Search results for: network user rules
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7713

Search results for: network user rules

1353 Breast Cancer Survivability Prediction via Classifier Ensemble

Authors: Mohamed Al-Badrashiny, Abdelghani Bellaachia

Abstract:

This paper presents a classifier ensemble approach for predicting the survivability of the breast cancer patients using the latest database version of the Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute. The system consists of two main components; features selection and classifier ensemble components. The features selection component divides the features in SEER database into four groups. After that it tries to find the most important features among the four groups that maximizes the weighted average F-score of a certain classification algorithm. The ensemble component uses three different classifiers, each of which models different set of features from SEER through the features selection module. On top of them, another classifier is used to give the final decision based on the output decisions and confidence scores from each of the underlying classifiers. Different classification algorithms have been examined; the best setup found is by using the decision tree, Bayesian network, and Na¨ıve Bayes algorithms for the underlying classifiers and Na¨ıve Bayes for the classifier ensemble step. The system outperforms all published systems to date when evaluated against the exact same data of SEER (period of 1973-2002). It gives 87.39% weighted average F-score compared to 85.82% and 81.34% of the other published systems. By increasing the data size to cover the whole database (period of 1973-2014), the overall weighted average F-score jumps to 92.4% on the held out unseen test set.

Keywords: classifier ensemble, breast cancer survivability, data mining, SEER

Procedia PDF Downloads 328
1352 Financial Technology: The Key to Achieving Financial Inclusion in Developing Countries Post COVID-19 from an East African Perspective

Authors: Yosia Mulumba, Klaus Schmidt

Abstract:

Financial Inclusion is considered a key pillar for development in most countries around the world. Access to affordable financial services in a country’s economy can be a driver to overcome poverty and reduce income inequalities, and thus increase economic growth. Nevertheless, the number of financially excluded populations in developing countries continues to be very high. This paper explores the role of Financial Technology (Fintech) as a key driver for achieving financial inclusion in developing countries post the COVID-19 pandemic with an emphasis on four East African countries: Kenya, Tanzania, Uganda, and Rwanda. The research paper is inspired by the positive disruption caused by the pandemic, which has compelled societies in East Africa to adapt and embrace the use of financial technology innovations, specifically Mobile Money Services (MMS), to access financial services. MMS has been further migrated and integrated with other financial technology innovations such as Mobile Banking, Micro Savings, and Loans, and Insurance, to mention but a few. These innovations have been adopted across key sectors such as commerce, health care, or agriculture. The research paper will highlight the Mobile Network Operators (MNOs) that are behind MMS, along with numerous innovative products and services being offered to the customers. It will also highlight the regulatory framework under which these innovations are being governed to ensure the safety of the customers' funds.

Keywords: financial inclusion, financial technology, regulatory framework, mobile money services

Procedia PDF Downloads 146
1351 Assessment Power and Oscillation Damping Using the POD Controller and Proposed FOD Controller

Authors: Tohid Rahimi, Yahya Naderi, Babak Yousefi, Seyed Hossein Hoseini

Abstract:

Today’s modern interconnected power system is highly complex in nature. In this, one of the most important requirements during the operation of the electric power system is the reliability and security. Power and frequency oscillation damping mechanism improve the reliability. Because of power system stabilizer (PSS) low speed response against of major fault such as three phase short circuit, FACTs devise that can control the network condition in very fast time, are becoming popular. However, FACTs capability can be seen in a major fault present when nonlinear models of FACTs devise and power system equipment are applied. To realize this aim, the model of multi-machine power system with FACTs controller is developed in MATLAB/SIMULINK using Sim Power System (SPS) blockiest. Among the FACTs device, Static synchronous series compensator (SSSC) due to high speed changes its reactance characteristic inductive to capacitive, is effective power flow controller. Tuning process of controller parameter can be performed using different method. However, Genetic Algorithm (GA) ability tends to use it in controller parameter tuning process. In this paper, firstly POD controller is used to power oscillation damping. But in this station, frequency oscillation dos not has proper damping situation. Therefore, FOD controller that is tuned using GA is using that cause to damp out frequency oscillation properly and power oscillation damping has suitable situation.

Keywords: power oscillation damping (POD), frequency oscillation damping (FOD), Static synchronous series compensator (SSSC), Genetic Algorithm (GA)

Procedia PDF Downloads 476
1350 Teaching English for Children in Public Schools Can Work in Egypt

Authors: Shereen Kamel

Abstract:

This study explores the recent application of bilingual education in Egyptian public schools. It aims to provide an overall picture of bilingual education programs globally and examine its adequacy to the Egyptian social and cultural context. The study also assesses the current application process of teaching English as a Second Language in public schools from the early childhood education stage and onwards, instead of starting it from middle school; as a strategy that promotes English language proficiency and equity among students. The theoretical framework is based on Jim Cummins’ bilingual education theories and on recent trends adopting different developmental theories and perspectives, like Stephen Crashen’s theory of Second Language Acquisition that calls for communicative and meaningful interaction rather than memorization of grammatical rules. The question posed here is whether bilingual education, with its peculiar nature, could be a good chance to reach out to all Egyptian students and prepare them to become global citizens. In addition to this, a more specific question is related to the extent to which social and cultural variables can affect the young learners’ second language acquisition. This exploratory analytical study uses mixed-methods research design to examine the application of bilingual education in Egyptian public schools. The study uses a cluster sample of schools in Egypt from different social and cultural backgrounds to assess the determining variables. The qualitative emphasis is on interviewing teachers and reviewing students’ achievement documents. The quantitative aspect is based on observations of in-class activities through tally sheets and checklists. Having access to schools and documents is authorized by governmental and institutional research bodies. Data sources will comprise achievement records, students’ portfolios, parents’ feedback and teachers’ viewpoints. Triangulation and SPSS will be used for analysis. Based on the gathered data, new curricula have been assigned for elementary grades and teachers have been required to teach the newly developed materials all of a sudden without any prior training. Due to shortage in the teaching force, many assigned teachers have not been proficient in the English language. Hence, teachers’ incompetency and unpreparedness to teach this grade specific curriculum constitute a great challenge in the implementation phase. Nevertheless, the young learners themselves as well as their parents seem to be enthusiastic about the idea itself. According to the findings of this research study, teaching English as a Second Language to children in public schools can be applicable and is culturally relevant to the Egyptian context. However, there might be some social and cultural differences and constraints when it comes to application in addition to various aspects regarding teacher preparation. Therefore, a new mechanism should be incorporated to overcome these challenges for better results. Moreover, a new paradigm shift in these teacher development programs is direly needed. Furthermore, ongoing support and follow up are crucial to help both teachers and students realize the desired outcomes.

Keywords: bilingual education, communicative approach, early childhood education, language and culture, second language acquisition

Procedia PDF Downloads 118
1349 Role of a Physical Therapist in Rehabilitation

Authors: Andrew Anis Fakhrey Mosaad

Abstract:

Objectives: Physiotherapy in the intensive care unit (ICU) improves patient outcomes. We aimed to determine the characteristics of physiotherapy practice and critical barriers to applying physiotherapy in ICUs. Materials and Methods: A 54-item survey for determining the characteristics physiotherapists and physiotherapy applications in the ICU was developed. The survey was electronically sent to potential participants through the Turkish Physiotherapy Association network. Sixty-five physiotherapists (47F and 18M; 23–52 years; ICU experience: 6.0±6.2 years) completed the survey. The data were analyzed using quantitative and qualitative methods. Results: The duration of ICU practice was 3.51±2.10 h/day. Positioning (90.8%), active exercises (90.8%), breathing exercises (89.2%), passive exercises (87.7%), and percussion (87.7%) were the most commonly used applications. The barriers were related to physiotherapists (low level of employment and practice, lack of shift); patients (unwillingness, instability, participation restriction); teamwork (lack of awareness and communication); equipment (inadequacy, non-priority to purchase); and legal (reimbursement, lack of direct physiotherapy access, non-recognition of autonomy) procedures. Conclusion: The most common interventions were positioning, active, passive, breathing exercises, and percussion. Critical barriers toward physiotherapy are multifactorial and related to physiotherapists, patients, teams, equipment, and legal procedures. Physiotherapist employment, service maintenance, and multidisciplinary teamwork should be considered for physiotherapy effectiveness in ICUs.

Keywords: intensive care units, physical therapy, physiotherapy, exercises

Procedia PDF Downloads 102
1348 Key Factors for Stakeholder Engagement and Sustainable Development

Authors: Jo Rhodes, Bruce Bergstrom, Peter Lok, Vincent Cheng

Abstract:

The aim of this study is to determine key factors and processes for multinationals (MNCs) to develop an effective stakeholder engagement and sustainable development framework. A qualitative multiple-case approach was used. A triangulation method was adopted (interviews, archival documents and observations) to collect data on three global firms (MNCs). 9 senior executives were interviewed for this study (3 from each firm). An initial literature review was conducted to explore possible practices and factors (the deductive approach) to sustainable development. Interview data were analysed using Nvivo to obtain appropriate nodes and themes for the framework. A comparison of findings from interview data and themes, factors developed from the literature review and cross cases comparison were used to develop the final conceptual framework (the inductive approach). The results suggested that stakeholder engagement is a key mediator between ‘stakeholder network’ (internal and external factors) and outcomes (corporate social responsibility, social capital, shared value and sustainable development). Key internal factors such as human capital/talent, technology, culture, leadership and processes such as collaboration, knowledge sharing and co-creation of value with stakeholders were identified. These internal factors and processes must be integrated and aligned with external factors such as social, political, cultural, environment and NGOs to achieve effective stakeholder engagement.

Keywords: stakeholder, engagement, sustainable development, shared value, corporate social responsibility

Procedia PDF Downloads 513
1347 Qualitative Analysis of User Experiences and Needs for Educational Chatbots in Higher Education

Authors: Felix Golla

Abstract:

In an era where technology increasingly intersects with education, the potential of chatbots and ChatGPT agents in enhancing student learning experiences in higher education is both significant and timely. This study explores the integration of these AI-driven tools in educational settings, emphasizing their design and functionality to meet the specific needs of students. Recognizing the gap in literature concerning student-centered AI applications in education, this research offers valuable insights into the role and efficacy of chatbots and ChatGPT agents as educational tools. Employing qualitative research methodologies, the study involved conducting semi-structured interviews with university students. These interviews were designed to gather in-depth insights into the students' experiences and expectations regarding the use of AI in learning environments. The High-Performance Cycle Model, renowned for its focus on goal setting and motivation, served as the theoretical framework guiding the analysis. This model helped in systematically categorizing and interpreting the data, revealing the nuanced perceptions and preferences of students regarding AI tools in education. The major findings of the study indicate a strong preference among students for chatbots and ChatGPT agents that offer personalized interaction, adaptive learning support, and regular, constructive feedback. These features were deemed essential for enhancing student engagement, motivation, and overall learning outcomes. Furthermore, the study revealed that students perceive these AI tools not just as passive sources of information but as active facilitators in the learning process, capable of adapting to individual learning styles and needs. In conclusion, this study underscores the transformative potential of chatbots and ChatGPT agents in higher education. It highlights the need for these AI tools to be designed with a student-centered approach, ensuring their alignment with educational objectives and student preferences. The findings contribute to the evolving discourse on AI in education, suggesting a paradigm shift towards more interactive, responsive, and personalized learning experiences. This research not only informs educators and technologists about the desirable features of educational chatbots but also opens avenues for future studies to explore the long-term impact of AI integration in academic curricula.

Keywords: chatbot design in education, high-performance cycle model application, qualitative research in AI, student-centered learning technologies

Procedia PDF Downloads 69
1346 Computationally Efficient Electrochemical-Thermal Li-Ion Cell Model for Battery Management System

Authors: Sangwoo Han, Saeed Khaleghi Rahimian, Ying Liu

Abstract:

Vehicle electrification is gaining momentum, and many car manufacturers promise to deliver more electric vehicle (EV) models to consumers in the coming years. In controlling the battery pack, the battery management system (BMS) must maintain optimal battery performance while ensuring the safety of a battery pack. Tasks related to battery performance include determining state-of-charge (SOC), state-of-power (SOP), state-of-health (SOH), cell balancing, and battery charging. Safety related functions include making sure cells operate within specified, static and dynamic voltage window and temperature range, derating power, detecting faulty cells, and warning the user if necessary. The BMS often utilizes an RC circuit model to model a Li-ion cell because of its robustness and low computation cost among other benefits. Because an equivalent circuit model such as the RC model is not a physics-based model, it can never be a prognostic model to predict battery state-of-health and avoid any safety risk even before it occurs. A physics-based Li-ion cell model, on the other hand, is more capable at the expense of computation cost. To avoid the high computation cost associated with a full-order model, many researchers have demonstrated the use of a single particle model (SPM) for BMS applications. One drawback associated with the single particle modeling approach is that it forces to use the average current density in the calculation. The SPM would be appropriate for simulating drive cycles where there is insufficient time to develop a significant current distribution within an electrode. However, under a continuous or high-pulse electrical load, the model may fail to predict cell voltage or Li⁺ plating potential. To overcome this issue, a multi-particle reduced-order model is proposed here. The use of multiple particles combined with either linear or nonlinear charge-transfer reaction kinetics enables to capture current density distribution within an electrode under any type of electrical load. To maintain computational complexity like that of an SPM, governing equations are solved sequentially to minimize iterative solving processes. Furthermore, the model is validated against a full-order model implemented in COMSOL Multiphysics.

Keywords: battery management system, physics-based li-ion cell model, reduced-order model, single-particle and multi-particle model

Procedia PDF Downloads 111
1345 Disaster Adaptation Mechanism and Disaster Prevention Adaptation Planning Strategies for Industrial Parks in Response to Climate Change and Different Socio-Economic Disasters

Authors: Jen-Te Pai, Jao-Heng Liu, Shin-En Pai

Abstract:

The impact of climate change has intensified in recent years, causing Taiwan to face higher frequency and serious natural disasters. Therefore, it is imperative for industrial parks manufacturers to promote adaptation policies in response to climate change. On the other hand, with the rise of the international anti-terrorism situation, once a terrorist attack occurs, it will attract domestic and international media attention, especially the strategic and economic status of the science park. Thus, it is necessary to formulate adaptation and mitigation strategies under climate change and social economic disasters. After reviewed the literature about climate change, urban disaster prevention, vulnerability assessment, and risk communication, the study selected 62 industrial parks compiled by the Industrial Bureau of the Ministry of Economic Affairs of Taiwan as the research object. This study explored the vulnerability and disaster prevention and disaster relief functional assessment of these industrial parks facing of natural and socio-economic disasters. Furthermore, this study explored planned adaptation of industrial parks management section and autonomous adaptation of corporate institutions in the park. The conclusion of this study is that Taiwan industrial parks with a higher vulnerability to natural and socio-economic disasters should employ positive adaptive behaviours.

Keywords: adaptive behaviours, analytic network process, vulnerability, industrial parks

Procedia PDF Downloads 145
1344 Predicting Options Prices Using Machine Learning

Authors: Krishang Surapaneni

Abstract:

The goal of this project is to determine how to predict important aspects of options, including the ask price. We want to compare different machine learning models to learn the best model and the best hyperparameters for that model for this purpose and data set. Option pricing is a relatively new field, and it can be very complicated and intimidating, especially to inexperienced people, so we want to create a machine learning model that can predict important aspects of an option stock, which can aid in future research. We tested multiple different models and experimented with hyperparameter tuning, trying to find some of the best parameters for a machine-learning model. We tested three different models: a Random Forest Regressor, a linear regressor, and an MLP (multi-layer perceptron) regressor. The most important feature in this experiment is the ask price; this is what we were trying to predict. In the field of stock pricing prediction, there is a large potential for error, so we are unable to determine the accuracy of the models based on if they predict the pricing perfectly. Due to this factor, we determined the accuracy of the model by finding the average percentage difference between the predicted and actual values. We tested the accuracy of the machine learning models by comparing the actual results in the testing data and the predictions made by the models. The linear regression model performed worst, with an average percentage error of 17.46%. The MLP regressor had an average percentage error of 11.45%, and the random forest regressor had an average percentage error of 7.42%

Keywords: finance, linear regression model, machine learning model, neural network, stock price

Procedia PDF Downloads 76
1343 Classification of Barley Varieties by Artificial Neural Networks

Authors: Alper Taner, Yesim Benal Oztekin, Huseyin Duran

Abstract:

In this study, an Artificial Neural Network (ANN) was developed in order to classify barley varieties. For this purpose, physical properties of barley varieties were determined and ANN techniques were used. The physical properties of 8 barley varieties grown in Turkey, namely thousand kernel weight, geometric mean diameter, sphericity, kernel volume, surface area, bulk density, true density, porosity and colour parameters of grain, were determined and it was found that these properties were statistically significant with respect to varieties. As ANN model, three models, N-l, N-2 and N-3 were constructed. The performances of these models were compared. It was determined that the best-fit model was N-1. In the N-1 model, the structure of the model was designed to be 11 input layers, 2 hidden layers and 1 output layer. Thousand kernel weight, geometric mean diameter, sphericity, kernel volume, surface area, bulk density, true density, porosity and colour parameters of grain were used as input parameter; and varieties as output parameter. R2, Root Mean Square Error and Mean Error for the N-l model were found as 99.99%, 0.00074 and 0.009%, respectively. All results obtained by the N-l model were observed to have been quite consistent with real data. By this model, it would be possible to construct automation systems for classification and cleaning in flourmills.

Keywords: physical properties, artificial neural networks, barley, classification

Procedia PDF Downloads 178
1342 Cell Line Screens Identify Biomarkers of Drug Sensitivity in GLIOMA Cancer

Authors: Noora Al Muftah, Reda Rawi, Richard Thompson, Halima Bensmail

Abstract:

Clinical responses to anticancer therapies are often restricted to a subset of patients. In some cases, mutated cancer genes are potent biomarkers of response to targeted agents. There is an urgent need to identify biomarkers that predict which patients with are most likely to respond to treatment. Systematic efforts to correlate tumor mutational data with biologic dependencies may facilitate the translation of somatic mutation catalogs into meaningful biomarkers for patient stratification. To identify genomic features associated with drug sensitivity and uncover new biomarkers of sensitivity and resistance to cancer therapeutics, we have screened and integrated a panel of several hundred cancer cell lines from different databases, mutation, DNA copy number, and gene expression data for hundreds of cell lines with their responses to targeted and cytotoxic therapies with drugs under clinical and preclinical investigation. We found mutated cancer genes were associated with cellular response to most currently available Glioma cancer drugs and some frequently mutated genes were associated with sensitivity to a broad range of therapeutic agents. By linking drug activity to the functional complexity of cancer genomes, systematic pharmacogenomic profiling in cancer cell lines provides a powerful biomarker discovery platform to guide rational cancer therapeutic strategies.

Keywords: cancer, gene network, Lasso, penalized regression, P-values, unbiased estimator

Procedia PDF Downloads 409
1341 Julia-Based Computational Tool for Composite System Reliability Assessment

Authors: Josif Figueroa, Kush Bubbar, Greg Young-Morris

Abstract:

The reliability evaluation of composite generation and bulk transmission systems is crucial for ensuring a reliable supply of electrical energy to significant system load points. However, evaluating adequacy indices using probabilistic methods like sequential Monte Carlo Simulation can be computationally expensive. Despite this, it is necessary when time-varying and interdependent resources, such as renewables and energy storage systems, are involved. Recent advances in solving power network optimization problems and parallel computing have improved runtime performance while maintaining solution accuracy. This work introduces CompositeSystems, an open-source Composite System Reliability Evaluation tool developed in Julia™, to address the current deficiencies of commercial and non-commercial tools. This work introduces its design, validation, and effectiveness, which includes analyzing two different formulations of the Optimal Power Flow problem. The simulations demonstrate excellent agreement with existing published studies while improving replicability and reproducibility. Overall, the proposed tool can provide valuable insights into the performance of transmission systems, making it an important addition to the existing toolbox for power system planning.

Keywords: open-source software, composite system reliability, optimization methods, Monte Carlo methods, optimal power flow

Procedia PDF Downloads 74
1340 Influences of Thermal Treatments on Dielectric Behaviors of Carbon Nanotubes-BaTiO₃ Hybrids Reinforced Polyvinylidene Fluoride Composites

Authors: Benhui Fan, Fahmi Bedoui, Jinbo Bai

Abstract:

Incorporated carbon nanotube-BaTiO₃ hybrids (H-CNT-BT) with core-shell structure, a better dispersion of CNTs can be achieved in a semi-crystalline polymeric matrix, polyvinylidene fluoride (PVDF). Carried by BT particles, CNTs are easy to mutually connect which helps to obtain an extremely low percolation threshold (fc). After thermal treatments, the dielectric constants (ε’) of samples further increase which depends on the conditions of thermal treatments such as annealing temperatures, annealing durations and cooling ways. Thus, in order to study more comprehensively about the influence of thermal treatments on composite’s dielectric behaviors, in situ synchrotron X-ray is used to detect re-crystalline behavior of PVDF. Results of wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) show that after the thermal treatment, the content of β polymorph (the polymorph with the highest ε’ among all the polymorphs of PVDF’s crystalline structure) has increased nearly double times at the interfacial region of CNT-PVDF, and the thickness of amorphous layers (La) in PVDF’s long periods (Lp) has shrunk around 10 Å. The evolution of CNT’s network possibly occurs in the procedure of La shrinkage, where the strong interfacial polarization may be aroused and increases ε’ at low frequency. Moreover, an increase in the thickness of crystalline lamella may also arouse more orientational polarization and improve ε’ at high frequency.

Keywords: dielectric properties, thermal treatments, carbon nanotubes, crystalline structure

Procedia PDF Downloads 324
1339 Machine Learning and Deep Learning Approach for People Recognition and Tracking in Crowd for Safety Monitoring

Authors: A. Degale Desta, Cheng Jian

Abstract:

Deep learning application in computer vision is rapidly advancing, giving it the ability to monitor the public and quickly identify potentially anomalous behaviour from crowd scenes. Therefore, the purpose of the current work is to improve the performance of safety of people in crowd events from panic behaviour through introducing the innovative idea of Aggregation of Ensembles (AOE), which makes use of the pre-trained ConvNets and a pool of classifiers to find anomalies in video data with packed scenes. According to the theory of algorithms that applied K-means, KNN, CNN, SVD, and Faster-CNN, YOLOv5 architectures learn different levels of semantic representation from crowd videos; the proposed approach leverages an ensemble of various fine-tuned convolutional neural networks (CNN), allowing for the extraction of enriched feature sets. In addition to the above algorithms, a long short-term memory neural network to forecast future feature values and a handmade feature that takes into consideration the peculiarities of the crowd to understand human behavior. On well-known datasets of panic situations, experiments are run to assess the effectiveness and precision of the suggested method. Results reveal that, compared to state-of-the-art methodologies, the system produces better and more promising results in terms of accuracy and processing speed.

Keywords: action recognition, computer vision, crowd detecting and tracking, deep learning

Procedia PDF Downloads 161
1338 Understanding Cognitive Fatigue From FMRI Scans With Self-supervised Learning

Authors: Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki Zadeh, Fillia Makedon, Glenn Wylie

Abstract:

Functional magnetic resonance imaging (fMRI) is a neuroimaging technique that records neural activations in the brain by capturing the blood oxygen level in different regions based on the task performed by a subject. Given fMRI data, the problem of predicting the state of cognitive fatigue in a person has not been investigated to its full extent. This paper proposes tackling this issue as a multi-class classification problem by dividing the state of cognitive fatigue into six different levels, ranging from no-fatigue to extreme fatigue conditions. We built a spatio-temporal model that uses convolutional neural networks (CNN) for spatial feature extraction and a long short-term memory (LSTM) network for temporal modeling of 4D fMRI scans. We also applied a self-supervised method called MoCo (Momentum Contrast) to pre-train our model on a public dataset BOLD5000 and fine-tuned it on our labeled dataset to predict cognitive fatigue. Our novel dataset contains fMRI scans from Traumatic Brain Injury (TBI) patients and healthy controls (HCs) while performing a series of N-back cognitive tasks. This method establishes a state-of-the-art technique to analyze cognitive fatigue from fMRI data and beats previous approaches to solve this problem.

Keywords: fMRI, brain imaging, deep learning, self-supervised learning, contrastive learning, cognitive fatigue

Procedia PDF Downloads 190
1337 GeneNet: Temporal Graph Data Visualization for Gene Nomenclature and Relationships

Authors: Jake Gonzalez, Tommy Dang

Abstract:

This paper proposes a temporal graph approach to visualize and analyze the evolution of gene relationships and nomenclature over time. An interactive web-based tool implements this temporal graph, enabling researchers to traverse a timeline and observe coupled dynamics in network topology and naming conventions. Analysis of a real human genomic dataset reveals the emergence of densely interconnected functional modules over time, representing groups of genes involved in key biological processes. For example, the antimicrobial peptide DEFA1A3 shows increased connections to related alpha-defensins involved in infection response. Tracking degree and betweenness centrality shifts over timeline iterations also quantitatively highlight the reprioritization of certain genes’ topological importance as knowledge advances. Examination of the CNR1 gene encoding the cannabinoid receptor CB1 demonstrates changing synonymous relationships and consolidating naming patterns over time, reflecting its unique functional role discovery. The integrated framework interconnecting these topological and nomenclature dynamics provides richer contextual insights compared to isolated analysis methods. Overall, this temporal graph approach enables a more holistic study of knowledge evolution to elucidate complex biology.

Keywords: temporal graph, gene relationships, nomenclature evolution, interactive visualization, biological insights

Procedia PDF Downloads 61
1336 Entrepreneurial Support Ecosystem: Role of Research Institutes

Authors: Ayna Yusubova, Bart Clarysse

Abstract:

This paper explores role of research institutes in creation of support ecosystem for new technology-based ventures. Previous literature introduced research institutes as part of business and knowledge ecosystem, very few studies are available that consider a research institute as an ecosystem that support high-tech startups at every stage of development. Based on a resource-based view and a stage-based model of high-tech startups growth, this study aims to analyze how a research institute builds a startup support ecosystem by attracting different stakeholders in order to help startups to overcome resource. This paper is based on an in-depth case study of public research institute that focus on development of entrepreneurial ecosystem in a developed region. Analysis shows that the idea generation stage of high-tech startups that related to the invention and development of product or technology for commercialization is associated with a lack of critical knowledge resources. Second, at growth phase that related to market entrance, high-tech startups face challenges associated with the development of their business network. Accordingly, the study shows the support ecosystem that research institute creates helps high-tech startups overcome resource gaps in order to achieve a successful transition from one phase of growth to the next.

Keywords: new technology-based firms, ecosystems, resources, business incubators, research instutes

Procedia PDF Downloads 260
1335 Omani Community in Digital Age: A Study of Omani Women Using Back Channel Media to Empower Themselves for Frontline Entrepreneurship

Authors: Sangeeta Tripathi, Muna Al Shahri

Abstract:

This research article presents the changing role and status of women in Oman. Transformation of women’s status started with the regime of His Majesty Sultan Qaboos Bin Said in 1970. It is always desired by the Sultan to enable women in all the ways for the balance growth of the country. Forbidding full face veil for women in public offices is one of the best efforts for their empowerment. Women education is also increasing rapidly. They are getting friendly with new information communication technology and using different social media applications such as WhatsApp, Instagram and Facebook for interaction and economic growth. Though there are some traditional and tribal boundaries, women are infused with courage and enjoying fair treatment and equal opportunities in different career positions. The study will try to explore changing mindset of young Omani women towards these traditional tribal boundaries, cultural heritage, business and career: ‘How are young Omani women making balance between work and social prestige?’, ‘How are they preserving their cultural values, embracing new technologies and approaching social network to enhance their economic power.’ This paper will discover their hurdles while using internet for their new entrepreneur. It will also examine the prospects of online business in Oman. The mixed research methodology is applied to find out the result.

Keywords: advertising, business, entrepreneurship, tribal barrier

Procedia PDF Downloads 304
1334 Development of mHealth Information in Community Based on Geographical Information: A Case Study from Saraphi District, Chiang Mai, Thailand

Authors: Waraporn Boonchieng, Ekkarat Boonchieng, Wilawan Senaratana, Jaras Singkaew

Abstract:

Geographical information system (GIS) is a designated system widely used for collecting and analyzing geographical data. Since the introduction of ultra-mobile, 'smart' devices, investigators, clinicians, and even the general public have had powerful new tools for collecting, uploading and accessing information in the field. Epidemiology paired with GIS will increase the efficacy of preventive health care services. The objective of this study is to apply GPS location services that are available on the common mobile device with district health systems, storing data on our private cloud system. The mobile application has been developed for use on iOS, Android, and web-based platforms. The system consists of two parts of district health information, including recorded resident data forms and individual health recorded data forms, which were developed and approved by opinion sharing and public hearing. The application's graphical user interface was developed using HTML5 and PHP with MySQL as a database management system (DBMS). The reporting module of the developed software displays data in a variety of views, from traditional tables to various types of high-resolution, layered graphics, incorporating map location information with street views from Google Maps. Multi-extension exporting is also supported, utilizing standard platforms such as PDF, PNG, JPG, and XLS. The data were collected in the database beginning in March 2013, by district health volunteers and district youth volunteers who had completed the application training program. District health information consisted of patients’ household coordinates, individual health data, social and economic information. This was combined with Google Street View data, collected in March 2014. Studied groups consisted of 16,085 (67.87%) and 47,811 (59.87%) of the total 23,701 households and 79,855 people were collected by the system respectively, in Saraphi district, Chiang Mai Province. The report generated from the system has had a major benefit directly to the Saraphi District Hospital. Healthcare providers are able to use the basic health data to provide a specific home health care service and also to create health promotion activities according to medical needs of the people in the community.

Keywords: health, public health, GIS, geographic information system

Procedia PDF Downloads 336
1333 Parametric Urbanism: A Climate Responsive Urban Form for the MENA Region

Authors: Norhan El Dallal

Abstract:

The MENA region is a challenging, rapid urbanizing region, with a special profile; culturally, socially, economically and environmentally. Despite the diversity between different countries of the MENA region they all share similar urban challenges where extensive interventions are crucial. A climate sensitive region as the MENA region requires special attention for development, adaptation and mitigation. Integrating climatic and environmental parameters into the planning process to create a responsive urban form is the aim of this research in which “Parametric Urbanism” as a trend serves as a tool to reach a more sustainable urban morphology. An attempt to parameterize the relation between the climate and the urban form in a detailed manner is the main objective of the thesis. The aim is relating the different passive approaches suitable for the MENA region with the design guidelines of each and every part of the planning phase. Various conceptual scenarios for the network pattern and block subdivision generation based on computational models are the next steps after the parameterization. These theoretical models could be applied on different climatic zones of the dense communities of the MENA region to achieve an energy efficient neighborhood or city with respect to the urban form, morphology, and urban planning pattern. A final criticism of the theoretical model is to be conducted showing the feasibility of the proposed solutions economically. Finally some push and pull policies are to be proposed to help integrate these solutions into the planning process.

Keywords: parametric urbanism, climate responsive, urban form, urban and regional studies

Procedia PDF Downloads 481
1332 Impact of Informal Institutions on Development: Analyzing the Socio-Legal Equilibrium of Relational Contracts in India

Authors: Shubhangi Roy

Abstract:

Relational Contracts (informal understandings not enforceable by law) are a common feature of most economies. However, their dominance is higher in developing countries. Such informality of economic sectors is often co-related to lower economic growth. The aim of this paper is to investigate whether informal arrangements i.e. relational contracts are a cause or symptom of lower levels of economic and/or institutional development. The methodology followed involves an initial survey of 150 test subjects in Northern India. The subjects are all members of occupations where they frequently transact ensuring uniformity in transaction volume. However, the subjects are from varied socio-economic backgrounds to ensure sufficient variance in transaction values allowing us to understand the relationship between the amount of money involved to the method of transaction used, if any. Questions asked are quantitative and qualitative with an aim to observe both the behavior and motivation behind such behavior. An overarching similarity observed during the survey across all subjects’ responses is that in an economy like India with pervasive corruption and delayed litigation, economy participants have created alternative social sanctions to deal with non-performers. In a society that functions predominantly on caste, class and gender classifications, these sanctions could, in fact, be more cumbersome for a potential rule-breaker than the legal ramifications. It, therefore, is a symptom of weak formal regulatory enforcement and dispute settlement mechanism. Additionally, the study bifurcates such informal arrangements into two separate systems - a) when it exists in addition to and augments a legal framework creating an efficient socio-legal equilibrium or; b) in conflict with the legal system in place. This categorization is an important step in regulating informal arrangements. Instead of considering the entire gamut of such arrangements as counter-development, it helps decision-makers understand when to dismantle (latter) and when to pivot around existing informal systems (former). The paper hypothesizes that those social arrangements that support the formal legal frameworks allow for cheaper enforcement of regulations with lower enforcement costs burden on the state mechanism. On the other hand, norms which contradict legal rules will undermine the formal framework. Law infringement, in presence of these norms, will have no impact on the reputation of the business or individual outside of the punishment imposed under the law. It is especially exacerbated in the Indian legal system where enforcement of penalties for non-performance of contracts is low. In such a situation, the social norm will be adhered to more strictly by the individuals rather than the legal norms. This greatly undermines the role of regulations. The paper concludes with recommendations that allow policy-makers and legal systems to encourage the former category of informal arrangements while discouraging norms that undermine legitimate policy objectives. Through this investigation, we will be able to expand our understanding of tools of market development beyond regulations. This will allow academics and policymakers to harness social norms for less disruptive and more lasting growth.

Keywords: distribution of income, emerging economies, relational contracts, sample survey, social norms

Procedia PDF Downloads 165
1331 Developing Writing Skills of Learners with Persistent Literacy Difficulties through the Explicit Teaching of Grammar in Context: Action Research in a Welsh Secondary School

Authors: Jean Ware, Susan W. Jones

Abstract:

Background: The benefits of grammar instruction in the teaching of writing is contested in most English speaking countries. A majority of Anglophone countries abandoned the teaching of grammar in the 1950s based on the conclusions that it had no positive impact on learners’ development of reading, writing, and language. Although the decontextualised teaching of grammar is not helpful in improving writing, a curriculum with a focus on grammar in an embedded and meaningful way can help learners develop their understanding of the mechanisms of language. Although British learners are generally not taught grammar rules explicitly, learners in schools in France, the Netherlands, and Germany are taught explicitly about the structure of their own language. Exposing learners to grammatical analysis can help them develop their understanding of language. Indeed, if learners are taught that each part of speech has an identified role in the sentence. This means that rather than have to memorise lists of words or spelling patterns, they can focus on determining each word or phrase’s task in the sentence. These processes of categorisation and deduction are higher order thinking skills. When considering definitions of dyslexia available in Great Britain, the explicit teaching of grammar in context could help learners with persistent literacy difficulties. Indeed, learners with dyslexia often develop strengths in problem solving; the teaching of grammar could, therefore, help them develop their understanding of language by using analytical and logical thinking. Aims: This study aims at gaining a further understanding of how the explicit teaching of grammar in context can benefit learners with persistent literacy difficulties. The project is designed to identify ways of adapting existing grammar focussed teaching materials so that learners with specific learning difficulties such as dyslexia can use them to further develop their writing skills. It intends to improve educational practice through action, analysis and reflection. Research Design/Methods: The project, therefore, uses an action research design and multiple sources of evidence. The data collection tools used were standardised test data, teacher assessment data, semi-structured interviews, learners’ before and after attempts at a writing task at the beginning and end of the cycle, documentary data and lesson observation carried out by a specialist teacher. Existing teaching materials were adapted for use with five Year 9 learners who had experienced persistent literacy difficulties from primary school onwards. The initial adaptations included reducing the amount of content to be taught in each lesson, and pre teaching some of the metalanguage needed. Findings: Learners’ before and after attempts at the writing task were scored by a colleague who did not know the order of the attempts. All five learners’ scores were higher on the second writing task. Learners reported that they had enjoyed the teaching approach. They also made suggestions to be included in the second cycle, as did the colleague who carried out observations. Conclusions: Although this is a very small exploratory study, these results suggest that adapting grammar focused teaching materials shows promise for helping learners with persistent literacy difficulties develop their writing skills.

Keywords: explicit teaching of grammar in context, literacy acquisition, persistent literacy difficulties, writing skills

Procedia PDF Downloads 156
1330 Probabilistic Approach of Dealing with Uncertainties in Distributed Constraint Optimization Problems and Situation Awareness for Multi-agent Systems

Authors: Sagir M. Yusuf, Chris Baber

Abstract:

In this paper, we describe how Bayesian inferential reasoning will contributes in obtaining a well-satisfied prediction for Distributed Constraint Optimization Problems (DCOPs) with uncertainties. We also demonstrate how DCOPs could be merged to multi-agent knowledge understand and prediction (i.e. Situation Awareness). The DCOPs functions were merged with Bayesian Belief Network (BBN) in the form of situation, awareness, and utility nodes. We describe how the uncertainties can be represented to the BBN and make an effective prediction using the expectation-maximization algorithm or conjugate gradient descent algorithm. The idea of variable prediction using Bayesian inference may reduce the number of variables in agents’ sampling domain and also allow missing variables estimations. Experiment results proved that the BBN perform compelling predictions with samples containing uncertainties than the perfect samples. That is, Bayesian inference can help in handling uncertainties and dynamism of DCOPs, which is the current issue in the DCOPs community. We show how Bayesian inference could be formalized with Distributed Situation Awareness (DSA) using uncertain and missing agents’ data. The whole framework was tested on multi-UAV mission for forest fire searching. Future work focuses on augmenting existing architecture to deal with dynamic DCOPs algorithms and multi-agent information merging.

Keywords: DCOP, multi-agent reasoning, Bayesian reasoning, swarm intelligence

Procedia PDF Downloads 119
1329 Different Goals and Strategies of Smart Cities: Comparative Study between European and Asian Countries

Authors: Yountaik Leem, Sang Ho Lee

Abstract:

In this paper, different goals and the ways to reach smart cities shown in many countries during planning and implementation processes will be discussed. Each country dealt with technologies which have been embedded into space as development of ICTs (information and communication technologies) for their own purposes and by their own ways. For example, European countries tried to adapt technologies to reduce greenhouse gas emission to overcome global warming while US-based global companies focused on the way of life using ICTs such as EasyLiving of Microsoft™ and CoolTown of Hewlett-Packard™ during last decade of 20th century. In the North-East Asian countries, urban space with ICTs were developed in large scale on the viewpoint of capitalism. Ubiquitous city, first introduced in Korea which named after Marc Weiser’s concept of ubiquitous computing pursued new urban development with advanced technologies and high-tech infrastructure including wired and wireless network. Japan has developed smart cities as comprehensive and technology intensive cities which will lead other industries of the nation in the future. Not only the goals and strategies but also new directions to which smart cities are oriented also suggested at the end of the paper. Like a Finnish smart community whose slogan is ‘one more hour a day for citizens,’ recent trend is forwarding everyday lives and cultures of human beings, not capital gains nor physical urban spaces.

Keywords: smart cities, urban strategy, future direction, comparative study

Procedia PDF Downloads 262
1328 Deep Feature Augmentation with Generative Adversarial Networks for Class Imbalance Learning in Medical Images

Authors: Rongbo Shen, Jianhua Yao, Kezhou Yan, Kuan Tian, Cheng Jiang, Ke Zhou

Abstract:

This study proposes a generative adversarial networks (GAN) framework to perform synthetic sampling in feature space, i.e., feature augmentation, to address the class imbalance problem in medical image analysis. A feature extraction network is first trained to convert images into feature space. Then the GAN framework incorporates adversarial learning to train a feature generator for the minority class through playing a minimax game with a discriminator. The feature generator then generates features for minority class from arbitrary latent distributions to balance the data between the majority class and the minority class. Additionally, a data cleaning technique, i.e., Tomek link, is employed to clean up undesirable conflicting features introduced from the feature augmentation and thus establish well-defined class clusters for the training. The experiment section evaluates the proposed method on two medical image analysis tasks, i.e., mass classification on mammogram and cancer metastasis classification on histopathological images. Experimental results suggest that the proposed method obtains superior or comparable performance over the state-of-the-art counterparts. Compared to all counterparts, our proposed method improves more than 1.5 percentage of accuracy.

Keywords: class imbalance, synthetic sampling, feature augmentation, generative adversarial networks, data cleaning

Procedia PDF Downloads 127
1327 Multimodal Database of Retina Images for Africa: The First Open Access Digital Repository for Retina Images in Sub Saharan Africa

Authors: Simon Arunga, Teddy Kwaga, Rita Kageni, Michael Gichangi, Nyawira Mwangi, Fred Kagwa, Rogers Mwavu, Amos Baryashaba, Luis F. Nakayama, Katharine Morley, Michael Morley, Leo A. Celi, Jessica Haberer, Celestino Obua

Abstract:

Purpose: The main aim for creating the Multimodal Database of Retinal Images for Africa (MoDRIA) was to provide a publicly available repository of retinal images for responsible researchers to conduct algorithm development in a bid to curb the challenges of ophthalmic artificial intelligence (AI) in Africa. Methods: Data and retina images were ethically sourced from sites in Uganda and Kenya. Data on medical history, visual acuity, ocular examination, blood pressure, and blood sugar were collected. Retina images were captured using fundus cameras (Foru3-nethra and Canon CR-Mark-1). Images were stored on a secure online database. Results: The database consists of 7,859 retinal images in portable network graphics format from 1,988 participants. Images from patients with human immunodeficiency virus were 18.9%, 18.2% of images were from hypertensive patients, 12.8% from diabetic patients, and the rest from normal’ participants. Conclusion: Publicly available data repositories are a valuable asset in the development of AI technology. Therefore, is a need for the expansion of MoDRIA so as to provide larger datasets that are more representative of Sub-Saharan data.

Keywords: retina images, MoDRIA, image repository, African database

Procedia PDF Downloads 127
1326 Integrated Human Resources and Work Environment Management System

Authors: Loreta Kaklauskiene, Arturas Kaklauskas

Abstract:

The Integrated Human Resources and Work Environment Management (HOWE) System optimises employee productivity, improves the work environment, and, at the same time, meets the employer’s strategic goals. The HOWE system has been designed to ensure an organisation can successfully compete in the global market, thanks to the high performance of its employees. The HOWE system focuses on raising workforce productivity and improving work conditions to boost employee performance and motivation. The methods used in our research are linear correlation, INVAR multiple criteria analysis, digital twin, and affective computing. The HOWE system is based on two patents issued in Lithuania (LT 6866, LT 6841) and one European Patent application (No: EP 4 020 134 A1). Our research analyses ways to make human resource management more efficient and boost labour productivity by improving and adapting a personalised work environment. The efficiency of human capital and labour productivity can be increased by applying personalised workplace improvement systems that can optimise lighting colours and intensity, scents, data, information, knowledge, activities, media, games, videos, music, air pollution, humidity, temperature, vibrations, and other workplace aspects. HOWE generates and maintains a personalised workspace for an employee, taking into account the person’s affective, physiological and emotional (APSE) states. The purpose of this project was to create a HOWE for the customisation of quality control in smart workspaces taking into account the user’s APSE states in an integrated manner as a single unit. This customised management of quality control covers the levels of lighting and colour intensities, scents, media, information, activities, learning materials, games, music, videos, temperature, energy efficiency, the carbon footprint of a workspace, humidity, air pollution, vibrations and other aspects of smart spaces. The system is based on Digital Twins technology, seen as a logical extension of BIM.

Keywords: human resource management, health economics, work environment, organizational behaviour and employee productivity, prosperity in work, smart system

Procedia PDF Downloads 75
1325 English Pashto Contact: Morphological Adaptation of Bilingual Compound Words in Pashto

Authors: Imran Ullah Imran

Abstract:

Language contact is a familiar concept in the present global world. Across the globe, languages get mixed up at different levels. Borrowing, code-switching are some of the means through which languages interact. This study examines Pashto-English contact at word and syllable levels. By recording the speech of 30 Pashto native speakers, selected via 'social network' sampling, the study located a number of Pashto-English compound words, which is a unique contact of its kind. In data analysis, tokens were categorized on the basis of their pattern and morphological structure. The study shows that Pashto-English Bilingual Compound words (BCWs) are very prevalent in the Pashto language. The study also found that the BCWs in Pashto are completely productive and have their own meanings. It also shows that the dominant pattern of hybrid words in Pashto is the conjugation of an independent English root word followed by a Pashto inflectional morpheme, which contributes to the core semantic content of the construction. The BCWs construction shows that how both the languages are closer to each other. Pashto-English contact results into bilingual compound and hybrid words, which forms a considerable number of tokens in the present-day spoken Pashto. On the basis of these findings, the study assumes that the same phenomenon may increase with the passage of time that would, in turn, result in the formation of more bilingual compound or hybrid words.

Keywords: code-mixing, bilingual compound words, pashto-english contact, hybrid words, inflectional lexical morpheme

Procedia PDF Downloads 249
1324 Smart Energy Storage: W₁₈O₄₉ NW/Ti₃C₂Tₓ Composite-Enabled All Solid State Flexible Electrochromic Supercapacitors

Authors: Muhammad Hassan, Kemal Celebi

Abstract:

Developing a highly efficient electrochromic energy storage device with sufficient color fluctuation and significant electrochemical performance is highly desirable for practical energy-saving applications. Here, to achieve a highly stable material with a large electrochemical storage capacity, a W₁₈O₄₉ NW/Ti₃C₂Tₓ composite has been fabricated and deposited on a pre-assembled Ag and W₁₈O₄₉ NW conductive network by Langmuir-Blodgett technique. The resulting hybrid electrode composed of 15 layers of W₁₈O₄₉ NW/Ti₃C₂Tₓ exhibits an areal capacitance of 125 mF/cm², with a fast and reversible switching response. An optical modulation of 98.2% can be maintained at a current density of 5 mAcm⁻². Using this electrode, we fabricated a bifunctional symmetric electrochromic supercapacitor device having an energy density of 10.26 μWh/cm² and a power density of 0.605 mW/cm², with high capacity retention and full columbic efficiency over 4000 charge-discharge cycles. Meanwhile, the device displays remarkable electrochromic characteristics, including fast switching time (5 s for coloring and 7 s for bleaching) and a significant coloration efficiency of 116 cm²/C with good optical modulation stability. In addition, the device exhibits remarkable mechanical flexibility and fast switching while being stable over 100 bending cycles, which is promising for real-world applications.

Keywords: MXene, nanowires, supercapacitor, ion diffusion, electrochromic, coloration efficiency

Procedia PDF Downloads 76