Search results for: the creative learning process
14816 Application of Geotube® Method for Sludge Handling in Adaro Coal Mine
Authors: Ezman Fitriansyah, Lestari Diah Restu, Wawan
Abstract:
Adaro coal mine in South Kalimantan-Indonesia maintains catchment area of approximately 15,000 Ha for its mine operation. As an open pit surface coal mine with high erosion rate, the mine water in Adaro coal mine contains high TSS that needs to be treated before being released to rivers. For the treatment process, Adaro operates 21 Settling Ponds equipped with combination of physical and chemical system to separate solids and water to ensure the discharged water complied with regional environmental quality standards. However, the sludge created from the sedimentation process reduces the settling ponds capacity gradually. Therefore regular maintenance activities are required to recover and maintain the ponds' capacity. Trucking system and direct dredging had been the most common method to handle sludge in Adaro. But the main problem in applying these two methods is excessive area required for drying pond construction. To solve this problem, Adaro implements an alternative method called Geotube®. The principle of Geotube® method is the sludge contained in the Settling Ponds is pumped into Geotube® containers which have been designed to release water and retain mud flocks. During the pumping process, an amount of flocculants chemicals are injected into the sludge to form bigger mud flocks. Due to the difference in particle size, the mud flocks are settled in the container whilst the water continues to flow out through the container’s pores. Compared to the trucking system and direct dredging method, this method provides three advantages: space required to operate, increasing of overburden waste dump volume, and increasing of water treatment process speed and quality. Based on the evaluation result, Geotube® method only needs 1:8 of space required by the other methods. From the geotechnical assessment result conducted by Adaro, the potential loss of waste dump volume capacity prior to implementation of the Geotube® method was 26.7%. The water treatment process of TSS in well maintained ponds is 16% more optimum.Keywords: geotube, mine water, settling pond, sludge handling, wastewater treatment
Procedia PDF Downloads 20314815 Analysis of Digital Transformation in Banking: The Hungarian Case
Authors: Éva Pintér, Péter Bagó, Nikolett Deutsch, Miklós Hetényi
Abstract:
The process of digital transformation has a profound influence on all sectors of the worldwide economy and the business environment. The influence of blockchain technology can be observed in the digital economy and e-government, rendering it an essential element of a nation's growth strategy. The banking industry is experiencing significant expansion and development of financial technology firms. Utilizing developing technologies such as artificial intelligence (AI), machine learning (ML), and big data (BD), these entrants are offering more streamlined financial solutions, promptly addressing client demands, and presenting a challenge to incumbent institutions. The advantages of digital transformation are evident in the corporate realm, and firms that resist its adoption put their survival at risk. The advent of digital technologies has revolutionized the business environment, streamlining processes and creating opportunities for enhanced communication and collaboration. Thanks to the aid of digital technologies, businesses can now swiftly and effortlessly retrieve vast quantities of information, all the while accelerating the process of creating new and improved products and services. Big data analytics is generally recognized as a transformative force in business, considered the fourth paradigm of science, and seen as the next frontier for innovation, competition, and productivity. Big data, an emerging technology that is shaping the future of the banking sector, offers numerous advantages to banks. It enables them to effectively track consumer behavior and make informed decisions, thereby enhancing their operational efficiency. Banks may embrace big data technologies to promptly and efficiently identify fraud, as well as gain insights into client preferences, which can then be leveraged to create better-tailored products and services. Moreover, the utilization of big data technology empowers banks to develop more intelligent and streamlined models for accurately recognizing and focusing on the suitable clientele with pertinent offers. There is a scarcity of research on big data analytics in the banking industry, with the majority of existing studies only examining the advantages and prospects associated with big data. Although big data technologies are crucial, there is a dearth of empirical evidence about the role of big data analytics (BDA) capabilities in bank performance. This research addresses a gap in the existing literature by introducing a model that combines the resource-based view (RBV), the technical organization environment framework (TOE), and dynamic capability theory (DC). This study investigates the influence of Big Data Analytics (BDA) utilization on the performance of market and risk management. This is supported by a comparative examination of Hungarian mobile banking services.Keywords: big data, digital transformation, dynamic capabilities, mobile banking
Procedia PDF Downloads 7214814 Experimental Evaluation of Electrocoagulation for Hardness Removal of Bore Well Water
Authors: Pooja Kumbhare
Abstract:
Water is an important resource for the survival of life. The inadequate availability of surface water makes people depend on ground water for fulfilling their needs. However, ground water is generally too hard to satisfy the requirements for domestic as well as industrial applications. Removal of hardness involves various techniques such as lime soda process, ion exchange, reverse osmosis, nano-filtration, distillation, and, evaporation, etc. These techniques have individual problems such as high annual operating cost, sediment formation on membrane, sludge disposal problem, etc. Electrocoagulation (EC) is being explored as modern and cost-effective technology to cope up with the growing demand of high water quality at the consumer end. In general, earlier studies on electrocoagulation for hardness removal are found to deploy batch processes. As batch processes are always inappropriate to deal with large volume of water to be treated, it is essential to develop continuous flow EC process. So, in the present study, an attempt is made to investigate continuous flow EC process for decreasing excessive hardness of bore-well water. The experimental study has been conducted using 12 aluminum electrodes (25cm*10cm, 1cm thick) provided in EC reactor with volume of 8 L. Bore well water sample, collected from a local bore-well (i.e. at – Vishrambag, Sangli; Maharashtra) having average initial hardness of 680 mg/l (Range: 650 – 700 mg/l), was used for the study. Continuous flow electrocoagulation experiments were carried out by varying operating parameters specifically reaction time (Range: 10 – 60 min), voltage (Range: 5 – 20 V), current (Range: 1 – 5A). Based on the experimental study, it is found that hardness removal to the desired extent could be achieved even for continuous flow EC reactor, so the use of it is found promising.Keywords: hardness, continuous flow EC process, aluminum electrode, optimal operating parameters
Procedia PDF Downloads 18214813 Language Skills in the Emergent Literacy of Spanish-Speaking Children with Autism Spectrum Disorders
Authors: Adriana Salgado, Sandra Castaneda, Ivan Perez
Abstract:
Learning to read and write is a complex process involving several cognitive skills, contextual, and cultural environments. The basis of this development is linguistic skills, such as the ability to name and understand vocabulary, retell a story, phonological awareness, letter knowledge, among others. In children with autism spectrum disorder (ASD), one of the main concerns is related to language disorders. Nevertheless, most of the children with ASD are able to decode written information but have difficulties in reading comprehension. The research of these processes in the Spanish-speaking population is limited. However, the increasing prevalence of this diagnosis (1 in 115 children) in Mexico has implications at different levels. Educational research is an important area of interest in ASD children, such as emergent literacy. Reading and writing expand the possibilities of academic, cultural, and social information access. Taking this information into account, the objective of this research was to identify the relationship between language skills, alphabet knowledge, phonological awareness, and early reading and writing in ASD Spanish-speaking children. The method used for this research was based on tasks that were selected, adapted and in some cases designed to measure initial reading and writing, as well as language skills (naming, receptive vocabulary, and narrative skills), phonological awareness (similar phonological word pairs, beginning sound awareness and spelling) and letter knowledge, in a sample of 45 children (38 boys and 7 girls) with prior diagnosis of ASD. Descriptive analyses, as well as bivariate correlations, cluster analysis, and canonical correspondence, were obtained for the data results. Results showed that variability was large; however, it was possible to characterize the sample in low, medium, and high score groups regarding children performance. The low score group (46.7% of the sample), had a null or deficient performance in language skills and phonological awareness, some could identify up to five letters of the alphabet, showed no early reading skills but they could scribble. The middle score group was characterized by a highly variable performance in different tasks, with better language skills in receptive and naming vocabulary, some narrative, letter knowledge, and phonological awareness (beginning sound awareness) skills. The high score group, (24.4% of the sample) had the best performance in language skills in relation to the sample data, as well as in the rest of the measured skills. Finally, scores were canonically correlated between naming, receptive vocabulary, narrative, phonological awareness, letter knowledge and initial learning of reading and writing skills for the high score group and letter knowledge, naming and receptive vocabulary for the lower score group, which is consistent with previous research in typical and ASD children. In conclusion, the obtained data is consistent with previous studies. Despite large variability, it was possible to identify performance profiles and relations based on linguistic, phonological awareness, and letter knowledge skills. These skills were predictor variables of the initial development of reading and writing. The above has implications for a future program and strategies development that may benefit the acquisition of reading and writing in ASD children.Keywords: autism, autism spectrum disorders, early literacy, emergent literacy
Procedia PDF Downloads 14714812 Formation of the Investment Portfolio of Intangible Assets with a Wide Pairwise Comparison Matrix Application
Authors: Gulnara Galeeva
Abstract:
The Analytic Hierarchy Process is widely used in the economic and financial studies, including the formation of investment portfolios. In this study, a generalized method of obtaining a vector of priorities for the case with separate pairwise comparisons of the expert opinion being presented as a set of several equal evaluations on a ratio scale is examined. The author claims that this method allows solving an important and up-to-date problem of excluding vagueness and ambiguity of the expert opinion in the decision making theory. The study describes the authentic wide pairwise comparison matrix. Its application in the formation of the efficient investment portfolio of intangible assets of a small business enterprise with limited funding is considered. The proposed method has been successfully approbated on the practical example of a functioning dental clinic. The result of the study confirms that the wide pairwise comparison matrix can be used as a simple and reliable method for forming the enterprise investment policy. Moreover, a comparison between the method based on the wide pairwise comparison matrix and the classical analytic hierarchy process was conducted. The results of the comparative analysis confirm the correctness of the method based on the wide matrix. The application of a wide pairwise comparison matrix also allows to widely use the statistical methods of experimental data processing for obtaining the vector of priorities. A new method is available for simple users. Its application gives about the same accuracy result as that of the classical hierarchy process. Financial directors of small and medium business enterprises get an opportunity to solve the problem of companies’ investments without resorting to services of analytical agencies specializing in such studies.Keywords: analytic hierarchy process, decision processes, investment portfolio, intangible assets
Procedia PDF Downloads 27314811 Technology and the Need for Integration in Public Education
Authors: Eric Morettin
Abstract:
Cybersecurity and digital literacy are pressing issues among Canadian citizens, yet formal education does not provide today’s students with the necessary knowledge and skills needed to adapt to these challenging issues within the physical and digital labor-market. Canada’s current education systems do not highlight the importance of these respective fields, aside from using technology for learning management systems and alternative methods of assignment completion. Educators are not properly trained to integrate technology into the compulsory courses within public education, to better prepare their learners in these topics and Canada’s digital economy. ICTC addresses these gaps in education and training through cross-Canadian educational programming in digital literacy and competency, cybersecurity and coding which is bridged with Canada’s provincially regulated K-12 curriculum guidelines. After analyzing Canada’s provincial education, it is apparent that there are gaps in learning related to technology, as well as inconsistent educational outcomes that do not adequately represent the current Canadian and global economies. Presently only New Brunswick, Nova Scotia, Ontario, and British Columbia offer curriculum guidelines for cybersecurity, computer programming, and digital literacy. The remaining provinces do not address these skills in their curriculum guidelines. Moreover, certain courses across some provinces not being updated since the 1990’s. The three territories respectfully take curriculum strands from other provinces and use them as their foundation in education. Yukon uses all British Columbia curriculum. Northwest Territories and Nunavut respectfully use a hybrid of Alberta and Saskatchewan curriculum as their foundation of learning. Education that is provincially regulated does not allow for consistency across the country’s educational outcomes and what Canada’s students will achieve – especially when curriculum outcomes have not been updated to reflect present day society. Through this, ICTC has aligned Canada’s provincially regulated curriculum and created opportunities for focused education in the realm of technology to better serve Canada’s present learners and teachers; while addressing inequalities and applicability within curriculum strands and outcomes across the country. As a result, lessons, units, and formal assessment strategies, have been created to benefit students and teachers in this interdisciplinary, cross-curricular, practice - as well as meeting their compulsory education requirements and developing skills and literacy in cyber education. Teachers can access these lessons and units through ICTC’s website, as well as receive professional development regarding the assessment and implementation of these offerings from ICTC’s education coordinators, whose combines experience exceeds 50 years of teaching in public, private, international, and Indigenous schools. We encourage you to take this opportunity that will benefit students and educators, and will bridge the learning and curriculum gaps in Canadian education to better reflect the ever-changing public, social, and career landscape that all citizens are a part of. Students are the future, and we at ICTC strive to ensure their futures are bright and prosperous.Keywords: cybersecurity, education, curriculum, teachers
Procedia PDF Downloads 8614810 Exploring Inclusive Culture and Practice: The Perspectives of Macao Teachers in Informing Inclusive Teacher Education Programmes in Higher Education
Authors: Elisa Monteiro, Kiiko Ikegami
Abstract:
The inclusion of children with diverse learning needs and/or disabilities in regular classrooms has been identified as crucial to the provision of educational equity and quality for all students. In this, teachers play an essential role, as they have a strong impact on student attainment. Whilst the adoption of inclusive practice is increasing, with potential benefits for the teaching profession, there is also a rise in the level of its challenges in Macao as many more students with learning disabilities are now being included in general education classes. Consequently, there has been a significant focus on teacher professional development to ensure that teachers are adequately prepared to teach in inclusive classrooms that give access to diverse students. Major changes in teacher education will need to take place to include more inclusive education content and to equip teachers with the necessary skills in the area of inclusive practice. This paper draws on data from in-depth interviews with 20 teachers to examine teachers’ views of support, challenges, and barriers to inclusive practices at the school and classroom levels. Thematic analysis was utilised to determine major themes within the data. Several themes emerged and serve to illustrate the identified barriers and the potential value of effective teacher education. Suggestions for increased professional development opportunities for inclusive education specific to higher education institutions are presented and the implications for practice and teacher education are discussed.Keywords: inclusion, inclusive practice, teacher education, higher education
Procedia PDF Downloads 9014809 Optical Board as an Artificial Technology for a Peer Teaching Class in a Nigerian University
Authors: Azidah Abu Ziden, Adu Ifedayo Emmanuel
Abstract:
This study investigated the optical board as an artificial technology for peer teaching in a Nigerian university. A design and development research (DDR) design was adopted, which entailed the planning and testing of instructional design models adopted to produce the optical board. This research population involved twenty-five (25) peer-teaching students at a Nigerian university consisting of theatre arts, religion, and language education-related disciplines. Also, using a random sampling technique, this study selected eight (8) students to work on the optical board. Besides, this study introduced a research instrument titled lecturer assessment rubric containing 30-mark metrics for evaluating students’ teaching with the optical board. In this study, it was discovered that the optical board affords students acquisition of self-employment skills through their exposure to the peer teaching course, which is a teacher training module in Nigerian universities. It is evident in this study that students were able to coordinate their design and effectively develop the optical board without lecturer’s interference. This kind of achievement in this research shows that the Nigerian university curriculum had been designed with contents meant to spur students to create jobs after graduation, and effective implementation of the readily available curriculum contents is enough to imbue students with the needed entrepreneurial skills. It was recommended that the Federal Government of Nigeria (FGN) must discourage the poor implementation of Nigerian university curriculum and invest more in the betterment of the readily available curriculum instead of considering a synonymously acclaimed new curriculum for regurgitated teaching and learning process.Keywords: optical board, artificial technology, peer teaching, educational technology, Nigeria, Malaysia, university, glass, wood, electrical, improvisation
Procedia PDF Downloads 7014808 Female Subjectivity in William Faulkner's Light in August
Authors: Azza Zagouani
Abstract:
Introduction: In the work of William Faulkner, characters often evade the boundaries and categories of patriarchal standards of order. Female characters like Lena Grove and Joanna Burden cross thresholds in attempts to gain liberation, while others fail to do so. They stand as non-conformists and refuse established patterns of feminine behavior, such as marriage and motherhood after. They refute submissiveness, domesticity and abstinence to reshape their own identities. The presence of independent and creative women represents new, unconventional images of female subjectivity. This paper will examine the structures of submission and oppression faced by Lena and Joanna, and will show how, in the end, they reshape themselves and their identities, and disrupt or even destroy patriarchal structures. Objectives: Participants will understand through the examples of Lena Grove and Joanna Burden that female subjectivities are constructions, and are constantly subject to change. Approaches: Two approaches will be used in the analysis of the subjectivity formation of Lena Grove and Joanna Burden. Following the arguments propounded by Judith Butler, We explore the ways in which Lena Grove maneuvers around the restrictions and the limitations imposed on her without any physical or psychological violence. She does this by properly performing the roles prescribed to her gendered body. Her repetitious performances of these roles are both the ones that are constructed to confine women and the vehicle for her travel. Her performance parodies the prescriptive roles and thereby reveals that they are cultural constructions. Second, We will explore the argument propounded by Kristeva that subjectivity is always in a state of development because we are always changing in context with changing circumstances. For example, in Light in August, Lena Grove changes the way she defines herself in light of the events of the novel. Also, Kristeva talks about stages of development: the semiotic stage and the symbolic stage. In Light in August, Joanna shows different levels of subjectivity as time passes. Early in the novel, Joanna is very connected to her upbringing. This suggests Kristeva’s concept of the semiotic, in which the daughter identifies closely to her parents. Kristeva relates the semiotic to a strong daughter/mother connection, but in the novel it is strong daughter/father/grandfather identification instead. Then as Joanna becomes sexually involved with Joe, she breaks off, and seems to go into an identity crisis. To me, this represents Kristeva’s move from the semiotic to the symbolic. When Joanna returns to a religious fanaticism, she is returning to a semiotic state. Detailed outline: At the outset of this paper, We will investigate the subjugation of women: social constraints, and the formation of the feminine identity in Light in August. Then, through the examples of Lena Grove’s attempt to cross the boundaries of community moralities and Joanna Burden’s refusal to submit to the standards of submissiveness, domesticity, and obstinance, We will reveal the tension between progressive conceptions of individual freedom and social constraints that limit this freedom. In the second part of the paper, We will underscore the rhetoric of femininity in Light in August: subjugation through naming. The implications of both female’s names offer a powerful contrast between the two different forms of subjectivity. Conclusion: Through Faulkner’s novel, We demonstrate that female subjectivity is an open-ended issue. The spiral shaping of its form maintains its characteristics as a process changing according to different circumstances.Keywords: female subjectivity, Faulkner’s light August, gender, sexuality, diversity
Procedia PDF Downloads 40214807 Towards Visual Personality Questionnaires Based on Deep Learning and Social Media
Authors: Pau Rodriguez, Jordi Gonzalez, Josep M. Gonfaus, Xavier Roca
Abstract:
Image sharing in social networks has increased exponentially in the past years. Officially, there are 600 million Instagrammers uploading around 100 million photos and videos per day. Consequently, there is a need for developing new tools to understand the content expressed in shared images, which will greatly benefit social media communication and will enable broad and promising applications in education, advertisement, entertainment, and also psychology. Following these trends, our work aims to take advantage of the existing relationship between text and personality, already demonstrated by multiple researchers, so that we can prove that there exists a relationship between images and personality as well. To achieve this goal, we consider that images posted on social networks are typically conditioned on specific words, or hashtags, therefore any relationship between text and personality can also be observed with those posted images. Our proposal makes use of the most recent image understanding models based on neural networks to process the vast amount of data generated by social users to determine those images most correlated with personality traits. The final aim is to train a weakly-supervised image-based model for personality assessment that can be used even when textual data is not available, which is an increasing trend. The procedure is described next: we explore the images directly publicly shared by users based on those accompanying texts or hashtags most strongly related to personality traits as described by the OCEAN model. These images will be used for personality prediction since they have the potential to convey more complex ideas, concepts, and emotions. As a result, the use of images in personality questionnaires will provide a deeper understanding of respondents than through words alone. In other words, from the images posted with specific tags, we train a deep learning model based on neural networks, that learns to extract a personality representation from a picture and use it to automatically find the personality that best explains such a picture. Subsequently, a deep neural network model is learned from thousands of images associated with hashtags correlated to OCEAN traits. We then analyze the network activations to identify those pictures that maximally activate the neurons: the most characteristic visual features per personality trait will thus emerge since the filters of the convolutional layers of the neural model are learned to be optimally activated depending on each personality trait. For example, among the pictures that maximally activate the high Openness trait, we can see pictures of books, the moon, and the sky. For high Conscientiousness, most of the images are photographs of food, especially healthy food. The high Extraversion output is mostly activated by pictures of a lot of people. In high Agreeableness images, we mostly see flower pictures. Lastly, in the Neuroticism trait, we observe that the high score is maximally activated by animal pets like cats or dogs. In summary, despite the huge intra-class and inter-class variabilities of the images associated to each OCEAN traits, we found that there are consistencies between visual patterns of those images whose hashtags are most correlated to each trait.Keywords: emotions and effects of mood, social impact theory in social psychology, social influence, social structure and social networks
Procedia PDF Downloads 20514806 A Study on Improvement of Straightness of Preform Pulling Process of Hollow Pipe by Finete Element Analysis Method
Authors: Yeon-Jong Jeong, Jun-Hong Park, Hyuk Choi
Abstract:
In this study, we have studied the design of intermediate die in multipass drawing. Research has been continuously studied because of the advantage of better dimensional accuracy, smooth surface and improved mechanical properties in the case of drawing. Among them, multipass drawing, which is a method to realize complicated shape by drawing, was discussed in this study. The most important factor in the multipass drawing is the dimensional accuracy and simplify the process. To accomplish this, a multistage shape drawing was performed using various intermediate die shape designs, and finite element analysis was performed.Keywords: FEM (Finite Element Method), multipass drawing, intermediate die, hollow pipe
Procedia PDF Downloads 31714805 Characteristics-Based Lq-Control of Cracking Reactor by Integral Reinforcement
Authors: Jana Abu Ahmada, Zaineb Mohamed, Ilyasse Aksikas
Abstract:
The linear quadratic control system of hyperbolic first order partial differential equations (PDEs) are presented. The aim of this research is to control chemical reactions. This is achieved by converting the PDEs system to ordinary differential equations (ODEs) using the method of characteristics to reduce the system to control it by using the integral reinforcement learning. The designed controller is applied to a catalytic cracking reactor. Background—Transport-Reaction systems cover a large chemical and bio-chemical processes. They are best described by nonlinear PDEs derived from mass and energy balances. As a main application to be considered in this work is the catalytic cracking reactor. Indeed, the cracking reactor is widely used to convert high-boiling, high-molecular weight hydrocarbon fractions of petroleum crude oils into more valuable gasoline, olefinic gases, and others. On the other hand, control of PDEs systems is an important and rich area of research. One of the main control techniques is feedback control. This type of control utilizes information coming from the system to correct its trajectories and drive it to a desired state. Moreover, feedback control rejects disturbances and reduces the variation effects on the plant parameters. Linear-quadratic control is a feedback control since the developed optimal input is expressed as feedback on the system state to exponentially stabilize and drive a linear plant to the steady-state while minimizing a cost criterion. The integral reinforcement learning policy iteration technique is a strong method that solves the linear quadratic regulator problem for continuous-time systems online in real time, using only partial information about the system dynamics (i.e. the drift dynamics A of the system need not be known), and without requiring measurements of the state derivative. This is, in effect, a direct (i.e. no system identification procedure is employed) adaptive control scheme for partially unknown linear systems that converges to the optimal control solution. Contribution—The goal of this research is to Develop a characteristics-based optimal controller for a class of hyperbolic PDEs and apply the developed controller to a catalytic cracking reactor model. In the first part, developing an algorithm to control a class of hyperbolic PDEs system will be investigated. The method of characteristics will be employed to convert the PDEs system into a system of ODEs. Then, the control problem will be solved along the characteristic curves. The reinforcement technique is implemented to find the state-feedback matrix. In the other half, applying the developed algorithm to the important application of a catalytic cracking reactor. The main objective is to use the inlet fraction of gas oil as a manipulated variable to drive the process state towards desired trajectories. The outcome of this challenging research would yield the potential to provide a significant technological innovation for the gas industries since the catalytic cracking reactor is one of the most important conversion processes in petroleum refineries.Keywords: PDEs, reinforcement iteration, method of characteristics, riccati equation, cracking reactor
Procedia PDF Downloads 9414804 Three-Dimensional Carbon Foams for the Application as Electrode Material in Energy Storage Systems
Authors: H. Beisch, J. Marx, S. Garlof, R. Shvets, I. I. Grygorchak, A. Kityk, B. Fiedler
Abstract:
Carbon materials, especially three-dimensional carbon foams, show very high potential in the application as electrode material for energy storage systems such as batteries and supercapacitors with unique fast charging and discharging times. Regarding their high specific surface areas (SSA) high specific capacities can be reached. Globugraphite is a newly developed carbon foam with an interconnected globular carbon morphology. Especially, this foam has a statistically distributed hierarchical pore structure resulting from the manufacturing process based on sintered ceramic templates which are synthetized during a final chemical vapor deposition (CVD) process. For morphology characterization scanning electron (SEM) and transmission electron microscopy (TEM) is used. In addition, the SSA is carried out by nitrogen adsorption combined with the Brunauer–Emmett–Teller (BET) theory. Electrochemical measurements in organic and inorganic electrolyte provide high energy densities and power densities resulting from ion absorption by forming an electrochemical double layer. All values are summarized in a Ragone Diagram. Finally, power densities up to 833 W/kg and energy densities up to 48 Wh/kg could be achieved. The corresponding SSA is between 376 m²/g and 859 m²/g. For organic electrolyte a specific capacity of 71 F/g at a density of 20 mg/cm³ was achieved.Keywords: BET, CVD process, electron microscopy, Ragone diagram
Procedia PDF Downloads 17714803 Machine Learning Approaches Based on Recency, Frequency, Monetary (RFM) and K-Means for Predicting Electrical Failures and Voltage Reliability in Smart Cities
Authors: Panaya Sudta, Wanchalerm Patanacharoenwong, Prachya Bumrungkun
Abstract:
As With the evolution of smart grids, ensuring the reliability and efficiency of electrical systems in smart cities has become crucial. This paper proposes a distinct approach that combines advanced machine learning techniques to accurately predict electrical failures and address voltage reliability issues. This approach aims to improve the accuracy and efficiency of reliability evaluations in smart cities. The aim of this research is to develop a comprehensive predictive model that accurately predicts electrical failures and voltage reliability in smart cities. This model integrates RFM analysis, K-means clustering, and LSTM networks to achieve this objective. The research utilizes RFM analysis, traditionally used in customer value assessment, to categorize and analyze electrical components based on their failure recency, frequency, and monetary impact. K-means clustering is employed to segment electrical components into distinct groups with similar characteristics and failure patterns. LSTM networks are used to capture the temporal dependencies and patterns in customer data. This integration of RFM, K-means, and LSTM results in a robust predictive tool for electrical failures and voltage reliability. The proposed model has been tested and validated on diverse electrical utility datasets. The results show a significant improvement in prediction accuracy and reliability compared to traditional methods, achieving an accuracy of 92.78% and an F1-score of 0.83. This research contributes to the proactive maintenance and optimization of electrical infrastructures in smart cities. It also enhances overall energy management and sustainability. The integration of advanced machine learning techniques in the predictive model demonstrates the potential for transforming the landscape of electrical system management within smart cities. The research utilizes diverse electrical utility datasets to develop and validate the predictive model. RFM analysis, K-means clustering, and LSTM networks are applied to these datasets to analyze and predict electrical failures and voltage reliability. The research addresses the question of how accurately electrical failures and voltage reliability can be predicted in smart cities. It also investigates the effectiveness of integrating RFM analysis, K-means clustering, and LSTM networks in achieving this goal. The proposed approach presents a distinct, efficient, and effective solution for predicting and mitigating electrical failures and voltage issues in smart cities. It significantly improves prediction accuracy and reliability compared to traditional methods. This advancement contributes to the proactive maintenance and optimization of electrical infrastructures, overall energy management, and sustainability in smart cities.Keywords: electrical state prediction, smart grids, data-driven method, long short-term memory, RFM, k-means, machine learning
Procedia PDF Downloads 6214802 Teachers as Agents of Change in Diverse Classrooms: An Overview of the Literature
Authors: Anna Sanczyk
Abstract:
Diverse students may experience different forms of discrimination. Some of the oppression students experience in schools are racism, sexism, classism, or homophobia that may affect their achievement, and teachers need to make sure they create inclusive, equitable classroom environments. The broader literature on social change in education shows that teachers who challenge oppression and want to promote equitable and transformative education face institutional, social, and political constraints. This paper discusses research on teachers’ work to create socially just and culturally inclusive classrooms and schools. The practical contribution of this literature review is that it provides a comprehensive compilation of the studies presenting teachers’ roles and efforts in affecting social change. The examination of the research on social change in education points to the urgency of teachers addressing the needs of marginalized students and resisting systemic oppression in schools. The implications of this literature review relate to the concerns that schools should provide greater advocacy for marginalized students in diverse learning contexts, and teacher education programs should prepare teachers to be active advocates for diverse students. The literature review has the potential to inform educators to enhance educational equity and improve the learning environment. This literature review illustrates teachers as agents of change in diverse classrooms and contributes to understanding various ways of taking action towards fostering more equitable and transformative education in today’s schools.Keywords: agents of change, diversity, opression, social change
Procedia PDF Downloads 14214801 Deep Feature Augmentation with Generative Adversarial Networks for Class Imbalance Learning in Medical Images
Authors: Rongbo Shen, Jianhua Yao, Kezhou Yan, Kuan Tian, Cheng Jiang, Ke Zhou
Abstract:
This study proposes a generative adversarial networks (GAN) framework to perform synthetic sampling in feature space, i.e., feature augmentation, to address the class imbalance problem in medical image analysis. A feature extraction network is first trained to convert images into feature space. Then the GAN framework incorporates adversarial learning to train a feature generator for the minority class through playing a minimax game with a discriminator. The feature generator then generates features for minority class from arbitrary latent distributions to balance the data between the majority class and the minority class. Additionally, a data cleaning technique, i.e., Tomek link, is employed to clean up undesirable conflicting features introduced from the feature augmentation and thus establish well-defined class clusters for the training. The experiment section evaluates the proposed method on two medical image analysis tasks, i.e., mass classification on mammogram and cancer metastasis classification on histopathological images. Experimental results suggest that the proposed method obtains superior or comparable performance over the state-of-the-art counterparts. Compared to all counterparts, our proposed method improves more than 1.5 percentage of accuracy.Keywords: class imbalance, synthetic sampling, feature augmentation, generative adversarial networks, data cleaning
Procedia PDF Downloads 13314800 Development of a Performance Measurement Model for Hospitals Using Multi-Criteria Decision Making (MCDM) Techniques: A Case Study of Three South Australian Major Public Hospitals
Authors: Mohammad Safaeipour, Yousef Amer
Abstract:
This study directs its focus on developing a conceptual model to offer a systematic and integrated method to weigh the related measures and evaluate a competence of hospitals and rank of the selected hospitals that involve and consider the stakeholders’ key performance indicators (KPI’s). The Analytical Hierarchy Process (AHP) approach will use to weigh the dimensions and related sub- components. The weights and performance scores will combine by using the Technique for Order Performance by Similarity to Ideal Solution (TOPSIS) and rank the selected hospitals. The results of this study provide interesting insight into the necessity of process improvement implementation in which hospital that received the lowest ranking score.Keywords: performance measurement system, PMS, hospitals, AHP, TOPSIS
Procedia PDF Downloads 38214799 Geovisualisation for Defense Based on a Deep Learning Monocular Depth Reconstruction Approach
Authors: Daniel R. dos Santos, Mateus S. Maldonado, Estevão J. R. Batista
Abstract:
The military commanders increasingly dependent on spatial awareness, as knowing where enemy are, understanding how war battle scenarios change over time, and visualizing these trends in ways that offer insights for decision-making. Thanks to advancements in geospatial technologies and artificial intelligence algorithms, the commanders are now able to modernize military operations on a universal scale. Thus, geovisualisation has become an essential asset in the defense sector. It has become indispensable for better decisionmaking in dynamic/temporal scenarios, operation planning and management for the war field, situational awareness, effective planning, monitoring, and others. For example, a 3D visualization of war field data contributes to intelligence analysis, evaluation of postmission outcomes, and creation of predictive models to enhance decision-making and strategic planning capabilities. However, old-school visualization methods are slow, expensive, and unscalable. Despite modern technologies in generating 3D point clouds, such as LIDAR and stereo sensors, monocular depth values based on deep learning can offer a faster and more detailed view of the environment, transforming single images into visual information for valuable insights. We propose a dedicated monocular depth reconstruction approach via deep learning techniques for 3D geovisualisation of satellite images. It introduces scalability in terrain reconstruction and data visualization. First, a dataset with more than 7,000 satellite images and associated digital elevation model (DEM) is created. It is based on high resolution optical and radar imageries collected from Planet and Copernicus, on which we fuse highresolution topographic data obtained using technologies such as LiDAR and the associated geographic coordinates. Second, we developed an imagery-DEM fusion strategy that combine feature maps from two encoder-decoder networks. One network is trained with radar and optical bands, while the other is trained with DEM features to compute dense 3D depth. Finally, we constructed a benchmark with sparse depth annotations to facilitate future research. To demonstrate the proposed method's versatility, we evaluated its performance on no annotated satellite images and implemented an enclosed environment useful for Geovisualisation applications. The algorithms were developed in Python 3.0, employing open-source computing libraries, i.e., Open3D, TensorFlow, and Pythorch3D. The proposed method provides fast and accurate decision-making with GIS for localization of troops, position of the enemy, terrain and climate conditions. This analysis enhances situational consciousness, enabling commanders to fine-tune the strategies and distribute the resources proficiently.Keywords: depth, deep learning, geovisualisation, satellite images
Procedia PDF Downloads 1914798 Intercultural and Inclusive Teaching Competency Implementation within a Canadian Polytechnic's Academic Model: A Pre- and Post-Assessment Analysis
Authors: Selinda England, Ben Bodnaryk
Abstract:
With an unprecedented increase in provincial immigration and government support for greater international and culturally diverse learners, a trade/applied learning-focused polytechnic with four campuses within one Canadian province saw the need for intercultural awareness and an intercultural teaching competence strategy for faculty training. An institution-wide pre-assessment needs survey was conducted in 2018, in which 87% of faculty professed to have some/no training when working with international and/or culturally diverse learners. After researching fellow Polytechnics in Canada and seeing very little in the way of faculty support for intercultural competence, an institutional project team comprised of members from all facets of the Polytechnic was created and included: Indigenous experts, Academic Chairs, Directors, Human Resource Managers, and international/settlement subject matter experts. The project team was organized to develop and implement a new academic model focused on enriching intercultural competence among faculty. Utilizing a competency based model, the project team incorporated inclusive terminology into competency indicators and devised a four-phase proposal for implementing intercultural teacher training: a series of workshops focused on the needs of international and culturally diverse learners, including teaching strategies based on current TESOL methodologies, literature and online resources for quick access when planning lessons, faculty assessment examples and models of interculturally proficient instructors, and future job descriptions - all which promote and encourage development of specific intercultural skills. Results from a post-assessment survey (to be conducted in Spring 2020) and caveats regarding improvements and next steps will be shared. The project team believes its intercultural and inclusive teaching competency-based model is one of the first, institution-wide faculty supported initiatives within the Canadian college and Polytechnic post-secondary educational environment; it aims to become a leader in both the province and nation regarding intercultural competency training for trades, industry, and business minded community colleges and applied learning institutions.Keywords: cultural diversity and education, diversity training teacher training, teaching and learning, teacher training
Procedia PDF Downloads 12014797 A Condition-Based Maintenance Policy for Multi-Unit Systems Subject to Deterioration
Authors: Nooshin Salari, Viliam Makis
Abstract:
In this paper, we propose a condition-based maintenance policy for multi-unit systems considering the existence of economic dependency among units. We consider a system composed of N identical units, where each unit deteriorates independently. Deterioration process of each unit is modeled as a three-state continuous time homogeneous Markov chain with two working states and a failure state. The average production rate of units varies in different working states and demand rate of the system is constant. Units are inspected at equidistant time epochs, and decision regarding performing maintenance is determined by the number of units in the failure state. If the total number of units in the failure state exceeds a critical level, maintenance is initiated, where units in failed state are replaced correctively and deteriorated state units are maintained preventively. Our objective is to determine the optimal number of failed units to initiate maintenance minimizing the long run expected average cost per unit time. The problem is formulated and solved in the semi-Markov decision process (SMDP) framework. A numerical example is developed to demonstrate the proposed policy and the comparison with the corrective maintenance policy is presented.Keywords: reliability, maintenance optimization, semi-Markov decision process, production
Procedia PDF Downloads 16714796 Thermoplastic Composites with Reduced Discoloration and Enhanced Fire-Retardant Property
Authors: Peng Cheng, Liqing Wei, Hongyu Chen, Ruomiao Wang
Abstract:
This paper discusses a light-weight reinforced thermoplastic (LWRT) composite with superior fire retardancy. This porous LWRT composite is manufactured using polyolefin, fiberglass, and fire retardant additives via a wet-lay process. However, discoloration of the LWRT can be induced by various mechanisms, which may be a concern in the building and construction industry. It is commonly understood that discoloration is strongly associated with the presence of phenolic antioxidant(s) and NOx. The over-oxidation of phenolic antioxidant(s) is probably the root-cause of the discoloration (pinking/yellowing). Hanwha Azdel, Inc. developed a LWRT with fire-retardant property of ASTM E84-Class A specification, as well as negligible discoloration even under harsh conditions. In addition, this thermoplastic material is suitable for secondary processing (e.g. compression molding) if necessary.Keywords: discoloration, fire-retardant, thermoplastic composites, wet-lay process
Procedia PDF Downloads 13314795 Effect of Chromium Behavior on Mechanical and Electrical Properties Of P/M Copper-Chromium Alloy Dispersed with VGCF
Authors: Hisashi Imai, Kuan-Yu Chen, Katsuyoshi Kondoh, Hung-Yin Tsai, Junko Umeda
Abstract:
Microstructural and electrical properties of copper-chromium alloy (Cu-Cr) dispersed with vapor-grown carbon fiber (VGCF) prepared by powder metallurgy (P/M) process have been investigated. Cu-0.7 mass% Cr pre-alloyed powder (Cu-Cr) made by water atomization process was used as raw materials, which contained solid solute Cr elements in Cu matrix. The alloy powder coated with un-bundled VGCF by using oil coating process was consolidated at 1223 K in vacuum by spark plasma sintering, and then extruded at 1073 K. The extruded Cu-Cr alloy (monolithic alloy) had 209.3 MPa YS and 80.4 IACS% conductivity. The extruded Cu-Cr with 0.1 mass% VGCF composites revealed a small decrease of YS compared to the monolithic Cu-Cr alloy. On the other hand, the composite had a higher electrical conductivity than that of the monolithic alloy. For example, Cu-Cr with 0.1 mass% VGCF composite sintered for 5 h showed 182.7 MPa YS and 89.7 IACS% conductivity. In the case of Cu-Cr with VGCFs composites, the Cr concentration was observed around VGCF by SEM-EDS analysis, where Cr23C6 compounds were detected by TEM observation. The amount of Cr solid solution in the matrix of the Cu-Cr composites alloy was about 50% compared to the monolithic Cu-Cr sintered alloy, and resulted in the remarkable increment of the electrical conductivity.Keywords: powder metallurgy Cu-Cr alloy powder, vapor-grown carbon fiber, electrical conductivity
Procedia PDF Downloads 49714794 Using Authentic and Instructional Materials to Support Intercultural Communicative Competence in ELT
Authors: Jana Beresova
Abstract:
The paper presents a study carried out in 2015-2016 within the national scheme of research - VEGA 1/0106/15 based on theoretical research and empirical verification of the concept of intercultural communicative competence. It focuses on the current conception concerning target languages teaching compatible with the Common European Framework of Reference for Languages: Learning, teaching, assessment. Our research had revealed how the concept of intercultural communicative competence had been perceived by secondary-school teachers of English in Slovakia before they were intensively trained. Intensive workshops were based on the use of both authentic and instructional materials with the goal to support interculturally oriented language teaching aimed at challenging thinking. The former concept that supported the development of the students´ linguistic knowledge and the use of a target language to obtain information about the culture of the country whose language learners were learning was expanded by the meaning-making framework which views language as a typical means by which culture is mediated. The goal of the workshop was to influence English teachers to better understand the concept of intercultural communicative competence, combining theory and practice optimally. The results of the study will be presented and analysed, providing particular recommendations for language teachers and suggesting some changes in the National Educational Programme from which English learners should benefit in their future studies or professional careers.Keywords: authentic materials, English language teaching, instructional materials, intercultural communicative competence
Procedia PDF Downloads 27414793 Investigating the Neural Heterogeneity of Developmental Dyscalculia
Authors: Fengjuan Wang, Azilawati Jamaludin
Abstract:
Developmental Dyscalculia (DD) is defined as a particular learning difficulty with continuous challenges in learning requisite math skills that cannot be explained by intellectual disability or educational deprivation. Recent studies have increasingly recognized that DD is a heterogeneous, instead of monolithic, learning disorder with not only cognitive and behavioral deficits but so too neural dysfunction. In recent years, neuroimaging studies employed group comparison to explore the neural underpinnings of DD, which contradicted the heterogenous nature of DD and may obfuscate critical individual differences. This research aimed to investigate the neural heterogeneity of DD using case studies with functional near-infrared spectroscopy (fNIRS). A total of 54 aged 6-7 years old of children participated in this study, comprising two comprehensive cognitive assessments, an 8-minute resting state, and an 8-minute one-digit addition task. Nine children met the criteria of DD and scored at or below 85 (i.e., the 16th percentile) on the Mathematics or Math Fluency subtest of the Wechsler Individual Achievement Test, Third Edition (WIAT-III) (both subtest scores were 90 and below). The remaining 45 children formed the typically developing (TD) group. Resting-state data and brain activation in the inferior frontal gyrus (IFG), superior frontal gyrus (SFG), and intraparietal sulcus (IPS) were collected for comparison between each case and the TD group. Graph theory was used to analyze the brain network under the resting state. This theory represents the brain network as a set of nodes--brain regions—and edges—pairwise interactions across areas to reveal the architectural organizations of the nervous network. Next, a single-case methodology developed by Crawford et al. in 2010 was used to compare each case’s brain network indicators and brain activation against 45 TD children’s average data. Results showed that three out of the nine DD children displayed significant deviation from TD children’s brain indicators. Case 1 had inefficient nodal network properties. Case 2 showed inefficient brain network properties and weaker activation in the IFG and IPS areas. Case 3 displayed inefficient brain network properties with no differences in activation patterns. As a rise above, the present study was able to distill differences in architectural organizations and brain activation of DD vis-à-vis TD children using fNIRS and single-case methodology. Although DD is regarded as a heterogeneous learning difficulty, it is noted that all three cases showed lower nodal efficiency in the brain network, which may be one of the neural sources of DD. Importantly, although the current “brain norm” established for the 45 children is tentative, the results from this study provide insights not only for future work in “developmental brain norm” with reliable brain indicators but so too the viability of single-case methodology, which could be used to detect differential brain indicators of DD children for early detection and interventions.Keywords: brain activation, brain network, case study, developmental dyscalculia, functional near-infrared spectroscopy, graph theory, neural heterogeneity
Procedia PDF Downloads 5514792 An Evolutionary Approach for Automated Optimization and Design of Vivaldi Antennas
Authors: Sahithi Yarlagadda
Abstract:
The design of antenna is constrained by mathematical and geometrical parameters. Though there are diverse antenna structures with wide range of feeds yet, there are many geometries to be tried, which cannot be customized into predefined computational methods. The antenna design and optimization qualify to apply evolutionary algorithmic approach since the antenna parameters weights dependent on geometric characteristics directly. The evolutionary algorithm can be explained simply for a given quality function to be maximized. We can randomly create a set of candidate solutions, elements of the function's domain, and apply the quality function as an abstract fitness measure. Based on this fitness, some of the better candidates are chosen to seed the next generation by applying recombination and permutation to them. In conventional approach, the quality function is unaltered for any iteration. But the antenna parameters and geometries are wide to fit into single function. So, the weight coefficients are obtained for all possible antenna electrical parameters and geometries; the variation is learnt by mining the data obtained for an optimized algorithm. The weight and covariant coefficients of corresponding parameters are logged for learning and future use as datasets. This paper drafts an approach to obtain the requirements to study and methodize the evolutionary approach to automated antenna design for our past work on Vivaldi antenna as test candidate. The antenna parameters like gain, directivity, etc. are directly caged by geometries, materials, and dimensions. The design equations are to be noted here and valuated for all possible conditions to get maxima and minima for given frequency band. The boundary conditions are thus obtained prior to implementation, easing the optimization. The implementation mainly aimed to study the practical computational, processing, and design complexities that incur while simulations. HFSS is chosen for simulations and results. MATLAB is used to generate the computations, combinations, and data logging. MATLAB is also used to apply machine learning algorithms and plotting the data to design the algorithm. The number of combinations is to be tested manually, so HFSS API is used to call HFSS functions from MATLAB itself. MATLAB parallel processing tool box is used to run multiple simulations in parallel. The aim is to develop an add-in to antenna design software like HFSS, CSTor, a standalone application to optimize pre-identified common parameters of wide range of antennas available. In this paper, we have used MATLAB to calculate Vivaldi antenna parameters like slot line characteristic impedance, impedance of stripline, slot line width, flare aperture size, dielectric and K means, and Hamming window are applied to obtain the best test parameters. HFSS API is used to calculate the radiation, bandwidth, directivity, and efficiency, and data is logged for applying the Evolutionary genetic algorithm in MATLAB. The paper demonstrates the computational weights and Machine Learning approach for automated antenna optimizing for Vivaldi antenna.Keywords: machine learning, Vivaldi, evolutionary algorithm, genetic algorithm
Procedia PDF Downloads 11314791 Investigating Interference Errors Made by Azzawia University 1st year Students of English in Learning English Prepositions
Authors: Aimen Mohamed Almaloul
Abstract:
The main focus of this study is investigating the interference of Arabic in the use of English prepositions by Libyan university students. Prepositions in the tests used in the study were categorized, according to their relation to Arabic, into similar Arabic and English prepositions (SAEP), dissimilar Arabic and English prepositions (DAEP), Arabic prepositions with no English counterparts (APEC), and English prepositions with no Arabic counterparts (EPAC). The subjects of the study were the first year university students of the English department, Sabrata Faculty of Arts, Azzawia University; both males and females, and they were 100 students. The basic tool for data collection was a test of English prepositions; students are instructed to fill in the blanks with the correct prepositions and to put a zero (0) if no preposition was needed. The test was then handed to the subjects of the study. The test was then scored and quantitative as well as qualitative results were obtained. Quantitative results indicated the number, percentages and rank order of errors in each of the categories and qualitative results indicated the nature and significance of those errors and their possible sources. Based on the obtained results the researcher could detect that students made more errors in the EPAC category than the other three categories and these errors could be attributed to the lack of knowledge of the different meanings of English prepositions. This lack of knowledge forced the students to adopt what is called the strategy of transfer.Keywords: foreign language acquisition, foreign language learning, interference system, interlanguage system, mother tongue interference
Procedia PDF Downloads 39214790 Effect of Tool Size and Cavity Depth on Response Characteristics during Electric Discharge Machining on Superalloy Metal - An Experimental Investigation
Authors: Sudhanshu Kumar
Abstract:
Electrical discharge machining, also known as EDM, process is one of the most applicable machining process for removal of material in hard to machine materials like superalloy metals. EDM process utilizes electrical energy into sparks to erode the metals in presence of dielectric medium. In the present investigation, superalloy, Inconel 718 has been selected as workpiece and electrolytic copper as tool electrode. Attempt has been made to understand the effect of size of tool with varying cavity depth during drilling of hole through EDM process. In order to systematic investigate, tool size in terms of tool diameter and cavity depth along with other important electrical parameters namely, peak current, pulse-on time and servo voltage have been varied at three different values and the experiments has been designed using fractional factorial (Taguchi) method. Each experiment has been repeated twice under the same condition in order to understand the variability within the experiments. The effect of variations in parameters has been evaluated in terms of material removal rate, tool wear rate and surface roughness. Results revel that change in tool diameter during machining affects the response characteristics significantly. Larger tool diameter yielded 13% more material removal rate than smaller tool diameter. Analysis of the effect of variation in cavity depth is notable. There is no significant effect of cavity depth on material removal rate, tool wear rate and surface quality. This indicates that number of experiments can be performed to analyze other parameters effect even at smaller depth of cavity which can reduce the cost and time of experiments. Further, statistical analysis has been carried out to identify the interaction effect between parameters.Keywords: EDM, Inconel 718, material removal rate, roughness, tool wear, tool size
Procedia PDF Downloads 22314789 AER Model: An Integrated Artificial Society Modeling Method for Cloud Manufacturing Service Economic System
Authors: Deyu Zhou, Xiao Xue, Lizhen Cui
Abstract:
With the increasing collaboration among various services and the growing complexity of user demands, there are more and more factors affecting the stable development of the cloud manufacturing service economic system (CMSE). This poses new challenges to the evolution analysis of the CMSE. Many researchers have modeled and analyzed the evolution process of CMSE from the perspectives of individual learning and internal factors influencing the system, but without considering other important characteristics of the system's individuals (such as heterogeneity, bounded rationality, etc.) and the impact of external environmental factors. Therefore, this paper proposes an integrated artificial social model for the cloud manufacturing service economic system, which considers both the characteristics of the system's individuals and the internal and external influencing factors of the system. The model consists of three parts: the Agent model, environment model, and rules model (Agent-Environment-Rules, AER): (1) the Agent model considers important features of the individuals, such as heterogeneity and bounded rationality, based on the adaptive behavior mechanisms of perception, action, and decision-making; (2) the environment model describes the activity space of the individuals (real or virtual environment); (3) the rules model, as the driving force of system evolution, describes the mechanism of the entire system's operation and evolution. Finally, this paper verifies the effectiveness of the AER model through computational and experimental results.Keywords: cloud manufacturing service economic system (CMSE), AER model, artificial social modeling, integrated framework, computing experiment, agent-based modeling, social networks
Procedia PDF Downloads 8514788 Surface Roughness Analysis, Modelling and Prediction in Fused Deposition Modelling Additive Manufacturing Technology
Authors: Yusuf S. Dambatta, Ahmed A. D. Sarhan
Abstract:
Fused deposition modelling (FDM) is one of the most prominent rapid prototyping (RP) technologies which is being used to efficiently fabricate CAD 3D geometric models. However, the process is coupled with many drawbacks, of which the surface quality of the manufactured RP parts is among. Hence, studies relating to improving the surface roughness have been a key issue in the field of RP research. In this work, a technique of modelling the surface roughness in FDM is presented. Using experimentally measured surface roughness response of the FDM parts, an ANFIS prediction model was developed to obtain the surface roughness in the FDM parts using the main critical process parameters that affects the surface quality. The ANFIS model was validated and compared with experimental test results.Keywords: surface roughness, fused deposition modelling (FDM), adaptive neuro fuzzy inference system (ANFIS), orientation
Procedia PDF Downloads 46614787 Effect of Conjugated Linoleic Acid on Lipid Metabolism and Increased Fat around the Muscle Durability by Reducing the Oxidation Process
Authors: Hamidreza Khodaei, Ali Daryabeigi Zand
Abstract:
Conjugated linoleic acid (CLA) is a mixture of isomers of linoleic acid. Despite the fact that 28 different isomers of CLA have already been identified, but the main isomer found in natural diets more than ninety percent CLA on intake of food constitutes demonstrates. CLA is known to be a substance that readily available by rumen microorganisms in some ruminants such as cattle and sheep would likely be made. The main objective of this research was to evaluate the impacts of CLA on lipid metabolism and enhanced fat around the muscle durability by reducing the process of oxidation. In order to implement this research, 80 female mice of the Balb/C, with 55 days of age were employed in the experiment. Treatments include various levels of CLA. Over the course of this study blood samples was also taken from the tail vein of the studied mice. Some other relevant parameters such as serum concentrations of triglycerides, total cholesterol, LDL, HDL and liver enzymes were also determined. The oxidative stability of fats TBARS technique was investigated at different intervals. The findings of the research were analyzed by statistical software of SAS 98. The results, CLA had no significant effect on liver enzymes (P > 0.05). However, it showed a statistically significant impact on triglycerides and total cholesterol. Ratio of LDL to HDL declined remarkably. Histological studies demonstrated reduced accumulation of fat in the tissues surrounding muscles.Keywords: conjugated linoleic acid, fat metabolism, fat retention, oxidation process
Procedia PDF Downloads 200