Search results for: linear and polynomial model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18914

Search results for: linear and polynomial model

12644 Optical Properties of N-(Hydroxymethyl) Acrylamide Polymer Gel Dosimeters for Radiation Therapy

Authors: Khalid A. Rabaeh, Belal Moftah, Ahmed A. Basfar, Akram A. Almousa

Abstract:

Polymer gel dosimeters are tissue equivalent martial that fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of absorbed radiation dose. Polymer gel dosimeters can uniquely record the radiation dose distribution in three-dimensions (3D). A novel composition of normoxic polymer gel dosimeters based on radiation-induced polymerization of N-(Hydroxymethyl)acrylamide (NHMA) is introduced in this study for radiotherapy treatment planning. The dosimeters were irradiated by 10 MV photon beam of a medical linear accelerator at a constant dose rate of 600 cGy/min with doses up to 30 Gy. The polymerization degree is directly proportional to absorbed dose received by the polymer gel. UV/Vis spectrophotometer was used to investigate the degree of white color of irradiated NHMA gel which is associated to the degree of polymerization of polymer gel dosimeters. The absorbance increases with absorbed dose for all gel dosimeters in the dose range between 0 and 30 Gy. Dose rate , energy of radiation and the stability of the polymerization after irradiation were investigated. No appreciable effects of these parameters on the performance of the novel gel dosimeters were observed.

Keywords: dosimeter, gel, spectrophotometer, N-(Hydroxymethyl)acrylamide

Procedia PDF Downloads 467
12643 A Discrete Element Method Centrifuge Model of Monopile under Cyclic Lateral Loads

Authors: Nuo Duan, Yi Pik Cheng

Abstract:

This paper presents the data of a series of two-dimensional Discrete Element Method (DEM) simulations of a large-diameter rigid monopile subjected to cyclic loading under a high gravitational force. At present, monopile foundations are widely used to support the tall and heavy wind turbines, which are also subjected to significant from wind and wave actions. A safe design must address issues such as rotations and changes in soil stiffness subject to these loadings conditions. Design guidance on the issue is limited, so are the availability of laboratory and field test data. The interpretation of these results in sand, such as the relation between loading and displacement, relies mainly on empirical correlations to pile properties. Regarding numerical models, most data from Finite Element Method (FEM) can be found. They are not comprehensive, and most of the FEM results are sensitive to input parameters. The micro scale behaviour could change the mechanism of the soil-structure interaction. A DEM model was used in this paper to study the cyclic lateral loads behaviour. A non-dimensional framework is presented and applied to interpret the simulation results. The DEM data compares well with various set of published experimental centrifuge model test data in terms of lateral deflection. The accumulated permanent pile lateral displacements induced by the cyclic lateral loads were found to be dependent on the characteristics of the applied cyclic load, such as the extent of the loading magnitudes and directions.

Keywords: cyclic loading, DEM, numerical modelling, sands

Procedia PDF Downloads 319
12642 How to Enhance Performance of Universities by Implementing Balanced Scorecard with Using FDM and ANP

Authors: Neda Jalaliyoon, Nooh Abu Bakar, Hamed Taherdoost

Abstract:

The present research recommended balanced scorecard (BSC) framework to appraise the performance of the universities. As the original model of balanced scorecard has four perspectives in order to implement BSC in present research the same model with “financial perspective”, “customer”,” internal process” and “learning and growth” is used as well. With applying fuzzy Delphi method (FDM) and questionnaire sixteen measures of performance were identified. Moreover, with using the analytic network process (ANP) the weights of the selected indicators were determined. Results indicated that the most important BSC’s aspect were Internal Process (0.3149), Customer (0.2769), Learning and Growth (0.2049), and Financial (0.2033) respectively. The proposed BSC framework can help universities to enhance their efficiency in competitive environment.

Keywords: balanced scorecard, higher education, fuzzy delphi method, analytic network process (ANP)

Procedia PDF Downloads 425
12641 Optimizing the Design Parameters of Acoustic Power Transfer Model to Achieve High Power Intensity and Compact System

Authors: Ariba Siddiqui, Amber Khan

Abstract:

The need for bio-implantable devices in the field of medical sciences has been increasing day by day; however, the charging of these devices is a major issue. Batteries, a very common method of powering the implants, have a limited lifetime and bulky nature. Therefore, as a replacement of batteries, acoustic power transfer (APT) technology is being accepted as the most suitable technique to wirelessly power the medical implants in the present scenario. The basic model of APT consists of piezoelectric transducers that work on the principle of converse piezoelectric effect at the transmitting end and direct piezoelectric effect at the receiving end. This paper provides mechanistic insight into the parameters affecting the design and efficient working of acoustic power transfer systems. The optimum design considerations have been presented that will help to compress the size of the device and augment the intensity of the pressure wave. A COMSOL model of the PZT (Lead Zirconate Titanate) transducer was developed. The model was simulated and analyzed on a frequency spectrum. The simulation results displayed that the efficiency of these devices is strongly dependent on the frequency of operation, and a wrong choice of the operating frequency leads to the high absorption of acoustic field inside the tissue (medium), poor power strength, and heavy transducers, which in effect influence the overall configuration of the acoustic systems. Considering all the tradeoffs, the simulations were performed again by determining an optimum frequency (900 kHz) that resulted in the reduction of the transducer's thickness to 1.96 mm and augmented the power strength with an intensity of 432 W/m². Thus, the results obtained after the second simulation contribute to lesser attenuation, lightweight systems, high power intensity, and also comply with safety limits provided by the U.S Food and Drug Administration (FDA). It was also found that the chosen operating frequency enhances the directivity of the acoustic wave at the receiver side.

Keywords: acoustic power, bio-implantable, COMSOL, Lead Zirconate Titanate, piezoelectric, transducer

Procedia PDF Downloads 173
12640 The Onset of Ironing during Casing Expansion

Authors: W. Assaad, D. Wilmink, H. R. Pasaribu, H. J. M. Geijselaers

Abstract:

Shell has developed a mono-diameter well concept for oil and gas wells as opposed to the traditional telescopic well design. A Mono-diameter well design allows well to have a single inner diameter from the surface all the way down to reservoir to increase production capacity, reduce material cost and reduce environmental footprint. This is achieved by expansion of liners (casing string) concerned using an expansion tool (e.g. a cone). Since the well is drilled in stages and liners are inserted to support the borehole, overlap sections between consecutive liners exist which should be expanded. At overlap, the previously inserted casing which can be expanded or unexpanded is called the host casing and the newly inserted casing is called the expandable casing. When the cone enters the overlap section, an expandable casing is expanded against a host casing, a cured cement layer and formation. In overlap expansion, ironing or lengthening may appear instead of shortening in the expandable casing when the pressure exerted by the host casing, cured cement layer and formation exceeds a certain limit. This pressure is related to cement strength, thickness of cement layer, host casing material mechanical properties, host casing thickness, formation type and formation strength. Ironing can cause implications that hinder the deployment of the technology. Therefore, the understanding of ironing becomes essential. A physical model is built in-house to calculate expansion forces, stresses, strains and post expansion casing dimensions under different conditions. In this study, only free casing and overlap expansion of two casings are addressed while the cement and formation will be incorporated in future study. Since the axial strain can be predicted by the physical model, the onset of ironing can be confirmed. In addition, this model helps in understanding ironing and the parameters influencing it. Finally, the physical model is validated with Finite Element (FE) simulations and small-scale experiments. The results of the study confirm that high pressure leads to ironing when the casing is expanded in tension mode.

Keywords: casing expansion, cement, formation, metal forming, plasticity, well design

Procedia PDF Downloads 179
12639 Mathematical Model of a Compound Gear Pump

Authors: Hsueh-Cheng Yang

Abstract:

The generation and design of compound involute spur gearings can be used in gear pump. A compound rack cutter with asymmetric involute teeth is presented for determining the mathematical model of compound gear pumps. This paper covers the following topics: (a) generation and geometry of compound rack cutter is presented and used to generate a compound gear and a compound pinion. (b) Based on the developed compound gears, stress analysis was performed for the symmetric gears and the asymmetric gears. Comparing the results of the stress analysis for the asymmetric involute teeth is superior to the symmetric involute teeth. A numerical example that illustrates the developed compound rack cutter is represented.

Keywords: compound, involute teeth, gear pump, rack cutter

Procedia PDF Downloads 369
12638 Self-Efficacy as a Predictor of Well-Being in University Students

Authors: Enes Ergün, Sedat Geli̇bolu

Abstract:

The purpose of this study is to determine the relationship between self-efficacy and subjective well-being among university students. We are aiming to determine whether self efficacy of university students predicts their subjective well-being and if there is a statistically significant difference among boys and girls in this context. Sample of this study consists of 245 university students from Çanakkale, ages ranging between 17 and 24. 72% (n=171) of the participants were girls and 28% (n=69) boys. Three different scales were utilized as data collection tools that Life Satisfaction Scale, General Self-Efficacy Scale, and Positive Negative Experiences Scale. Pearson correlation coefficient, independent sample t test and simple linear regression were used for data analyses. Results showed that well-being is significantly correlated with self-efficacy and self-efficacy is a statistically significant predictor of well-being too. In terms of gender differences, there is no significant difference between self-efficacy scores of boys and girls which shows the same case with well being scores, as well. Fostering university students' academic, social and emotional self-efficacy will increase their well-being which is very important for young adults especially their freshman years.

Keywords: positive psychology, self-efficacy, subjective well being, university students

Procedia PDF Downloads 280
12637 Modeling and Estimating Reserve of the Ali Javad Porphyry Copper-Gold Deposit, East Azerbaijan, Iran

Authors: Behzad Hajalilou, Nasim Hajalilou, Saeid Ansari

Abstract:

The study area is located in East Azerbaijan province, north of Ahar city, and 1/100000 geological map of Varzgan. This region is located in the middle of Iran zone. Ali Javad Porphyry copper-gold ore deposit has been created in a magmatic complex containing intrusive masses, combining Granodiorite and quartz Monzonite that penetrates into the Eocene volcanic aggregate. The most important mineralization includes primary oxides minerals (magnetite), sulfide (pyrite, chalcopyrite, Molybdenite, Bornite, Chalcocite, Covollite), secondary oxide or hydroxide minerals (hematite, goethite, limonite), and carbonate (malachite and Azurite). The mineralization forms into the vein-veinlets and scattered system. The alterations observed in the region include intermediate Argillic, advanced Argillic, Phyllic, silica, Propylitic, chlorite and Potassic. The 3D model of mineralization of the Alijavad is provided by Data DATAMINE software and based on the study of 700 polished sections of 32 drilled boreholes in the region. This model is completely compatible with the model provided by Lowell and Gilbert for the mineralization of porphyry copper deposits of quartz Monzonite type. The estimated cumulative residual value of copper for Ali Javad deposit is 81.5 million tons with 0.75 percent of copper, and for gold is 8.37 million tons with 1.8 ppm.

Keywords: porphyry copper, mineralization, Ali Javad, modeling, reserve estimation

Procedia PDF Downloads 218
12636 Singular Perturbed Vector Field Method Applied to the Problem of Thermal Explosion of Polydisperse Fuel Spray

Authors: Ophir Nave

Abstract:

In our research, we present the concept of singularly perturbed vector field (SPVF) method, and its application to thermal explosion of diesel spray combustion. Given a system of governing equations, which consist of hidden Multi-scale variables, the SPVF method transfer and decompose such system to fast and slow singularly perturbed subsystems (SPS). The SPVF method enables us to understand the complex system, and simplify the calculations. Later powerful analytical, numerical and asymptotic methods (e.g method of integral (invariant) manifold (MIM), the homotopy analysis method (HAM) etc.) can be applied to each subsystem. We compare the results obtained by the methods of integral invariant manifold and SPVF apply to spray droplets combustion model. The research deals with the development of an innovative method for extracting fast and slow variables in physical mathematical models. The method that we developed called singular perturbed vector field. This method based on a numerical algorithm applied to global quasi linearization applied to given physical model. The SPVF method applied successfully to combustion processes. Our results were compared to experimentally results. The SPVF is a general numerical and asymptotical method that reveals the hierarchy (multi-scale system) of a given system.

Keywords: polydisperse spray, model reduction, asymptotic analysis, multi-scale systems

Procedia PDF Downloads 217
12635 Determining the Relationship Between Maternal Stress and Depression and Child Obesity: The Mediating Role of Maternal Self-efficacy

Authors: Alireza Monzavi Chaleshtori, Mahnaz Aliakbari Dehkordi, Maryam Aliakbari, Solmaz Seyed Mostafaii

Abstract:

Objective: Considering the growing obesity among children and the role of mother's psychological factors as well as the need to prevent childhood obesity, this study aimed to investigate the mediating role of mother's self-efficacy in the relationship between mother's stress and depression and child obesity. Method: For this purpose, in a descriptive-correlation study, 222 mothers and children aged 1 to 5 years in Tehran, who had the opportunity to answer an online questionnaire, were selected by random sampling and to the depression scales of the Kroenke and Spitzer Patient Health Questionnaire, Cohen's stress and Self-efficacy of Berkeley mothers answered. Pearson correlation test and path analysis were used for data analysis. Findings: The findings showed that maternal depression had an indirect and significant effect on child obesity, and the effect of stress and depression on child obesity was indirect and non-significant. Therefore, the model has a good fit with the research data, and stress and depression indirectly predicted child obesity with the mediating role of self-efficacy. Conclusion: The hypothesized model tested based on mother's stress and depression with the mediating role of mother's self-efficacy was a good model in explaining the prediction of child obesity. Based on the findings of this research, a practical framework can be provided to explain the psychological factors of the mother in relation to child obesity and its treatment.

Keywords: stress, self-efficacy, child obesity, depression

Procedia PDF Downloads 69
12634 Comparative Study and Parallel Implementation of Stochastic Models for Pricing of European Options Portfolios using Monte Carlo Methods

Authors: Vinayak Bassi, Rajpreet Singh

Abstract:

Over the years, with the emergence of sophisticated computers and algorithms, finance has been quantified using computational prowess. Asset valuation has been one of the key components of quantitative finance. In fact, it has become one of the embryonic steps in determining risk related to a portfolio, the main goal of quantitative finance. This study comprises a drawing comparison between valuation output generated by two stochastic dynamic models, namely Black-Scholes and Dupire’s bi-dimensionality model. Both of these models are formulated for computing the valuation function for a portfolio of European options using Monte Carlo simulation methods. Although Monte Carlo algorithms have a slower convergence rate than calculus-based simulation techniques (like FDM), they work quite effectively over high-dimensional dynamic models. A fidelity gap is analyzed between the static (historical) and stochastic inputs for a sample portfolio of underlying assets. In order to enhance the performance efficiency of the model, the study emphasized the use of variable reduction methods and customizing random number generators to implement parallelization. An attempt has been made to further implement the Dupire’s model on a GPU to achieve higher computational performance. Furthermore, ideas have been discussed around the performance enhancement and bottleneck identification related to the implementation of options-pricing models on GPUs.

Keywords: monte carlo, stochastic models, computational finance, parallel programming, scientific computing

Procedia PDF Downloads 159
12633 Development of Vapor Absorption Refrigeration System for Mini-Bus Car’s Air Conditioning: A Two-Fluid Model

Authors: Yoftahe Nigussie

Abstract:

This research explores the implementation of a vapor absorption refrigeration system (VARS) in mini-bus cars to enhance air conditioning efficiency. The conventional vapor compression refrigeration system (VCRS) in vehicles relies on mechanical work from the engine, leading to increased fuel consumption. The proposed VARS aims to utilize waste heat and exhaust gas from the internal combustion engine to cool the mini-bus cabin, thereby reducing fuel consumption and atmospheric pollution. The project involves two models: Model 1, a two-fluid vapor absorption system (VAS), and Model 2, a three-fluid VAS. Model 1 uses ammonia (NH₃) and water (H₂O) as refrigerants, where water absorbs ammonia rapidly, producing a cooling effect. The absorption cycle operates on the principle that absorbing ammonia in water decreases vapor pressure. The ammonia-water solution undergoes cycles of desorption, condensation, expansion, and absorption, facilitated by a generator, condenser, expansion valve, and absorber. The objectives of this research include reducing atmospheric pollution, minimizing air conditioning maintenance costs, lowering capital costs, enhancing fuel economy, and eliminating the need for a compressor. The comparison between vapor absorption and compression systems reveals advantages such as smoother operation, fewer moving parts, and the ability to work at lower evaporator pressures without affecting the Coefficient of Performance (COP). The proposed VARS demonstrates potential benefits for mini-bus air conditioning systems, providing a sustainable and energy-efficient alternative. By utilizing waste heat and exhaust gas, this system contributes to environmental preservation while addressing economic considerations for vehicle owners. Further research and development in this area could lead to the widespread adoption of vapor absorption technology in automotive air conditioning systems.

Keywords: room, zone, space, thermal resistance

Procedia PDF Downloads 69
12632 Parameter Interactions in the Cumulative Prospect Theory: Fitting the Binary Choice Experiment Data

Authors: Elzbieta Babula, Juhyun Park

Abstract:

Tversky and Kahneman’s cumulative prospect theory assumes symmetric probability cumulation with regard to the reference point within decision weights. Theoretically, this model should be invariant under the change of the direction of probability cumulation. In the present study, this phenomenon is being investigated by creating a reference model that allows verifying the parameter interactions in the cumulative prospect theory specifications. The simultaneous parametric fitting of utility and weighting functions is applied to binary choice data from the experiment. The results show that the flexibility of the probability weighting function is a crucial characteristic allowing to prevent parameter interactions while estimating cumulative prospect theory.

Keywords: binary choice experiment, cumulative prospect theory, decision weights, parameter interactions

Procedia PDF Downloads 214
12631 Structural Equation Modelling Based Approach to Integrate Customers and Suppliers with Internal Practices for Lean Manufacturing Implementation in the Indian Context

Authors: Protik Basu, Indranil Ghosh, Pranab K. Dan

Abstract:

Lean management is an integrated socio-technical system to bring about a competitive state in an organization. The purpose of this paper is to explore and integrate the role of customers and suppliers with the internal practices of the Indian manufacturing industries towards successful implementation of lean manufacturing (LM). An extensive literature survey is carried out. An attempt is made to build an exhaustive list of all the input manifests related to customers, suppliers and internal practices necessary for LM implementation, coupled with a similar exhaustive list of the benefits accrued from its successful implementation. A structural model is thus conceptualized, which is empirically validated based on the data from the Indian manufacturing sector. With the current impetus on developing the industrial sector, the Government of India recently introduced the Lean Manufacturing Competitiveness Scheme that aims to increase competitiveness with the help of lean concepts. There is a huge scope to enrich the Indian industries with the lean benefits, the implementation status being quite low. Hardly any survey-based empirical study in India has been found to integrate customers and suppliers with the internal processes towards successful LM implementation. This empirical research is thus carried out in the Indian manufacturing industries. The basic steps of the research methodology followed in this research are the identification of input and output manifest variables and latent constructs, model proposition and hypotheses development, development of survey instrument, sampling and data collection and model validation (exploratory factor analysis, confirmatory factor analysis, and structural equation modeling). The analysis reveals six key input constructs and three output constructs, indicating that these constructs should act in unison to maximize the benefits of implementing lean. The structural model presented in this paper may be treated as a guide to integrating customers and suppliers with internal practices to successfully implement lean. Integrating customers and suppliers with internal practices into a unified, coherent manufacturing system will lead to an optimum utilization of resources. This work is one of the very first researches to have a survey-based empirical analysis of the role of customers, suppliers and internal practices of the Indian manufacturing sector towards an effective lean implementation.

Keywords: customer management, internal manufacturing practices, lean benefits, lean implementation, lean manufacturing, structural model, supplier management

Procedia PDF Downloads 176
12630 Optimization of E-motor Control Parameters for Electrically Propelled Vehicles by Integral Squared Method

Authors: Ibrahim Cicek, Melike Nikbay

Abstract:

Electrically propelled vehicles, either road or aerial vehicles are studied on contemporarily for their robust maneuvers and cost-efficient transport operations. The main power generating systems of such vehicles electrified by selecting proper components and assembled as e-powertrain. Generally, e-powertrain components selected considering the target performance requirements. Since the main component of propulsion is the drive unit, e-motor control system is subjected to achieve the performance targets. In this paper, the optimization of e-motor control parameters studied by Integral Squared Method (ISE). The overall aim is to minimize power consumption of such vehicles depending on mission profile and maintaining smooth maneuvers for passenger comfort. The sought-after values of control parameters are computed using the Optimal Control Theory. The system is modeled as a closed-loop linear control system with calibratable parameters.

Keywords: optimization, e-powertrain, optimal control, electric vehicles

Procedia PDF Downloads 129
12629 ISAR Imaging and Tracking Algorithm for Maneuvering Non-ellipsoidal Extended Objects Using Jump Markov Systems

Authors: Mohamed Barbary, Mohamed H. Abd El-azeem

Abstract:

Maneuvering non-ellipsoidal extended object tracking (M-NEOT) using high-resolution inverse synthetic aperture radar (ISAR) observations is gaining momentum recently. This work presents a new robust implementation of the Jump Markov (JM) multi-Bernoulli (MB) filter for M-NEOT, where the M-NEOT’s ISAR observations are characterized using a skewed (SK) non-symmetrically normal distribution. To cope with the possible abrupt change of kinematic state, extension, and observation distribution over an extended object when a target maneuvers, a multiple model technique is represented based on an MB-track-before-detect (TBD) filter supported by SK-sub-random matrix model (RMM) or sub-ellipses framework. Simulation results demonstrate this remarkable impact.

Keywords: maneuvering extended objects, ISAR, skewed normal distribution, sub-RMM, JM-MB-TBD filter

Procedia PDF Downloads 57
12628 CFD Simulation of Spacer Effect on Turbulent Mixing Phenomena in Sub Channels of Boiling Nuclear Assemblies

Authors: Shashi Kant Verma, S. L. Sinha, D. K. Chandraker

Abstract:

Numerical simulations of selected subchannel tracer (Potassium Nitrate) based experiments have been performed to study the capabilities of state-of-the-art of Computational Fluid Dynamics (CFD) codes. The Computational Fluid Dynamics (CFD) methodology can be useful for investigating the spacer effect on turbulent mixing to predict turbulent flow behavior such as Dimensionless mixing scalar distributions, radial velocity and vortices in the nuclear fuel assembly. A Gibson and Launder (GL) Reynolds stress model (RSM) has been selected as the primary turbulence model to be applied for the simulation case as it has been previously found reasonably accurate to predict flows inside rod bundles. As a comparison, the case is also simulated using a standard k-ε turbulence model that is widely used in industry. Despite being an isotropic turbulence model, it has also been used in the modeling of flow in rod bundles and to produce lateral velocities after thorough mixing of coolant fairly. Both these models have been solved numerically to find out fully developed isothermal turbulent flow in a 30º segment of a 54-rod bundle. Numerical simulation has been carried out for the study of natural mixing of a Tracer (Passive scalar) to characterize the growth of turbulent diffusion in an injected sub-channel and, afterwards on, cross-mixing between adjacent sub-channels. The mixing with water has been numerically studied by means of steady state CFD simulations with the commercial code STAR-CCM+. Flow enters into the computational domain through the mass inflow at the three subchannel faces. Turbulence intensity and hydraulic diameter of 1% and 5.9 mm respectively were used for the inlet. A passive scalar (Potassium nitrate) is injected through the mass fraction of 5.536 PPM at subchannel 2 (Upstream of the mixing section). Flow exited the domain through the pressure outlet boundary (0 Pa), and the reference pressure was 1 atm. Simulation results have been extracted at different locations of the mixing zone and downstream zone. The local mass fraction shows uniform mixing. The effect of the applied turbulence model is nearly negligible just before the outlet plane because the distributions look like almost identical and the flow is fully developed. On the other hand, quantitatively the dimensionless mixing scalar distributions change noticeably, which is visible in the different scale of the colour bars.

Keywords: single-phase flow, turbulent mixing, tracer, sub channel analysis

Procedia PDF Downloads 206
12627 A Study of Quality Assurance and Unit Verification Methods in Safety Critical Environment

Authors: Miklos Taliga

Abstract:

In the present case study we examined the development and testing methods of systems that contain safety-critical elements in different industrial fields. Consequentially, we observed the classical object-oriented development and testing environment, as both medical technology and automobile industry approaches the development of safety critical elements that way. Subsequently, we examined model-based development. We introduce the quality parameters that define development and testing. While taking modern agile methodology (scrum) into consideration, we examined whether and to what extent the methodologies we found fit into this environment.

Keywords: safety-critical elements, quality managent, unit verification, model base testing, agile methods, scrum, metamodel, object-oriented programming, field specific modelling, sprint, user story, UML Standard

Procedia PDF Downloads 584
12626 Role of Collaborative Cultural Model to Step on Cleaner Energy: A Case of Kathmandu City Core

Authors: Bindu Shrestha, Sudarshan R. Tiwari, Sushil B. Bajracharya

Abstract:

Urban household cooking fuel choice is highly influenced by human behavior and energy culture parameters such as cognitive norms, material culture and practices. Although these parameters have a leading role in Kathmandu for cleaner households, they are not incorporated in the city’s energy policy. This paper aims to identify trade-offs to transform resident behavior in cooking pattern towards cleaner technology from the questionnaire survey, observation, mapping, interview, and quantitative analysis. The analysis recommends implementing a Collaborative Cultural Model (CCM) for changing impact on the neighborhood from the policy level. The results showed that each household produces 439.56 kg of carbon emission each year and 20 percent used unclean technology due to low-income level. Residents who used liquefied petroleum gas (LPG) as their cooking fuel suffered from an energy crisis every year that has created fuel hoarding, which ultimately creates more energy demand and carbon exposure. In conclusion, the carbon emission can be reduced by improving the residents’ energy consumption culture. It recommended the city to use holistic action of changing habits as soft power of collaboration in two-way participation approach within residents, private sectors, and government to change their energy culture and behavior in policy level.

Keywords: energy consumption pattern, collaborative cultural model, energy culture, fuel stacking

Procedia PDF Downloads 132
12625 Hardware Implementation and Real-time Experimental Validation of a Direction of Arrival Estimation Algorithm

Authors: Nizar Tayem, AbuMuhammad Moinuddeen, Ahmed A. Hussain, Redha M. Radaydeh

Abstract:

This research paper introduces an approach for estimating the direction of arrival (DOA) of multiple RF noncoherent sources in a uniform linear array (ULA). The proposed method utilizes a Capon-like estimation algorithm and incorporates LU decomposition to enhance the accuracy of DOA estimation while significantly reducing computational complexity compared to existing methods like the Capon method. Notably, the proposed method does not require prior knowledge of the number of sources. To validate its effectiveness, the proposed method undergoes validation through both software simulations and practical experimentation on a prototype testbed constructed using a software-defined radio (SDR) platform and GNU Radio software. The results obtained from MATLAB simulations and real-time experiments provide compelling evidence of the proposed method's efficacy.

Keywords: DOA estimation, real-time validation, software defined radio, computational complexity, Capon's method, GNU radio

Procedia PDF Downloads 73
12624 Partially-Averaged Navier-Stokes for Computations of Flow Around Three-Dimensional Ahmed Bodies

Authors: Maryam Mirzaei, Sinisa Krajnovic´

Abstract:

The paper reports a study about the prediction of flows around simplified vehicles using Partially-Averaged Navier-Stokes (PANS). Numerical simulations are performed for two simplified vehicles: A slanted-back Ahmed body at Re=30 000 and a square back Ahmed body at Re=300 000. A comparison of the resolved and modeled physical flow scales is made with corresponding LES and experimental data for a better understanding of the performance of the PANS model. The PANS model is compared for coarse and fine grid resolutions and it is indicated that even a coarse-grid PANS simulation is able to produce fairly close flow predictions to those from a well-resolved LES simulation. The results indicate the possibility of improvement of the predictions by employing a finer grid resolution.

Keywords: partially-averaged Navier-Stokes, large eddy simulation, PANS, LES, Ahmed body

Procedia PDF Downloads 597
12623 Reactivity Study on South African Calcium Based Material Using a pH-Stat and Citric Acid: A Statistical Approach

Authors: Hilary Rutto, Mbali Chiliza, Tumisang Seodigeng

Abstract:

The study on reactivity of calcined calcium-based material is very important in dry flue gas desulphurisation (FGD) process, so as to produce absorbent with high sulphur dioxide capture capacity during the hydration process. The effect of calcining temperature and time on the reactivity of calcined limestone material were investigated. In this study, the reactivity was measured using a pH stat apparatus and also confirming the result by performing citric acid reactivity test. The reactivity was calculated using the shrinking core model. Based on the experiments, a mathematical model is developed to correlate the effect of time and temperature to the reactivity of absorbent. The calcination process variables were temperature (700 -1000°C) and time (1-6 hrs). It was found that reactivity increases with an increase in time and temperature.

Keywords: reactivity, citric acid, calcination, time

Procedia PDF Downloads 217
12622 Fracture Mechanics Modeling of a Shear-Cracked RC Beams Shear-Strengthened with FRP Sheets

Authors: Shahriar Shahbazpanahi, Alaleh Kamgar

Abstract:

So far, the conventional experimental and theoretical analysis in fracture mechanics have been applied to study concrete flexural- cracked beams, which are strengthened using fiber reinforced polymer (FRP) composite sheets. However, there is still little knowledge about the shear capacity of a side face FRP- strengthened shear-cracked beam. A numerical analysis is herein presented to model the fracture mechanics of a four-point RC beam, with two inclined initial notch on the supports, which is strengthened with side face FRP sheets. In the present study, the shear crack is forced to conduct by using an initial notch in supports. The ABAQUS software is used to model crack propagation by conventional cohesive elements. It is observed that the FRP sheets play important roles in preventing the propagation of shear cracks.

Keywords: crack, FRP, shear, strengthening

Procedia PDF Downloads 548
12621 Molecular Docking Study of Rosmarinic Acid and Its Analog Compounds on Sickle Cell Hemoglobin

Authors: Roohallah Yousefi

Abstract:

Introduction: Voxelotor, also known as GBT 440, binds to the alpha cleft in HbS tetramers and promotes the stability of the relaxed or oxygenated state of HbS. This process hinders the conformational change of the HbS tetramers into the deoxygenated state. Voxelotor prevents interactions between HbS tetramers in the deoxygenated state, ultimately inhibiting the polymerization of HbS tetramers and resulting in significant clinical improvements, particularly in raising hemoglobin levels in patients. In this study, we have explored the use of herbal compound models, such as rosmarinic acid and compounds with similar structures that exhibit high binding affinity to Voxelotor's hemoglobin binding site. Materials and methods: The molecular model of hemoglobin (PDB: 5E83) was initially obtained from the RCSB PDB database. In addition, we collected 453 ligand models with structural similarity to rosmarinic acid from the PubChem database. To prepare these models for molecular docking, we utilized the Molegro Virtual Docker tool. Subsequently, we used the SwissADME web tool to predict the physicochemical properties and pharmacokinetics of these compounds. Results: We investigated the affinity and binding site of 453 compounds similar to rosmarinic acid on the hemoglobin model (PDB: 5E83). Our focus was on the alpha cleft between two alpha chains of the hemoglobin model (PDB: 5E83). The results showed that most compounds had molecular weights above 500 daltons, and some exhibited acceptable hydrophobicity. Furthermore, their solubility in aqueous solutions was good. None of the compounds were able to cross the blood-brain barrier or have gastrointestinal absorption. However, they did have varying inhibitory effects on CYP2C9 cytochromes. The skin penetration rate was generally low. Conclusion: Through our study, we identified three compounds (CID: 162739375, CID: 141386569, and CID: 24015539) with promising potential for further research. These compounds demonstrated high binding affinity to the hemoglobin model, favorable dissolution and digestive absorption rates, as well as suitable hydrophobicity, making them ideal candidates for continued laboratory investigation.

Keywords: voxelotor, binding site, hemoglobin, rosmarinic acid

Procedia PDF Downloads 6
12620 The Application of Extend Spectrum-Based Pushover Analysis for Seismic Evaluation of Reinforced Concrete Wall Structures

Authors: Yang Liu

Abstract:

Reinforced concrete (RC) shear wall structures are one of the most popular and efficient structural forms for medium- and high-rise buildings to resist the action of earthquake loading. Thus, it is of great significance to evaluate the seismic demands of the RC shear walls. In this paper, the application of the extend spectrum-based pushover analysis (ESPA) method on the seismic evaluation of the shear wall structure is presented. The ESPA method includes a nonlinear consecutive pushover analysis procedure and a linear elastic modal response analysis procedure to consider the combination of modes in both elastic and inelastic cases. It is found from the results of case study that the ESPA method can predict the seismic performance of shear wall structures, including internal forces and deformations very well.

Keywords: reinforced concrete shear wall, seismic performance, high mode effect, nonlinear analysis

Procedia PDF Downloads 156
12619 Comparisons between Student Leaning Achievements and Their Problem Solving Skills on Stoichiometry Issue with the Think-Pair-Share Model and Stem Education Method

Authors: P. Thachitasing, N. Jansawang, W. Rakrai, T. Santiboon

Abstract:

The aim of this study is to investigate of the comparing the instructional design models between the Think-Pair-Share and Conventional Learning (5E Inquiry Model) Processes to enhance students’ learning achievements and their problem solving skills on stoichiometry issue for concerning the 2-instructional method with a sample consisted of 80 students in 2 classes at the 11th grade level in Chaturaphak Phiman Ratchadaphisek School. Students’ different learning outcomes in chemistry classes with the cluster random sampling technique were used. Instructional Methods designed with the 40-experimenl student group by Think-Pair-Share process and the 40-controlling student group by the conventional learning (5E Inquiry Model) method. These learning different groups were obtained using the 5 instruments; the 5-lesson instructional plans of Think-Pair-Share and STEM Education Method, students’ learning achievements and their problem solving skills were assessed with the pretest and posttest techniques, students’ outcomes of their instructional the Think-Pair-Share (TPSM) and the STEM Education Methods were compared. Statistically significant was differences with the paired t-test and F-test between posttest and pretest technique of the whole students in chemistry classes were found, significantly. Associations between student learning outcomes in chemistry and two methods of their learning to students’ learning achievements and their problem solving skills also were found. The use of two methods for this study is revealed that the students perceive their learning achievements to their problem solving skills to be differently learning achievements in different groups are guiding practical improvements in chemistry classrooms to assist teacher in implementing effective approaches for improving instructional methods. Students’ learning achievements of mean average scores to their controlling group with the Think-Pair-Share Model (TPSM) are lower than experimental student group for the STEM education method, evidence significantly. The E1/E2 process were revealed evidence of 82.56/80.44, and 83.02/81.65 which results based on criteria are higher than of 80/80 standard level with the IOC, consequently. The predictive efficiency (R2) values indicate that 61% and 67% and indicate that 63% and 67% of the variances in chemistry classes to their learning achievements on posttest in chemistry classes of the variances in students’ problem solving skills to their learning achievements to their chemistry classrooms on Stoichiometry issue with the posttest were attributable to their different learning outcomes for the TPSM and STEMe instructional methods.

Keywords: comparisons, students’ learning achievements, think-pare-share model (TPSM), stem education, problem solving skills, chemistry classes, stoichiometry issue

Procedia PDF Downloads 248
12618 Web-Based Paperless Campus: An Approach to Reduce the Cost and Complexity of Education Administration

Authors: Yekini N. Asafe, Haastrup A. Victor, Lawal N. Olawale, Okikiola F. Mercy

Abstract:

Recent increase in access to personal computer and networking systems have made it feasible to perform much of cumbersome and costly paper-based administration in all organization. Desktop computers, networking systems, high capacity storage devices and telecommunications system is currently allowing the transfer of various format of data to be processed, stored and dissemination for the purpose of decision making. Going paperless is more of benefits compare to full paper-based office. This paper proposed a model for design and implementation of e-administration system (paperless campus) for an institution of learning. If this model is design and implemented it will reduced cost and complexity of educational administration also eliminate menaces and environmental hazards attributed to paper-based administration within schools and colleges.

Keywords: e-administration, educational administration, paperless campus, paper-based administration

Procedia PDF Downloads 377
12617 Analysis of Hydraulic Velocity in Fishway Using CCHE2D Model

Authors: Amir Abbas Kamanbedast, Masood Mohammad Shafipor, Amir Ghotboddin

Abstract:

Fish way is a structure that in generally using to migrate to the place where they are spawned and is made near the spillway. Preventing fish spawning or migrating to their original place by fishway structures can affect their lives in the river or even erase one access to intended environment. The main objective of these structures is establishing a safe path for fish migration. In the present study first the hydraulic specifications of Hamidieh diversion dam were assessed and then it is problems were evaluated. In this study the dimensions of the fish way, including velocity of pools, were evaluated by CCHE2D software. Then by change slope in this structure streamlines like velocity in the pools were measured. For calibration can be use measuring local velocities in some pools. The information can be seen the fishway width of 0.3 m has minimum rate of descent in the total number of structures (pools and overflow).

Keywords: fishway, velocity, Hamidieh-Diversion Dam, CCHE2D model

Procedia PDF Downloads 490
12616 Foundation of the Information Model for Connected-Cars

Authors: Hae-Won Seo, Yong-Gu Lee

Abstract:

Recent progress in the next generation of automobile technology is geared towards incorporating information technology into cars. Collectively called smart cars are bringing intelligence to cars that provides comfort, convenience and safety. A branch of smart cars is connected-car system. The key concept in connected-cars is the sharing of driving information among cars through decentralized manner enabling collective intelligence. This paper proposes a foundation of the information model that is necessary to define the driving information for smart-cars. Road conditions are modeled through a unique data structure that unambiguously represent the time variant traffics in the streets. Additionally, the modeled data structure is exemplified in a navigational scenario and usage using UML. Optimal driving route searching is also discussed using the proposed data structure in a dynamically changing road conditions.

Keywords: connected-car, data modeling, route planning, navigation system

Procedia PDF Downloads 373
12615 Measurement of Thermal Protrusion Profile in Magnetic Recording Heads via Wyko Interferometry

Authors: Joseph Christopher R. Ragasa, Paolo Gabriel P. Casas, Nemesio S. Mangila, Maria Emma C. Villamin, Myra G. Bungag

Abstract:

A procedure in measuring the thermal protrusion profiles of magnetic recording heads was developed using a Wyko HD-8100 optical interference-based instrument. The protrusions in the heads were made by the application of a constant power through the thermal flying height controller pads. It was found that the thermally-induced bubble is confined to form in the same head locations, primarily in the reader and writer regions, regardless of the direction of approach of temperature. An application of power to the thermal flying height control pads ranging from 0 to 50 milliWatts showed that the protrusions demonstrate a linear dependence with the supplied power. The efficiencies calculated using this method were compared to that obtained through Guzik and found to be 19.57% greater due to the static testing environment used in the testing.

Keywords: thermal protrusion profile, magnetic recording heads, wyko interferometry, thermal flying height control

Procedia PDF Downloads 468