly effective approach to facial symmetry evaluation in OGS, combining 3D contour mapping, HD computing, and machine learning. The resulting system achieved high accuracy and offers a streamlined, automated solution for clinical use. The development of the web-based platform further enhances its practicality, making it a valuable tool for improving surgical outcomes and patient satisfaction in orthognathic surgery.

Keywords: facial symmetry, orthognathic surgery, facial contour mapping, hyperdimensional computing

Procedia PDF Downloads 27
75 Role of Toll Like Receptor-2 in Female Genital Tuberculosis Disease Infection and Its Severity

Authors: Swati Gautam, Salman Akhtar, S. P. Jaiswar, Amita Jain

Abstract:

Background: FGTB is now a major global health problem mostly in developing countries including India. In humans, Mycobacterium Tuberculosis (M.tb) is a causating agent of infection. High index of suspicion is required for early diagnosis due to asymptomatic presentation of FGTB disease. In macrophages Toll Like Receptor-2 (TLR-2) is one which mediated host’s immune response to M.tb. The expression of TLR-2 on macrophages is important to determine the fate of innate immune responses to M.tb. TLR-2 have two work. First its high expression on macrophages worsen the outer of infection and another side, it maintains M.tb to its dormant stage avoids activation of M.tb from latent phase. Single Nucleotide Polymorphism (SNP) of TLR-2 gene plays an important role in susceptibility to TB among different populations and subsequently, in the development of infertility. Methodology: This Case-Control study was done in the Department of Obs and Gynae and Department of Microbiology at King George’s Medical University, U.P, Lucknow, India. Total 300 subjects (150 Cases and 150 Controls) were enrolled in the study. All subjects were enrolled only after fulfilling the given inclusion and exclusion criteria. Inclusion criteria: Age 20-35 years, menstrual-irregularities, positive on Acid-Fast Bacilli (AFB), TB-PCR, (LJ/MGIT) culture in Endometrial Aspiration (EA). Exclusion criteria: Koch’s active, on ATT, PCOS, and Endometriosis fibroid women, positive on Gonococal and Chlamydia. Blood samples were collected in EDTA tubes from cases and healthy control women (HCW) and genomic DNA extraction was carried out by salting-out method. Genotyping of TLR2 genetic variants (Arg753Gln and Arg677Trp) were performed by using single amplification refractory mutation system (ARMS) PCR technique. PCR products were analyzed by electrophoresis on 1.2% agarose gel and visualized by gel-doc. Statistical analysis of the data was performed using the SPSS 16.3 software and computing odds ratio (OR) with 95% CI. Linkage Disequiliribium (LD) analysis was done by SNP stats online software. Results: In TLR-2 (Arg753Gln) polymorphism significant risk of FGTB observed with GG homozygous mutant genotype (OR=13, CI=0.71-237.7, p=0.05), AG heterozygous mutant genotype (OR=13.7, CI=0.76-248.06, p=0.03) however, G allele (OR=1.09, CI=0.78-1.52, p=0.67) individually was not associated with FGTB. In TLR-2 (Arg677Trp) polymorphism a significant risk of FGTB observed with TT homozygous mutant genotype (OR= 0.020, CI=0.001-0.341, p < 0.001), CT heterozygous mutant genotype (OR=0.53, CI=0.33-0.86, p=0.014) and T allele (OR=0.463, CI=0.32-0.66, p < 0.001). TT mutant genotype was only found in FGTB cases and frequency of CT heterozygous more in control group as compared to FGTB group. So, CT genotype worked as protective mutation for FGTB susceptibility group. In haplotype analysis of TLR-2 genetic variants, four possible combinations, i.e. (G-T, A-C, G-C, and A-T) were obtained. The frequency of haplotype A-C was significantly higher in FGTB cases (0.32). Control group did not show A-C haplotype and only found in FGTB cases. Conclusion: In conclusion, study showed a significant association with both genetic variants of TLR-2 of FGTB disease. Moreover, the presence of specific associated genotype/alleles suggest the possibility of disease severity and clinical approach aimed to prevent extensive damage by disease and also helpful for early detection of disease.

Keywords: ARMS, EDTA, FGTB, TLR

Procedia PDF Downloads 307
74 Thermally Stable Crystalline Triazine-Based Organic Polymeric Nanodendrites for Mercury(2+) Ion Sensing

Authors: Dimitra Das, Anuradha Mitra, Kalyan Kumar Chattopadhyay

Abstract:

Organic polymers, constructed from light elements like carbon, hydrogen, nitrogen, oxygen, sulphur, and boron atoms, are the emergent class of non-toxic, metal-free, environmental benign advanced materials. Covalent triazine-based polymers with a functional triazine group are significant class of organic materials due to their remarkable stability arising out of strong covalent bonds. They can conventionally form hydrogen bonds, favour π–π contacts, and they were recently revealed to be involved in interesting anion–π interactions. The present work mainly focuses upon the development of a single-crystalline, highly cross-linked triazine-based nitrogen-rich organic polymer with nanodendritic morphology and significant thermal stability. The polymer has been synthesized through hydrothermal treatment of melamine and ethylene glycol resulting in cross-polymerization via condensation-polymerization reaction. The crystal structure of the polymer has been evaluated by employing Rietveld whole profile fitting method. The polymer has been found to be composed of monoclinic melamine having space group P21/a. A detailed insight into the chemical structure of the as synthesized polymer has been elucidated by Fourier Transform Infrared Spectroscopy (FTIR) and Raman spectroscopic analysis. X-Ray Photoelectron Spectroscopic (XPS) analysis has also been carried out for further understanding of the different types of linkages required to create the backbone of the polymer. The unique rod-like morphology of the triazine based polymer has been revealed from the images obtained from Field Emission Scanning Electron Microscopy (FESEM) and Transmission Electron Microscopy (TEM). Interestingly, this polymer has been found to selectively detect mercury (Hg²⁺) ions at an extremely low concentration through fluorescent quenching with detection limit as low as 0.03 ppb. The high toxicity of mercury ions (Hg²⁺) arise from its strong affinity towards the sulphur atoms of biological building blocks. Even a trace quantity of this metal is dangerous for human health. Furthermore, owing to its small ionic radius and high solvation energy, Hg²⁺ ions remain encapsulated by water molecules making its detection a challenging task. There are some existing reports on fluorescent-based heavy metal ion sensors using covalent organic frameworks (COFs) but reports on mercury sensing using triazine based polymers are rather undeveloped. Thus, the importance of ultra-trace detection of Hg²⁺ ions with high level of selectivity and sensitivity has contemporary significance. A plausible sensing phenomenon by the polymer has been proposed to understand the applicability of the material as a potential sensor. The impressive sensitivity of the polymer sample towards Hg²⁺ is the very first report in the field of highly crystalline triazine based polymers (without the introduction of any sulphur groups or functionalization) towards mercury ion detection through photoluminescence quenching technique. This crystalline metal-free organic polymer being cheap, non-toxic and scalable has current relevance and could be a promising candidate for Hg²⁺ ion sensing at commercial level.

Keywords: fluorescence quenching , mercury ion sensing, single-crystalline, triazine-based polymer

Procedia PDF Downloads 136
73 Flexural Response of Sandwiches with Micro Lattice Cores Manufactured via Selective Laser Sintering

Authors: Emre Kara, Ali Kurşun, Halil Aykul

Abstract:

The lightweight sandwiches obtained with the use of various core materials such as foams, honeycomb, lattice structures etc., which have high energy absorbing capacity and high strength to weight ratio, are suitable for several applications in transport industry (automotive, aerospace, shipbuilding industry) where saving of fuel consumption, load carrying capacity increase, safety of vehicles and decrease of emission of harmful gases are very important aspects. While the sandwich structures with foams and honeycombs have been applied for many years, there is a growing interest on a new generation sandwiches with micro lattice cores. In order to produce these core structures, various production methods were created with the development of the technology. One of these production technologies is an additive manufacturing technique called selective laser sintering/melting (SLS/SLM) which is very popular nowadays because of saving of production time and achieving the production of complex topologies. The static bending and the dynamic low velocity impact tests of the sandwiches with carbon fiber/epoxy skins and the micro lattice cores produced via SLS/SLM were already reported in just a few studies. The goal of this investigation was the analysis of the flexural response of the sandwiches consisting of glass fiber reinforced plastic (GFRP) skins and the micro lattice cores manufactured via SLS under thermo-mechanical loads in order to compare the results in terms of peak load and absorbed energy values respect to the effect of core cell size, temperature and support span length. The micro lattice cores were manufactured using SLS technology that creates the product drawn by a 3D computer aided design (CAD) software. The lattice cores which were designed as body centered cubic (BCC) model having two different cell sizes (d= 2 and 2.5 mm) with the strut diameter of 0.3 mm were produced using titanium alloy (Ti6Al4V) powder. During the production of all the core materials, the same production parameters such as laser power, laser beam diameter, building direction etc. were kept constant. Vacuum Infusion (VI) method was used to produce skin materials, made of [0°/90°] woven S-Glass prepreg laminates. The combination of the core and skins were implemented under VI. Three point bending tests were carried out by a servo-hydraulic test machine with different values of support span distances (L = 30, 45, and 60 mm) under various temperature values (T = 23, 40 and 60 °C) in order to analyze the influences of support span and temperature values. The failure mode of the collapsed sandwiches has been investigated using 3D computed tomography (CT) that allows a three-dimensional reconstruction of the analyzed object. The main results of the bending tests are: load-deflection curves, peak force and absorbed energy values. The results were compared according to the effect of cell size, support span and temperature values. The obtained results have particular importance for applications that require lightweight structures with a high capacity of energy dissipation, such as the transport industry, where problems of collision and crash have increased in the last years.

Keywords: light-weight sandwich structures, micro lattice cores, selective laser sintering, transport application

Procedia PDF Downloads 340
72 Learning Language through Story: Development of Storytelling Website Project for Amazighe Language Learning

Authors: Siham Boulaknadel

Abstract:

Every culture has its share of a rich history of storytelling in oral, visual, and textual form. The Amazigh language, as many languages, has its own which has entertained and informed across centuries and cultures, and its instructional potential continues to serve teachers. According to many researchers, listening to stories draws attention to the sounds of language and helps children develop sensitivity to the way language works. Stories including repetitive phrases, unique words, and enticing description encourage students to join in actively to repeat, chant, sing, or even retell the story. This kind of practice is important to language learners’ oral language development, which is believed to correlate completely with student’s academic success. Today, with the advent of multimedia, digital storytelling for instance can be a practical and powerful learning tool. It has the potential in transforming traditional learning into a world of unlimited imaginary environment. This paper reports on a research project on development of multimedia Storytelling Website using traditional Amazigh oral narratives called “tell me a story”. It is a didactic tool created for the learning of good moral values in an interactive multimedia environment combining on-screen text, graphics and audio in an enticing environment and enabling the positive values of stories to be projected. This Website developed in this study is based on various pedagogical approaches and learning theories deemed suitable for children age 8 to 9 year-old. The design and development of Website was based on a well-researched conceptual framework enabling users to: (1) re-play and share the stories in schools or at home, and (2) access the Website anytime and anywhere. Furthermore, the system stores the students work and activities over the system, allowing parents or teachers to monitor students’ works, and provide online feedback. The Website contains following main feature modules: Storytelling incorporates a variety of media such as audio, text and graphics in presenting the stories. It introduces the children to various kinds of traditional Amazigh oral narratives. The focus of this module is to project the positive values and images of stories using digital storytelling technique. Besides development good moral sense in children using projected positive images and moral values, it also allows children to practice their comprehending and listening skills. Reading module is developed based on multimedia material approach which offers the potential for addressing the challenges of reading instruction. This module is able to stimulate children and develop reading practice indirectly due to the tutoring strategies of scaffolding, self-explanation and hyperlinks offered in this module. Word Enhancement assists the children in understanding the story and appreciating the good moral values more efficiently. The difficult words or vocabularies are attached to present the explanation, which makes the children understand the vocabulary better. In conclusion, we believe that the interactive multimedia storytelling reveals an interesting and exciting tool for learning Amazigh. We plan to address some learning issues, in particularly the uses of activities to test and evaluate the children on their overall understanding of story and words presented in the learning modules.

Keywords: Amazigh language, e-learning, storytelling, language teaching

Procedia PDF Downloads 405
71 An Efficient Algorithm for Solving the Transmission Network Expansion Planning Problem Integrating Machine Learning with Mathematical Decomposition

Authors: Pablo Oteiza, Ricardo Alvarez, Mehrdad Pirnia, Fuat Can

Abstract:

To effectively combat climate change, many countries around the world have committed to a decarbonisation of their electricity, along with promoting a large-scale integration of renewable energy sources (RES). While this trend represents a unique opportunity to effectively combat climate change, achieving a sound and cost-efficient energy transition towards low-carbon power systems poses significant challenges for the multi-year Transmission Network Expansion Planning (TNEP) problem. The objective of the multi-year TNEP is to determine the necessary network infrastructure to supply the projected demand in a cost-efficient way, considering the evolution of the new generation mix, including the integration of RES. The rapid integration of large-scale RES increases the variability and uncertainty in the power system operation, which in turn increases short-term flexibility requirements. To meet these requirements, flexible generating technologies such as energy storage systems must be considered within the TNEP as well, along with proper models for capturing the operational challenges of future power systems. As a consequence, TNEP formulations are becoming more complex and difficult to solve, especially for its application in realistic-sized power system models. To meet these challenges, there is an increasing need for developing efficient algorithms capable of solving the TNEP problem with reasonable computational time and resources. In this regard, a promising research area is the use of artificial intelligence (AI) techniques for solving large-scale mixed-integer optimization problems, such as the TNEP. In particular, the use of AI along with mathematical optimization strategies based on decomposition has shown great potential. In this context, this paper presents an efficient algorithm for solving the multi-year TNEP problem. The algorithm combines AI techniques with Column Generation, a traditional decomposition-based mathematical optimization method. One of the challenges of using Column Generation for solving the TNEP problem is that the subproblems are of mixed-integer nature, and therefore solving them requires significant amounts of time and resources. Hence, in this proposal we solve a linearly relaxed version of the subproblems, and trained a binary classifier that determines the value of the binary variables, based on the results obtained from the linearized version. A key feature of the proposal is that we integrate the binary classifier into the optimization algorithm in such a way that the optimality of the solution can be guaranteed. The results of a study case based on the HRP 38-bus test system shows that the binary classifier has an accuracy above 97% for estimating the value of the binary variables. Since the linearly relaxed version of the subproblems can be solved with significantly less time than the integer programming counterpart, the integration of the binary classifier into the Column Generation algorithm allowed us to reduce the computational time required for solving the problem by 50%. The final version of this paper will contain a detailed description of the proposed algorithm, the AI-based binary classifier technique and its integration into the CG algorithm. To demonstrate the capabilities of the proposal, we evaluate the algorithm in case studies with different scenarios, as well as in other power system models.

Keywords: integer optimization, machine learning, mathematical decomposition, transmission planning

Procedia PDF Downloads 85
70 Measuring Entrepreneurship Intentions among Nigerian University Graduates: A Structural Equation Modeling Technique

Authors: Eunice Oluwakemi Chukwuma-Nwuba

Abstract:

Nigeria is a developing country with an increasing rate of graduate unemployment. This has triggered successive government administrations to promote the variety of programmes to address the situation. However, none of these efforts yielded the desired outcome. Accordingly, in 2006 the government included entrepreneurship module in the curriculum of universities as a compulsory general programme for all undergraduate courses. This is in the hope that the programme will help to promote entrepreneurial mind-set and new venture creation among graduates and as a result reduce the rate of graduate unemployment. The study explores the effectiveness of entrepreneurship education in promoting entrepreneurship. This study is significant in view of the endemic graduate unemployment in Nigeria and the social consequences such as youth restiveness and militancy. It is guided by the theory of planned behaviour. It employed the two-stage structural equation modelling (AMOS) to model entrepreneurial intentions as a function of innovative teaching methods, traditional teaching methods and culture Personal attitude and subjective norm are proposed to mediate the relationships between the exogenous and the endogenous variables. The first stage was tested using multi-group confirmatory factor analysis (MGCFA) framework to confirm that the two groups assign the same meaning to the scale items and to obtain goodness-of-fit indices. The multi-group confirmatory factor analysis included the tests of configural, metric and scalar invariance. With the attainment of full configural invariance and partial metric and scalar invariance, the second stage – the structural model was applied hypothesising that, the entrepreneurial intentions of graduates (respondents who have participated in the compulsory entrepreneurship programme) will be higher than those of undergraduates (respondents who are yet to participate in the programme). The study uses the quasi-experimental design. The samples comprised 409 graduates (experimental group) and 402 undergraduates (control group) from six federal universities in Nigeria. Our findings suggest that personal attitude is positively related with entrepreneurial intentions, largely confirming prior literature. However, unlike previous studies, our results indicate that subjective norm has significant direct and indirect impact on entrepreneurial intentions indicating that reference people of the participants have important roles to play in their decision to be entrepreneurial. Furthermore, unlike the assertions in prior studies, the result suggests that traditional teaching methods have indirect effect on entrepreneurial intentions supporting that since personal characteristics can change in an educational situation, an education purposively directed at entrepreneurship might achieve similar results if not better. This study has implication for practice and theory. The research extends to the theoretical understanding of the formation of entrepreneurial intentions and explains the role of the reference others in relation to how graduates perceive entrepreneurship. Further, the study adds to the body of knowledge on entrepreneurship education in Nigeria universities and provides a developing country perspective. It proposes further research in the exploration of entrepreneurship education and entrepreneurial intentions of graduates from across the country’s universities as necessary and imperative.

Keywords: entrepreneurship education, entrepreneurial intention, structural equation modeling, theory of planned behaviour

Procedia PDF Downloads 259
69 Multi-Model Super Ensemble Based Advanced Approaches for Monsoon Rainfall Prediction

Authors: Swati Bhomia, C. M. Kishtawal, Neeru Jaiswal

Abstract:

Traditionally, monsoon forecasts have encountered many difficulties that stem from numerous issues such as lack of adequate upper air observations, mesoscale nature of convection, proper resolution, radiative interactions, planetary boundary layer physics, mesoscale air-sea fluxes, representation of orography, etc. Uncertainties in any of these areas lead to large systematic errors. Global circulation models (GCMs), which are developed independently at different institutes, each of which carries somewhat different representation of the above processes, can be combined to reduce the collective local biases in space, time, and for different variables from different models. This is the basic concept behind the multi-model superensemble and comprises of a training and a forecast phase. The training phase learns from the recent past performances of models and is used to determine statistical weights from a least square minimization via a simple multiple regression. These weights are then used in the forecast phase. The superensemble forecasts carry the highest skill compared to simple ensemble mean, bias corrected ensemble mean and the best model out of the participating member models. This approach is a powerful post-processing method for the estimation of weather forecast parameters reducing the direct model output errors. Although it can be applied successfully to the continuous parameters like temperature, humidity, wind speed, mean sea level pressure etc., in this paper, this approach is applied to rainfall, a parameter quite difficult to handle with standard post-processing methods, due to its high temporal and spatial variability. The present study aims at the development of advanced superensemble schemes comprising of 1-5 day daily precipitation forecasts from five state-of-the-art global circulation models (GCMs), i.e., European Centre for Medium Range Weather Forecasts (Europe), National Center for Environmental Prediction (USA), China Meteorological Administration (China), Canadian Meteorological Centre (Canada) and U.K. Meteorological Office (U.K.) obtained from THORPEX Interactive Grand Global Ensemble (TIGGE), which is one of the most complete data set available. The novel approaches include the dynamical model selection approach in which the selection of the superior models from the participating member models at each grid and for each forecast step in the training period is carried out. Multi-model superensemble based on the training using similar conditions is also discussed in the present study, which is based on the assumption that training with the similar type of conditions may provide the better forecasts in spite of the sequential training which is being used in the conventional multi-model ensemble (MME) approaches. Further, a variety of methods that incorporate a 'neighborhood' around each grid point which is available in literature to allow for spatial error or uncertainty, have also been experimented with the above mentioned approaches. The comparison of these schemes with respect to the observations verifies that the newly developed approaches provide more unified and skillful prediction of the summer monsoon (viz. June to September) rainfall compared to the conventional multi-model approach and the member models.

Keywords: multi-model superensemble, dynamical model selection, similarity criteria, neighborhood technique, rainfall prediction

Procedia PDF Downloads 139
68 Single Crystal Growth in Floating-Zone Method and Properties of Spin Ladders: Quantum Magnets

Authors: Rabindranath Bag, Surjeet Singh

Abstract:

Materials in which the electrons are strongly correlated provide some of the most challenging and exciting problems in condensed matter physics today. After the discovery of high critical temperature superconductivity in layered or two-dimensional copper oxides, many physicists got attention in cuprates and it led to an upsurge of interest in the synthesis and physical properties of copper-oxide based material. The quest to understand superconducting mechanism in high-temperature cuprates, drew physicist’s attention to somewhat simpler compounds consisting of spin-chains or one-dimensional lattice of coupled spins. Low-dimensional quantum magnets are of huge contemporary interest in basic sciences as well emerging technologies such as quantum computing and quantum information theory, and heat management in microelectronic devices. Spin ladder is an example of quasi one-dimensional quantum magnets which provides a bridge between one and two dimensional materials. One of the examples of quasi one-dimensional spin-ladder compounds is Sr14Cu24O41, which exhibits a lot of interesting and exciting physical phenomena in low dimensional systems. Very recently, the ladder compound Sr14Cu24O41 was shown to exhibit long-distance quantum entanglement crucial to quantum information theory. Also, it is well known that hole-compensation in this material results in very high (metal-like) anisotropic thermal conductivity at room temperature. These observations suggest that Sr14Cu24O41 is a potential multifunctional material which invites further detailed investigations. To investigate these properties one must needs a large and high quality of single crystal. But these systems are showing incongruently melting behavior, which brings many difficulties to grow a large and quality of single crystals. Hence, we are using TSFZ (Travelling Solvent Floating Zone) method to grow the high quality of single crystals of the low dimensional magnets. Apart from this, it has unique crystal structure (alternating stacks of plane containing edge-sharing CuO2 chains, and the plane containing two-leg Cu2O3 ladder with intermediate Sr layers along the b- axis), which is also incommensurate in nature. It exhibits abundant physical phenomenon such as spin dimerization, crystallization of charge holes and charge density wave. The maximum focus of research so far involved in introducing defects on A-site (Sr). However, apart from the A-site (Sr) doping, there are only few studies in which the B-site (Cu) doping of polycrystalline Sr14Cu24O41 have been discussed and the reason behind this is the possibility of two doping sites for Cu (CuO2 chain and Cu2O3 ladder). Therefore, in our present work, the crystals (pristine and Cu-site doped) were grown by using TSFZ method by tuning the growth parameters. The Laue diffraction images, optical polarized microscopy and Scanning Electron Microscopy (SEM) images confirm the quality of the grown crystals. Here, we report the single crystal growth, magnetic and transport properties of Sr14Cu24O41 and its lightly doped variants (magnetic and non-magnetic) containing less than 1% of Co, Ni, Al and Zn impurities. Since, any real system will have some amount of weak disorder, our studies on these ladder compounds with controlled dilute disorder would be significant in the present context.

Keywords: low-dimensional quantum magnets, single crystal, spin-ladder, TSFZ technique

Procedia PDF Downloads 274