Search results for: ground motion modeling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6912

Search results for: ground motion modeling

642 Evaluation of the Effect of Lactose Derived Monosaccharide on Galactooligosaccharides Production by β-Galactosidase

Authors: Yenny Paola Morales Cortés, Fabián Rico Rodríguez, Juan Carlos Serrato Bermúdez, Carlos Arturo Martínez Riascos

Abstract:

Numerous benefits of galactooligosaccharides (GOS) as prebiotics have motivated the study of enzymatic processes for their production. These processes have special complexities due to several factors that make difficult high productivity, such as enzyme type, reaction medium pH, substrate concentrations and presence of inhibitors, among others. In the present work the production of galactooligosaccharides (with different degrees of polymerization: two, three and four) from lactose was studied. The study considers the formulation of a mathematical model that predicts the production of GOS from lactose using the enzyme β-galactosidase. The effect of pH in the reaction was studied. For that, phosphate buffer was used and with this was evaluated three pH values (6.0.6.5 and 7.0). Thus it was observed that at pH 6.0 the enzymatic activity insignificant. On the other hand, at pH 7.0 the enzymatic activity was approximately 27 times greater than at 6.5. The last result differs from previously reported results. Therefore, pH 7.0 was chosen as working pH. Additionally, the enzyme concentration was analyzed, which allowed observing that the effect of the concentration depends on the pH and the concentration was set for the following studies in 0.272 mM. Afterwards, experiments were performed varying the lactose concentration to evaluate its effects on the process and to generate the data for the adjustment of the mathematical model parameters. The mathematical model considers the reactions of lactose hydrolysis and transgalactosylation for the production of disaccharides and trisaccharides, with their inverse reactions. The production of tetrasaccharides was negligible and, because of that, it was not included in the model. The reaction was monitored by HPLC and for the quantitative analysis of the experimental data the Matlab programming language was used, including solvers for differential equations systems integration (ode15s) and nonlinear problems optimization (fminunc). The results confirm that the transgalactosylation and hydrolysis reactions are reversible, additionally inhibition by glucose and galactose is observed on the production of GOS. In relation to the production process of galactooligosaccharides, the results show that it is necessary to have high initial concentrations of lactose considering that favors the transgalactosylation reaction, while low concentrations favor hydrolysis reactions.

Keywords: β-galactosidase, galactooligosaccharides, inhibition, lactose, Matlab, modeling

Procedia PDF Downloads 353
641 The Importance of including All Data in a Linear Model for the Analysis of RNAseq Data

Authors: Roxane A. Legaie, Kjiana E. Schwab, Caroline E. Gargett

Abstract:

Studies looking at the changes in gene expression from RNAseq data often make use of linear models. It is also common practice to focus on a subset of data for a comparison of interest, leaving aside the samples not involved in this particular comparison. This work shows the importance of including all observations in the modeling process to better estimate variance parameters, even when the samples included are not directly used in the comparison under test. The human endometrium is a dynamic tissue, which undergoes cycles of growth and regression with each menstrual cycle. The mesenchymal stem cells (MSCs) present in the endometrium are likely responsible for this remarkable regenerative capacity. However recent studies suggest that MSCs also plays a role in the pathogenesis of endometriosis, one of the most common medical conditions affecting the lower abdomen in women in which the endometrial tissue grows outside the womb. In this study we compared gene expression profiles between MSCs and non-stem cell counterparts (‘non-MSC’) obtained from women with (‘E’) or without (‘noE’) endometriosis from RNAseq. Raw read counts were used for differential expression analysis using a linear model with the limma-voom R package, including either all samples in the study or only the samples belonging to the subset of interest (e.g. for the comparison ‘E vs noE in MSC cells’, including only MSC samples from E and noE patients but not the non-MSC ones). Using the full dataset we identified about 100 differentially expressed (DE) genes between E and noE samples in MSC samples (adj.p-val < 0.05 and |logFC|>1) while only 9 DE genes were identified when using only the subset of data (MSC samples only). Important genes known to be involved in endometriosis such as KLF9 and RND3 were missed in the latter case. When looking at the MSC vs non-MSC cells comparison, the linear model including all samples identified 260 genes for noE samples (including the stem cell marker SUSD2) while the subset analysis did not identify any DE genes. When looking at E samples, 12 genes were identified with the first approach and only 1 with the subset approach. Although the stem cell marker RGS5 was found in both cases, the subset test missed important genes involved in stem cell differentiation such as NOTCH3 and other potentially related genes to be used for further investigation and pathway analysis.

Keywords: differential expression, endometriosis, linear model, RNAseq

Procedia PDF Downloads 430
640 AI/ML Atmospheric Parameters Retrieval Using the “Atmospheric Retrievals conditional Generative Adversarial Network (ARcGAN)”

Authors: Thomas Monahan, Nicolas Gorius, Thanh Nguyen

Abstract:

Exoplanet atmospheric parameters retrieval is a complex, computationally intensive, inverse modeling problem in which an exoplanet’s atmospheric composition is extracted from an observed spectrum. Traditional Bayesian sampling methods require extensive time and computation, involving algorithms that compare large numbers of known atmospheric models to the input spectral data. Runtimes are directly proportional to the number of parameters under consideration. These increased power and runtime requirements are difficult to accommodate in space missions where model size, speed, and power consumption are of particular importance. The use of traditional Bayesian sampling methods, therefore, compromise model complexity or sampling accuracy. The Atmospheric Retrievals conditional Generative Adversarial Network (ARcGAN) is a deep convolutional generative adversarial network that improves on the previous model’s speed and accuracy. We demonstrate the efficacy of artificial intelligence to quickly and reliably predict atmospheric parameters and present it as a viable alternative to slow and computationally heavy Bayesian methods. In addition to its broad applicability across instruments and planetary types, ARcGAN has been designed to function on low power application-specific integrated circuits. The application of edge computing to atmospheric retrievals allows for real or near-real-time quantification of atmospheric constituents at the instrument level. Additionally, edge computing provides both high-performance and power-efficient computing for AI applications, both of which are critical for space missions. With the edge computing chip implementation, ArcGAN serves as a strong basis for the development of a similar machine-learning algorithm to reduce the downlinked data volume from the Compact Ultraviolet to Visible Imaging Spectrometer (CUVIS) onboard the DAVINCI mission to Venus.

Keywords: deep learning, generative adversarial network, edge computing, atmospheric parameters retrieval

Procedia PDF Downloads 168
639 Intriguing Modulations in the Excited State Intramolecular Proton Transfer Process of Chrysazine Governed by Host-Guest Interactions with Macrocyclic Molecules

Authors: Poojan Gharat, Haridas Pal, Sharmistha Dutta Choudhury

Abstract:

Tuning photophysical properties of guest dyes through host-guest interactions involving macrocyclic hosts are the attractive research areas since past few decades, as these changes can directly be implemented in chemical sensing, molecular recognition, fluorescence imaging and dye laser applications. Excited state intramolecular proton transfer (ESIPT) is an intramolecular prototautomerization process display by some specific dyes. The process is quite amenable to tunability by the presence of different macrocyclic hosts. The present study explores the interesting effect of p-sulfonatocalix[n]arene (SCXn) and cyclodextrin (CD) hosts on the excited-state prototautomeric equilibrium of Chrysazine (CZ), a model antitumour drug. CZ exists exclusively in its normal form (N) in the ground state. However, in the excited state, the excited N* form undergoes ESIPT along with its pre-existing intramolecular hydrogen bonds, giving the excited state prototautomer (T*). Accordingly, CZ shows a single absorption band due to N form, but two emission bands due to N* and T* forms. Facile prototautomerization of CZ is considerably inhibited when the dye gets bound to SCXn hosts. However, in spite of lower binding affinity, the inhibition is more profound with SCX6 host as compared to SCX4 host. For CD-CZ system, while prototautomerization process is hindered by the presence of β-CD, it remains unaffected in the presence of γCD. Reduction in the prototautomerization process of CZ by SCXn and βCD hosts is unusual, because T* form is less dipolar in nature than the N*, hence binding of CZ within relatively hydrophobic hosts cavities should have enhanced the prototautomerization process. At the same time, considering the similar chemical nature of two CD hosts, their effect on prototautomerization process of CZ would have also been similar. The atypical effects on the prototautomerization process of CZ by the studied hosts are suggested to arise due to the partial inclusion or external binding of CZ with the hosts. As a result, there is a strong possibility of intermolecular H-bonding interaction between CZ dye and the functional groups present at the portals of SCXn and βCD hosts. Formation of these intermolecular H-bonds effectively causes the pre-existing intramolecular H-bonding network within CZ molecule to become weak, and this consequently reduces the prototautomerization process for the dye. Our results suggest that rather than the binding affinity between the dye and host, it is the orientation of CZ in the case of SCXn-CZ complexes and the binding stoichiometry in the case of CD-CZ complexes that play the predominant role in influencing the prototautomeric equilibrium of the dye CZ. In the case of SCXn-CZ complexes, the results obtained through experimental findings are well supported by quantum chemical calculations. Similarly for CD-CZ systems, binding stoichiometries obtained through geometry optimization studies on the complexes between CZ and CD hosts correlate nicely with the experimental results. Formation of βCD-CZ complexes with 1:1 stoichiometry while formation of γCD-CZ complexes with 1:1, 1:2 and 2:2 stoichiometries are revealed from geometry optimization studies and these results are in good accordance with the observed effects by the βCD and γCD hosts on the ESIPT process of CZ dye.

Keywords: intermolecular proton transfer, macrocyclic hosts, quantum chemical studies, photophysical studies

Procedia PDF Downloads 119
638 A System Dynamics Approach for Assessing Policy Impacts on Closed-Loop Supply Chain Efficiency: A Case Study on Electric Vehicle Batteries

Authors: Guannan Ren, Thomas Mazzuchi, Shahram Sarkani

Abstract:

Electric vehicle battery recycling has emerged as a critical process in the transition toward sustainable transportation. As the demand for electric vehicles continues to rise, so does the need to address the end-of-life management of their batteries. Electric vehicle battery recycling benefits resource recovery and supply chain stability by reclaiming valuable metals like lithium, cobalt, nickel, and graphite. The reclaimed materials can then be reintroduced into the battery manufacturing process, reducing the reliance on raw material extraction and the environmental impacts of waste. Current battery recycling rates are insufficient to meet the growing demands for raw materials. While significant progress has been made in electric vehicle battery recycling, many areas can still improve. Standardization of battery designs, increased collection and recycling infrastructures, and improved efficiency in recycling processes are essential for scaling up recycling efforts and maximizing material recovery. This work delves into key factors, such as regulatory frameworks, economic incentives, and technological processes, that influence the cost-effectiveness and efficiency of battery recycling systems. A system dynamics model that considers variables such as battery production rates, demand and price fluctuations, recycling infrastructure capacity, and the effectiveness of recycling processes is created to study how these variables are interconnected, forming feedback loops that affect the overall supply chain efficiency. Such a model can also help simulate the effects of stricter regulations on battery disposal, incentives for recycling, or investments in research and development for battery designs and advanced recycling technologies. By using the developed model, policymakers, industry stakeholders, and researchers may gain insights into the effects of applying different policies or process updates on electric vehicle battery recycling rates.

Keywords: environmental engineering, modeling and simulation, circular economy, sustainability, transportation science, policy

Procedia PDF Downloads 90
637 Methodology for Temporary Analysis of Production and Logistic Systems on the Basis of Distance Data

Authors: M. Mueller, M. Kuehn, M. Voelker

Abstract:

In small and medium-sized enterprises (SMEs), the challenge is to create a well-grounded and reliable basis for process analysis, optimization and planning due to a lack of data. SMEs have limited access to methods with which they can effectively and efficiently analyse processes and identify cause-and-effect relationships in order to generate the necessary database and derive optimization potential from it. The implementation of digitalization within the framework of Industry 4.0 thus becomes a particular necessity for SMEs. For these reasons, the abstract presents an analysis methodology that is subject to the objective of developing an SME-appropriate methodology for efficient, temporarily feasible data collection and evaluation in flexible production and logistics systems as a basis for process analysis and optimization. The overall methodology focuses on retrospective, event-based tracing and analysis of material flow objects. The technological basis consists of Bluetooth low energy (BLE)-based transmitters, so-called beacons, and smart mobile devices (SMD), e.g. smartphones as receivers, between which distance data can be measured and derived motion profiles. The distance is determined using the Received Signal Strength Indicator (RSSI), which is a measure of signal field strength between transmitter and receiver. The focus is the development of a software-based methodology for interpretation of relative movements of transmitters and receivers based on distance data. The main research is on selection and implementation of pattern recognition methods for automatic process recognition as well as methods for the visualization of relative distance data. Due to an existing categorization of the database regarding process types, classification methods (e.g. Support Vector Machine) from the field of supervised learning are used. The necessary data quality requires selection of suitable methods as well as filters for smoothing occurring signal variations of the RSSI, the integration of methods for determination of correction factors depending on possible signal interference sources (columns, pallets) as well as the configuration of the used technology. The parameter settings on which respective algorithms are based have a further significant influence on result quality of the classification methods, correction models and methods for visualizing the position profiles used. The accuracy of classification algorithms can be improved up to 30% by selected parameter variation; this has already been proven in studies. Similar potentials can be observed with parameter variation of methods and filters for signal smoothing. Thus, there is increased interest in obtaining detailed results on the influence of parameter and factor combinations on data quality in this area. The overall methodology is realized with a modular software architecture consisting of independently modules for data acquisition, data preparation and data storage. The demonstrator for initialization and data acquisition is available as mobile Java-based application. The data preparation, including methods for signal smoothing, are Python-based with the possibility to vary parameter settings and to store them in the database (SQLite). The evaluation is divided into two separate software modules with database connection: the achievement of an automated assignment of defined process classes to distance data using selected classification algorithms and the visualization as well as reporting in terms of a graphical user interface (GUI).

Keywords: event-based tracing, machine learning, process classification, parameter settings, RSSI, signal smoothing

Procedia PDF Downloads 129
636 Development and Validation of Cylindrical Linear Oscillating Generator

Authors: Sungin Jeong

Abstract:

This paper presents a linear oscillating generator of cylindrical type for hybrid electric vehicle application. The focus of the study is the suggestion of the optimal model and the design rule of the cylindrical linear oscillating generator with permanent magnet in the back-iron translator. The cylindrical topology is achieved using equivalent magnetic circuit considering leakage elements as initial modeling. This topology with permanent magnet in the back-iron translator is described by number of phases and displacement of stroke. For more accurate analysis of an oscillating machine, it will be compared by moving just one-pole pitch forward and backward the thrust of single-phase system and three-phase system. Through the analysis and comparison, a single-phase system of cylindrical topology as the optimal topology is selected. Finally, the detailed design of the optimal topology takes the magnetic saturation effects into account by finite element analysis. Besides, the losses are examined to obtain more accurate results; copper loss in the conductors of machine windings, eddy-current loss of permanent magnet, and iron-loss of specific material of electrical steel. The considerations of thermal performances and mechanical robustness are essential, because they have an effect on the entire efficiency and the insulations of the machine due to the losses of the high temperature generated in each region of the generator. Besides electric machine with linear oscillating movement requires a support system that can resist dynamic forces and mechanical masses. As a result, the fatigue analysis of shaft is achieved by the kinetic equations. Also, the thermal characteristics are analyzed by the operating frequency in each region. The results of this study will give a very important design rule in the design of linear oscillating machines. It enables us to more accurate machine design and more accurate prediction of machine performances.

Keywords: equivalent magnetic circuit, finite element analysis, hybrid electric vehicle, linear oscillating generator

Procedia PDF Downloads 194
635 Assessing Impacts of Climate Variability and Change on Water Productivity and Nutrient Use Efficiency of Maize in the Semi-arid Central Rift Valley of Ethiopia

Authors: Fitih Ademe, Kibebew Kibret, Sheleme Beyene, Mezgebu Getnet, Gashaw Meteke

Abstract:

Changes in precipitation, temperature and atmospheric CO2 concentration are expected to alter agricultural productivity patterns worldwide. The interactive effects of soil moisture and nutrient availability are the two key edaphic factors that determine crop yield and are sensitive to climatic changes. The study assessed the potential impacts of climate change on maize yield and corresponding water productivity and nutrient use efficiency under climate change scenarios for the Central Rift Valley of Ethiopia by mid (2041-2070) and end century (2071-2100). Projected impacts were evaluated using climate scenarios generated from four General Circulation Models (GCMs) dynamically downscaled by the Swedish RCA4 Regional Climate Model (RCM) in combination with two Representative Concentration Pathways (RCP 4.5 and RCP8.5). Decision Support System for Agro-technology Transfer cropping system model (DSSAT-CSM) was used to simulate yield, water and nutrient use for the study periods. Results indicate that rainfed maize yield might decrease on average by 16.5 and 23% by the 2050s and 2080s, respectively, due to climate change. Water productivity is expected to decline on average by 2.2 and 12% in the CRV by mid and end centuries with respect to the baseline. Nutrient uptake and corresponding nutrient use efficiency (NUE) might also be negatively affected by climate change. Phosphorus uptake probably will decrease in the CRV on average by 14.5 to 18% by 2050s, while N uptake may not change significantly at Melkassa. Nitrogen and P use efficiency indicators showed decreases in the range between 8.5 to 10.5% and between 9.3 to 10.5%, respectively, by 2050s relative to the baseline average. The simulation results further indicated that a combination of increased water availability and optimum nutrient application might increase both water productivity and nutrient use efficiency in the changed climate, which can ensure modest production in the future. Potential options that can improve water availability and nutrient uptake should be identified for the study locations using a crop modeling approach.

Keywords: crop model, climate change scenario, nutrient uptake, nutrient use efficiency, water productivity

Procedia PDF Downloads 84
634 Application of the Standard Deviation in Regulating Design Variation of Urban Solutions Generated through Evolutionary Computation

Authors: Mohammed Makki, Milad Showkatbakhsh, Aiman Tabony

Abstract:

Computational applications of natural evolutionary processes as problem-solving tools have been well established since the mid-20th century. However, their application within architecture and design has only gained ground in recent years, with an increasing number of academics and professionals in the field electing to utilize evolutionary computation to address problems comprised from multiple conflicting objectives with no clear optimal solution. Recent advances in computer science and its consequent constructive influence on the architectural discourse has led to the emergence of multiple algorithmic processes capable of simulating the evolutionary process in nature within an efficient timescale. Many of the developed processes of generating a population of candidate solutions to a design problem through an evolutionary based stochastic search process are often driven through the application of both environmental and architectural parameters. These methods allow for conflicting objectives to be simultaneously, independently, and objectively optimized. This is an essential approach in design problems with a final product that must address the demand of a multitude of individuals with various requirements. However, one of the main challenges encountered through the application of an evolutionary process as a design tool is the ability for the simulation to maintain variation amongst design solutions in the population while simultaneously increasing in fitness. This is most commonly known as the ‘golden rule’ of balancing exploration and exploitation over time; the difficulty of achieving this balance in the simulation is due to the tendency of either variation or optimization being favored as the simulation progresses. In such cases, the generated population of candidate solutions has either optimized very early in the simulation, or has continued to maintain high levels of variation to which an optimal set could not be discerned; thus, providing the user with a solution set that has not evolved efficiently to the objectives outlined in the problem at hand. As such, the experiments presented in this paper seek to achieve the ‘golden rule’ by incorporating a mathematical fitness criterion for the development of an urban tissue comprised from the superblock as its primary architectural element. The mathematical value investigated in the experiments is the standard deviation factor. Traditionally, the standard deviation factor has been used as an analytical value rather than a generative one, conventionally used to measure the distribution of variation within a population by calculating the degree by which the majority of the population deviates from the mean. A higher standard deviation value delineates a higher number of the population is clustered around the mean and thus limited variation within the population, while a lower standard deviation value is due to greater variation within the population and a lack of convergence towards an optimal solution. The results presented will aim to clarify the extent to which the utilization of the standard deviation factor as a fitness criterion can be advantageous to generating fitter individuals in a more efficient timeframe when compared to conventional simulations that only incorporate architectural and environmental parameters.

Keywords: architecture, computation, evolution, standard deviation, urban

Procedia PDF Downloads 131
633 Assessment of Students Skills in Error Detection in SQL Classes using Rubric Framework - An Empirical Study

Authors: Dirson Santos De Campos, Deller James Ferreira, Anderson Cavalcante Gonçalves, Uyara Ferreira Silva

Abstract:

Rubrics to learning research provide many evaluation criteria and expected performance standards linked to defined student activity for learning and pedagogical objectives. Despite the rubric being used in education at all levels, academic literature on rubrics as a tool to support research in SQL Education is quite rare. There is a large class of SQL queries is syntactically correct, but certainly, not all are semantically correct. Detecting and correcting errors is a recurring problem in SQL education. In this paper, we usthe Rubric Abstract Framework (RAF), which consists of steps, that allows us to map the information to measure student performance guided by didactic objectives defined by the teacher as long as it is contextualized domain modeling by rubric. An empirical study was done that demonstrates how rubrics can mitigate student difficulties in finding logical errors and easing teacher workload in SQL education. Detecting and correcting logical errors is an important skill for students. Researchers have proposed several ways to improve SQL education because understanding this paradigm skills are crucial in software engineering and computer science. The RAF instantiation was using in an empirical study developed during the COVID-19 pandemic in database course. The pandemic transformed face-to-face and remote education, without presential classes. The lab activities were conducted remotely, which hinders the teaching-learning process, in particular for this research, in verifying the evidence or statements of knowledge, skills, and abilities (KSAs) of students. Various research in academia and industry involved databases. The innovation proposed in this paper is the approach used where the results obtained when using rubrics to map logical errors in query formulation have been analyzed with gains obtained by students empirically verified. The research approach can be used in the post-pandemic period in both classroom and distance learning.

Keywords: rubric, logical error, structured query language (SQL), empirical study, SQL education

Procedia PDF Downloads 188
632 Epigenetic Modifying Potential of Dietary Spices: Link to Cure Complex Diseases

Authors: Jeena Gupta

Abstract:

In the today’s world of pharmaceutical products, one should not forget the healing properties of inexpensive food materials especially spices. They are known to possess hidden pharmaceutical ingredients, imparting them the qualities of being anti-microbial, anti-oxidant, anti-inflammatory and anti-carcinogenic. Further aberrant epigenetic regulatory mechanisms like DNA methylation, histone modifications or altered microRNA expression patterns, which regulates gene expression without changing DNA sequence, contribute significantly in the development of various diseases. Changing lifestyles and diets exert their effect by influencing these epigenetic mechanisms which are thus the target of dietary phytochemicals. Bioactive components of plants have been in use since ages but their potential to reverse epigenetic alterations and prevention against diseases is yet to be explored. Spices being rich repositories of many bioactive constituents are responsible for providing them unique aroma and taste. Some spices like curcuma and garlic have been well evaluated for their epigenetic regulatory potential, but for others, it is largely unknown. We have evaluated the biological activity of phyto-active components of Fennel, Cardamom and Fenugreek by in silico molecular modeling, in vitro and in vivo studies. Ligand-based similarity studies were conducted to identify structurally similar compounds to understand their biological phenomenon. The database searching has been done by using Fenchone from fennel, Sabinene from cardamom and protodioscin from fenugreek as a query molecule in the different small molecule databases. Moreover, the results of the database searching exhibited that these compounds are having potential binding with the different targets found in the Protein Data Bank. Further in addition to being epigenetic modifiers, in vitro study had demonstrated the antimicrobial, antifungal, antioxidant and cytotoxicity protective effects of Fenchone, Sabinene and Protodioscin. To best of our knowledge, such type of studies facilitate the target fishing as well as making the roadmap in drug design and discovery process for identification of novel therapeutics.

Keywords: epigenetics, spices, phytochemicals, fenchone

Procedia PDF Downloads 156
631 Li2o Loss of Lithium Niobate Nanocrystals during High-Energy Ball-Milling

Authors: Laura Kocsor, Laszlo Peter, Laszlo Kovacs, Zsolt Kis

Abstract:

The aim of our research is to prepare rare-earth-doped lithium niobate (LiNbO3) nanocrystals, having only a few dopant ions in the focal point of an exciting laser beam. These samples will be used to achieve individual addressing of the dopant ions by light beams in a confocal microscope setup. One method for the preparation of nanocrystalline materials is to reduce the particle size by mechanical grinding. High-energy ball-milling was used in several works to produce nano lithium niobate. Previously, it was reported that dry high-energy ball-milling of lithium niobate in a shaker mill results in the partial reduction of the material, which leads to a balanced formation of bipolarons and polarons yielding gray color together with oxygen release and Li2O segregation on the open surfaces. In the present work we focus on preparing LiNbO3 nanocrystals by high-energy ball-milling using a Fritsch Pulverisette 7 planetary mill. Every ball-milling process was carried out in zirconia vial with zirconia balls of different sizes (from 3 mm to 0.1 mm), wet grinding with water, and the grinding time being less than an hour. Gradually decreasing the ball size to 0.1 mm, an average particle size of about 10 nm could be obtained determined by dynamic light scattering and verified by scanning electron microscopy. High-energy ball-milling resulted in sample darkening evidenced by optical absorption spectroscopy measurements indicating that the material underwent partial reduction. The unwanted lithium oxide loss decreases the Li/Nb ratio in the crystal, strongly influencing the spectroscopic properties of lithium niobate. Zirconia contamination was found in ground samples proved by energy-dispersive X-ray spectroscopy measurements; however, it cannot be explained based on the hardness properties of the materials involved in the ball-milling process. It can be understood taking into account the presence of lithium hydroxide formed the segregated lithium oxide and water during the ball-milling process, through chemically induced abrasion. The quantity of the segregated Li2O was measured by coulometric titration. During the wet milling process in the planetary mill, it was found that the lithium oxide loss increases linearly in the early phase of the milling process, then a saturation of the Li2O loss can be seen. This change goes along with the disappearance of the relatively large particles until a relatively narrow size distribution is achieved in accord with the dynamic light scattering measurements. With the 3 mm ball size and 1100 rpm rotation rate, the mean particle size achieved is 100 nm, and the total Li2O loss is about 1.2 wt.% of the original LiNbO3. Further investigations have been done to minimize the Li2O segregation during the ball-milling process. Since the Li2O loss was observed to increase with the growing total surface of the particles, the influence of ball-milling parameters on its quantity has also been studied.

Keywords: high-energy ball-milling, lithium niobate, mechanochemical reaction, nanocrystals

Procedia PDF Downloads 133
630 Mathematical Modeling and Simulation of Convective Heat Transfer System in Adjustable Flat Collector Orientation for Commercial Solar Dryers

Authors: Adeaga Ibiyemi Iyabo, Adeaga Oyetunde Adeoye

Abstract:

Interestingly, mechanical drying methods has played a major role in the commercialization of agricultural and agricultural allied sectors. In the overall, drying enhances the favorable storability and preservation of agricultural produce which in turn promotes its producibility, marketability, salability, and profitability. Recent researches have shown that solar drying is easier, affordable, controllable, and of course, cleaner and purer than other means of drying methods. It is, therefore, needful to persistently appraise solar dryers with a view to improving on the existing advantages. In this paper, mathematical equations were formulated for solar dryer using mass conservation law, material balance law and least cost savings method. Computer codes were written in Visual Basic.Net. The developed computer software, which considered Ibadan, a strategic south-western geographical location in Nigeria, was used to investigate the relationship between variable orientation angle of flat plate collector on solar energy trapped, derived monthly heat load, available energy supplied by solar and fraction supplied by solar energy when 50000 Kg/Month of produce was dried over a year. At variable collector tilt angle of 10°.13°,15°,18°, 20°, the derived monthly heat load, available energy supplied by solar were 1211224.63MJ, 102121.34MJ, 0.111; 3299274.63MJ, 10121.34MJ, 0.132; 5999364.706MJ, 171222.859MJ, 0.286; 4211224.63MJ, 132121.34MJ, 0.121; 2200224.63MJ, 112121.34MJ, 0.104, respectively .These results showed that if optimum collector angle is not reached, those factors needed for efficient and cost reduction drying will be difficult to attain. Therefore, this software has revealed that off - optimum collector angle in commercial solar drying does not worth it, hence the importance of the software in decision making as to the optimum collector angle of orientation.

Keywords: energy, ibadan, heat - load, visual-basic.net

Procedia PDF Downloads 408
629 Assessing the Impact of Low Carbon Technology Integration on Electricity Distribution Networks: Advancing towards Local Area Energy Planning

Authors: Javier Sandoval Bustamante, Pardis Sheikhzadeh, Vijayanarasimha Hindupur Pakka

Abstract:

In the pursuit of achieving net-zero carbon emissions, the integration of low carbon technologies into electricity distribution networks is paramount. This paper delves into the critical assessment of how the integration of low carbon technologies, such as heat pumps, electric vehicle chargers, and photovoltaic systems, impacts the infrastructure and operation of electricity distribution networks. The study employs rigorous methodologies, including power flow analysis and headroom analysis, to evaluate the feasibility and implications of integrating these technologies into existing distribution systems. Furthermore, the research utilizes Local Area Energy Planning (LAEP) methodologies to guide local authorities and distribution network operators in formulating effective plans to meet regional and national decarbonization objectives. Geospatial analysis techniques, coupled with building physics and electric energy systems modeling, are employed to develop geographic datasets aimed at informing the deployment of low carbon technologies at the local level. Drawing upon insights from the Local Energy Net Zero Accelerator (LENZA) project, a comprehensive case study illustrates the practical application of these methodologies in assessing the rollout potential of LCTs. The findings not only shed light on the technical feasibility of integrating low carbon technologies but also provide valuable insights into the broader transition towards a sustainable and electrified energy future. This paper contributes to the advancement of knowledge in power electrical engineering by providing empirical evidence and methodologies to support the integration of low carbon technologies into electricity distribution networks. The insights gained are instrumental for policymakers, utility companies, and stakeholders involved in navigating the complex challenges of energy transition and achieving long-term sustainability goals.

Keywords: energy planning, energy systems, digital twins, power flow analysis, headroom analysis

Procedia PDF Downloads 55
628 Neural Networks Models for Measuring Hotel Users Satisfaction

Authors: Asma Ameur, Dhafer Malouche

Abstract:

Nowadays, user comments on the Internet have an important impact on hotel bookings. This confirms that the e-reputation issue can influence the likelihood of customer loyalty to a hotel. In this way, e-reputation has become a real differentiator between hotels. For this reason, we have a unique opportunity in the opinion mining field to analyze the comments. In fact, this field provides the possibility of extracting information related to the polarity of user reviews. This sentimental study (Opinion Mining) represents a new line of research for analyzing the unstructured textual data. Knowing the score of e-reputation helps the hotelier to better manage his marketing strategy. The score we then obtain is translated into the image of hotels to differentiate between them. Therefore, this present research highlights the importance of hotel satisfaction ‘scoring. To calculate the satisfaction score, the sentimental analysis can be manipulated by several techniques of machine learning. In fact, this study treats the extracted textual data by using the Artificial Neural Networks Approach (ANNs). In this context, we adopt the aforementioned technique to extract information from the comments available in the ‘Trip Advisor’ website. This actual paper details the description and the modeling of the ANNs approach for the scoring of online hotel reviews. In summary, the validation of this used method provides a significant model for hotel sentiment analysis. So, it provides the possibility to determine precisely the polarity of the hotel users reviews. The empirical results show that the ANNs are an accurate approach for sentiment analysis. The obtained results show also that this proposed approach serves to the dimensionality reduction for textual data’ clustering. Thus, this study provides researchers with a useful exploration of this technique. Finally, we outline guidelines for future research in the hotel e-reputation field as comparing the ANNs with other technique.

Keywords: clustering, consumer behavior, data mining, e-reputation, machine learning, neural network, online hotel ‘reviews, opinion mining, scoring

Procedia PDF Downloads 136
627 A Comparison of Videography Tools and Techniques in African and International Contexts

Authors: Enoch Ocran

Abstract:

Film Pertinence maintains consistency in storytelling by sustaining the natural flow of action while evoking a particular feeling or emotion from the viewers with selected motion pictures. This study presents a thorough investigation of "Film Pertinence" in videography that examines its influence in Africa and around the world. This research delves into the dynamic realm of visual storytelling through film, with a specific focus on the concept of Film Pertinence (FP). The study’s primary objectives are to conduct a comparative analysis of videography tools and techniques employed in both African and international contexts, examining how they contribute to the achievement of organizational goals and the enhancement of cultural awareness. The research methodology includes a comprehensive literature review, interviews with videographers from diverse backgrounds in Africa and the international arena, and the examination of pertinent case studies. The investigation aims to elucidate the multifaceted nature of videographic practices, with particular attention to equipment choices, visual storytelling techniques, cultural sensitivity, and adaptability. This study explores the impact of cultural differences on videography choices, aiming to promote understanding between African and foreign filmmakers and create more culturally sensitive films. It also explores the role of technology in advancing videography practices, resource allocation, and the influence of globalization on local filmmaking practices. The research also contributes to film studies by analyzing videography's impact on storytelling, guiding filmmakers to create more compelling narratives. The findings can inform film education, tailoring curricula to regional needs and opportunities. The study also encourages cross-cultural collaboration in the film industry by highlighting convergence and divergence in videography practices. At its core, this study seeks to explore the implications of film pertinence as a framework for videographic practice. It scrutinizes how cultural expression, education, and storytelling transcend geographical boundaries on a global scale. By analyzing the interplay between tools, techniques, and context, the research illuminates the ways in which videographers in Africa and worldwide apply film Pertinence principles to achieve cross-cultural communication and effectively capture the objectives of their clients. One notable focus of this paper is on the techniques employed by videographers in West Africa to emphasize storytelling and participant engagement, showcasing the relevance of FP in highlighting cultural awareness in visual storytelling. Additionally, the study highlights the prevalence of film pertinence in African agricultural documentaries produced for esteemed organizations such as the Roundtable on Sustainable Palm Oil (RSPO), Proforest, World Food Program, Fidelity Bank Ghana, Instituto BVRio, Aflatoun International, and the Solidaridad Network. These documentaries serve to promote prosperity, resilience, human rights, sustainable farming practices, community respect, and environmental preservation, underlining the vital role of film in conveying these critical messages. In summary, this research offers valuable insights into the evolving landscape of videography in different contexts, emphasizing the significance of film pertinence as a unifying principle in the pursuit of effective visual storytelling and cross-cultural communication.

Keywords: film pertinence, Africa, cultural awareness, videography tools

Procedia PDF Downloads 65
626 The Mediating Role of Social Connectivity in the Effect of Positive Personality and Alexithymia on Life Satisfaction: Analysis Based on Structural Equation Model

Authors: Yulin Zhang, Kaixi Dong, Guozhen Zhao

Abstract:

Background: Different levels of life satisfaction are associated with some individual differences. Understanding the mechanism between them will help to enhance an individual’s well-being. On the one hand, traditional personality such as extraversion has been considered as the most stable and effective factor in predicting life satisfaction to the author’s best knowledge. On the other, individual emotional difference, such as alexithymia (difficulties identifying and describing one’s own feelings), is also closely related to life satisfaction. With the development of positive psychology, positive personalities such as virtues attract wide attention. And according to the broaden-and-build theory, social connectivity may mediate between emotion and life satisfaction. Therefore, the current study aims to explore the mediating role of social connectivity in the effect of positive personality and alexithymia on life satisfaction. Method: This study was conducted with 318 healthy Chinese college students whose age range from 18 to 30. Positive personality (including interpersonal, vitality, and cautiousness) was measured by the Chinese version of Values in Action Inventory of Strengths (VIA-IS). Alexithymia was measured by the Toronto Alexithymia Scale (TAS), and life satisfaction was measured by Satisfaction With Life Scale (SWLS). And social connectivity was measured by six items which have been used in previous studies. Each scale showed high reliability and validity. The mediating model was examined in Mplus 7.2 within a structural equation modeling (SEM) framework. Findings: The model fitted well and results revealed that both positive personality (95% confidence interval of indirect effect was [0.023, 0.097]) and alexithymia (95% confidence interval of indirect effect was [-0.270, -0.089]) predicted life satisfaction level significantly through social connectivity. Also, only positive personality significantly and directly predicted life satisfaction compared to alexithymia (95% confidence interval of direct effect was [0.109, 0.260]). Conclusion: Alexithymia predicts life satisfaction only through social connectivity, which emphasizes the importance of social bonding in enhancing the well-being of Chinese college students with alexithymia. And the positive personality can predict life satisfaction directly or through social connectivity, which provides implications for enhancing the well-being of Chinese college students by cultivating their virtue and positive psychological quality.

Keywords: alexithymia, life satisfaction, positive personality, social connectivity

Procedia PDF Downloads 167
625 Quality Characteristics of Road Runoff in Coastal Zones: A Case Study in A25 Highway, Portugal

Authors: Pedro B. Antunes, Paulo J. Ramísio

Abstract:

Road runoff is a linear source of diffuse pollution that can cause significant environmental impacts. During rainfall events, pollutants from both stationary and mobile sources, which have accumulated on the road surface, are dragged through the superficial runoff. Road runoff in coastal zones may present high levels of salinity and chlorides due to the proximity of the sea and transported marine aerosols. Appearing to be correlated to this process, organic matter concentration may also be significant. This study assesses this phenomenon with the purpose of identifying the relationships between monitored water quality parameters and intrinsic site variables. To achieve this objective, an extensive monitoring program was conducted on a Portuguese coastal highway. The study included thirty rainfall events, in different weather, traffic and salt deposition conditions in a three years period. The evaluations of various water quality parameters were carried out in over 200 samples. In addition, the meteorological, hydrological and traffic parameters were continuously measured. The salt deposition rates (SDR) were determined by means of a wet candle device, which is an innovative feature of the monitoring program. The SDR, variable throughout the year, appears to show a high correlation with wind speed and direction, but mostly with wave propagation, so that it is lower in the summer, in spite of the favorable wind direction in the case study. The distance to the sea, topography, ground obstacles and the platform altitude seems to be also relevant. It was confirmed the high salinity in the runoff, increasing the concentration of the water quality parameters analyzed, with significant amounts of seawater features. In order to estimate the correlations and patterns of different water quality parameters and variables related to weather, road section and salt deposition, the study included exploratory data analysis using different techniques (e.g. Pearson correlation coefficients, Cluster Analysis and Principal Component Analysis), confirming some specific features of the investigated road runoff. Significant correlations among pollutants were observed. Organic matter was highlighted as very dependent of salinity. Indeed, data analysis showed that some important water quality parameters could be divided into two major clusters based on their correlations to salinity (including organic matter associated parameters) and total suspended solids (including some heavy metals). Furthermore, the concentrations of the most relevant pollutants seemed to be very dependent on some meteorological variables, particularly the duration of the antecedent dry period prior to each rainfall event and the average wind speed. Based on the results of a monitoring case study, in a coastal zone, it was proven that SDR, associated with the hydrological characteristics of road runoff, can contribute for a better knowledge of the runoff characteristics, and help to estimate the specific nature of the runoff and related water quality parameters.

Keywords: coastal zones, monitoring, road runoff pollution, salt deposition

Procedia PDF Downloads 238
624 In vitro Modeling of Aniridia-Related Keratopathy by the Use of Crispr/Cas9 on Limbal Epithelial Cells and Rescue

Authors: Daniel Aberdam

Abstract:

Haploinsufficiency of PAX6 in humans is the main cause of congenital aniridia, a rare eye disease characterized by reduced visual acuity. Patients have also progressive disorders including cataract, glaucoma and corneal abnormalities making their condition very challenging to manage. Aniridia-related keratopathy (ARK), caused by a combination of factors including limbal stem-cell deficiency, impaired healing response, abnormal differentiation, and infiltration of conjunctival cells onto the corneal surface, affects up to 95% of patients. It usually begins in the first decade of life resulting in recurrent corneal erosions, sub-epithelial fibrosis with corneal decompensation and opacification. Unfortunately, current treatment options for aniridia patients are currently limited. Although animal models partially recapitulate this disease, there is no in vitro cellular model of AKT needed for drug/therapeutic tools screening and validation. We used genome editing (CRISPR/Cas9 technology) to introduce a nonsense mutation found in patients into one allele of the PAX6 gene into limbal stem cells. Resulting mutated clones, expressing half of the amount of PAX6 protein and thus representative of haploinsufficiency were further characterized. Sequencing analysis showed that no off-target mutations were induced. The mutated cells displayed reduced cell proliferation and cell migration but enhanced cell adhesion. Known PAX6 targets expression was also reduced. Remarkably, addition of soluble recombinant PAX6 protein into the culture medium was sufficient to activate endogenous PAX6 gene and, as a consequence, rescue the phenotype. It strongly suggests that our in vitro model recapitulates well the epithelial defect and becomes a powerful tool to identify drugs that could rescue the corneal defect in patients. Furthermore, we demonstrate that the homeotic transcription factor Pax6 is able to be uptake naturally by recipient cells to function into the nucleus.

Keywords: Pax6, crispr/cas9, limbal stem cells, aniridia, gene therapy

Procedia PDF Downloads 205
623 Modeling Biomass and Biodiversity across Environmental and Management Gradients in Temperate Grasslands with Deep Learning and Sentinel-1 and -2

Authors: Javier Muro, Anja Linstadter, Florian Manner, Lisa Schwarz, Stephan Wollauer, Paul Magdon, Gohar Ghazaryan, Olena Dubovyk

Abstract:

Monitoring the trade-off between biomass production and biodiversity in grasslands is critical to evaluate the effects of management practices across environmental gradients. New generations of remote sensing sensors and machine learning approaches can model grasslands’ characteristics with varying accuracies. However, studies often fail to cover a sufficiently broad range of environmental conditions, and evidence suggests that prediction models might be case specific. In this study, biomass production and biodiversity indices (species richness and Fishers’ α) are modeled in 150 grassland plots for three sites across Germany. These sites represent a North-South gradient and are characterized by distinct soil types, topographic properties, climatic conditions, and management intensities. Predictors used are derived from Sentinel-1 & 2 and a set of topoedaphic variables. The transferability of the models is tested by training and validating at different sites. The performance of feed-forward deep neural networks (DNN) is compared to a random forest algorithm. While biomass predictions across gradients and sites were acceptable (r2 0.5), predictions of biodiversity indices were poor (r2 0.14). DNN showed higher generalization capacity than random forest when predicting biomass across gradients and sites (relative root mean squared error of 0.5 for DNN vs. 0.85 for random forest). DNN also achieved high performance when using the Sentinel-2 surface reflectance data rather than different combinations of spectral indices, Sentinel-1 data, or topoedaphic variables, simplifying dimensionality. This study demonstrates the necessity of training biomass and biodiversity models using a broad range of environmental conditions and ensuring spatial independence to have realistic and transferable models where plot level information can be upscaled to landscape scale.

Keywords: ecosystem services, grassland management, machine learning, remote sensing

Procedia PDF Downloads 218
622 Alternative Approach to the Machine Vision System Operating for Solving Industrial Control Issue

Authors: M. S. Nikitenko, S. A. Kizilov, D. Y. Khudonogov

Abstract:

The paper considers an approach to a machine vision operating system combined with using a grid of light markers. This approach is used to solve several scientific and technical problems, such as measuring the capability of an apron feeder delivering coal from a lining return port to a conveyor in the technology of mining high coal releasing to a conveyor and prototyping an autonomous vehicle obstacle detection system. Primary verification of a method of calculating bulk material volume using three-dimensional modeling and validation in laboratory conditions with relative errors calculation were carried out. A method of calculating the capability of an apron feeder based on a machine vision system and a simplifying technology of a three-dimensional modelled examined measuring area with machine vision was offered. The proposed method allows measuring the volume of rock mass moved by an apron feeder using machine vision. This approach solves the volume control issue of coal produced by a feeder while working off high coal by lava complexes with release to a conveyor with accuracy applied for practical application. The developed mathematical apparatus for measuring feeder productivity in kg/s uses only basic mathematical functions such as addition, subtraction, multiplication, and division. Thus, this fact simplifies software development, and this fact expands the variety of microcontrollers and microcomputers suitable for performing tasks of calculating feeder capability. A feature of an obstacle detection issue is to correct distortions of the laser grid, which simplifies their detection. The paper presents algorithms for video camera image processing and autonomous vehicle model control based on obstacle detection machine vision systems. A sample fragment of obstacle detection at the moment of distortion with the laser grid is demonstrated.

Keywords: machine vision, machine vision operating system, light markers, measuring capability, obstacle detection system, autonomous transport

Procedia PDF Downloads 113
621 Combining Multiscale Patterns of Weather and Sea States into a Machine Learning Classifier for Mid-Term Prediction of Extreme Rainfall in North-Western Mediterranean Sea

Authors: Pinel Sebastien, Bourrin François, De Madron Du Rieu Xavier, Ludwig Wolfgang, Arnau Pedro

Abstract:

Heavy precipitation constitutes a major meteorological threat in the western Mediterranean. Research has investigated the relationship between the states of the Mediterranean Sea and the atmosphere with the precipitation for short temporal windows. However, at a larger temporal scale, the precursor signals of heavy rainfall in the sea and atmosphere have drawn little attention. Moreover, despite ongoing improvements in numerical weather prediction, the medium-term forecasting of rainfall events remains a difficult task. Here, we aim to investigate the influence of early-spring environmental parameters on the following autumnal heavy precipitations. Hence, we develop a machine learning model to predict extreme autumnal rainfall with a 6-month lead time over the Spanish Catalan coastal area, based on i) the sea pattern (main current-LPC and Sea Surface Temperature-SST) at the mesoscale scale, ii) 4 European weather teleconnection patterns (NAO, WeMo, SCAND, MO) at synoptic scale, and iii) the hydrological regime of the main local river (Rhône River). The accuracy of the developed model classifier is evaluated via statistical analysis based on classification accuracy, logarithmic and confusion matrix by comparing with rainfall estimates from rain gauges and satellite observations (CHIRPS-2.0). Sensitivity tests are carried out by changing the model configuration, such as sea SST, sea LPC, river regime, and synoptic atmosphere configuration. The sensitivity analysis suggests a negligible influence from the hydrological regime, unlike SST, LPC, and specific teleconnection weather patterns. At last, this study illustrates how public datasets can be integrated into a machine learning model for heavy rainfall prediction and can interest local policies for management purposes.

Keywords: extreme hazards, sensitivity analysis, heavy rainfall, machine learning, sea-atmosphere modeling, precipitation forecasting

Procedia PDF Downloads 133
620 Using Business Intelligence Capabilities to Improve the Quality of Decision-Making: A Case Study of Mellat Bank

Authors: Jalal Haghighat Monfared, Zahra Akbari

Abstract:

Today, business executives need to have useful information to make better decisions. Banks have also been using information tools so that they can direct the decision-making process in order to achieve their desired goals by rapidly extracting information from sources with the help of business intelligence. The research seeks to investigate whether there is a relationship between the quality of decision making and the business intelligence capabilities of Mellat Bank. Each of the factors studied is divided into several components, and these and their relationships are measured by a questionnaire. The statistical population of this study consists of all managers and experts of Mellat Bank's General Departments (including 190 people) who use commercial intelligence reports. The sample size of this study was 123 randomly determined by statistical method. In this research, relevant statistical inference has been used for data analysis and hypothesis testing. In the first stage, using the Kolmogorov-Smirnov test, the normalization of the data was investigated and in the next stage, the construct validity of both variables and their resulting indexes were verified using confirmatory factor analysis. Finally, using the structural equation modeling and Pearson's correlation coefficient, the research hypotheses were tested. The results confirmed the existence of a positive relationship between decision quality and business intelligence capabilities in Mellat Bank. Among the various capabilities, including data quality, correlation with other systems, user access, flexibility and risk management support, the flexibility of the business intelligence system was the most correlated with the dependent variable of the present research. This shows that it is necessary for Mellat Bank to pay more attention to choose the required business intelligence systems with high flexibility in terms of the ability to submit custom formatted reports. Subsequently, the quality of data on business intelligence systems showed the strongest relationship with quality of decision making. Therefore, improving the quality of data, including the source of data internally or externally, the type of data in quantitative or qualitative terms, the credibility of the data and perceptions of who uses the business intelligence system, improves the quality of decision making in Mellat Bank.

Keywords: business intelligence, business intelligence capability, decision making, decision quality

Procedia PDF Downloads 111
619 Business Model Innovation and Firm Performance: Exploring Moderation Effects

Authors: Mohammad-Ali Latifi, Harry Bouwman

Abstract:

Changes in the business environment accelerated dramatically over the last decades as a result of changes in technology, regulation, market, and competitors’ behavior. Firms need to change the way they do business in order to survive or maintain their growth. Innovating business model (BM) can create competitive advantages and enhance firm performance. However, many companies fail to achieve expected outcomes in practice, mostly due to irreversible fundamental changes in key components of the company’s BM. This leads to more ambiguity, uncertainty, and risks associated with business performance. However, the relationship among BM Innovation, moderating factors, and the firm’s overall performance is by and large ignored in the current literature. In this study, we identified twenty moderating factors from our comprehensive literature review. We categorized these factors based on two criteria regarding the extent to which: the moderating factors can be controlled and managed by firms, and they are generic or specific changes to the firms. This leads to four moderation groups. The first group is BM implementation, which includes management support, employees’ commitment, employees’ skills, communication, detailed plan. The second group is called BM practices, which consists of BM tooling, BM experimentation, the scope of change, speed of change, degree of novelty. The third group is Firm characteristics, including firm size, age, and ownership. The last group is called Industry characteristics, which considers the industry sector, competitive intensity, industry life cycle, environmental dynamism, high-tech vs. low-tech industry. Through collecting data from 508 European small and medium-sized enterprises (SMEs) and using the structural equation modeling technique, the developed moderation model was examined. Results revealed that all factors highlighted through these four groups moderate the relation between BMI and firm performance significantly. Particularly, factors related to BM-Implementation and BM-Practices are more manageable and would potentially improve firm overall performance. We believe that this result is more important for researchers and practitioners since the possibility of working on factors in Firm characteristics and Industry characteristics groups are limited, and the firm can hardly control and manage them to improve the performance of BMI efforts.

Keywords: business model innovation, firm performance, implementation, moderation

Procedia PDF Downloads 119
618 Development of a Tilt-Rotor Aircraft Model Using System Identification Technique

Authors: Ferdinando Montemari, Antonio Vitale, Nicola Genito, Giovanni Cuciniello

Abstract:

The introduction of tilt-rotor aircraft into the existing civilian air transportation system will provide beneficial effects due to tilt-rotor capability to combine the characteristics of a helicopter and a fixed-wing aircraft into one vehicle. The disposability of reliable tilt-rotor simulation models supports the development of such vehicle. Indeed, simulation models are required to design automatic control systems that increase safety, reduce pilot's workload and stress, and ensure the optimal aircraft configuration with respect to flight envelope limits, especially during the most critical flight phases such as conversion from helicopter to aircraft mode and vice versa. This article presents a process to build a simplified tilt-rotor simulation model, derived from the analysis of flight data. The model aims to reproduce the complex dynamics of tilt-rotor during the in-flight conversion phase. It uses a set of scheduled linear transfer functions to relate the autopilot reference inputs to the most relevant rigid body state variables. The model also computes information about the rotor flapping dynamics, which are useful to evaluate the aircraft control margin in terms of rotor collective and cyclic commands. The rotor flapping model is derived through a mixed theoretical-empirical approach, which includes physical analytical equations (applicable to helicopter configuration) and parametric corrective functions. The latter are introduced to best fit the actual rotor behavior and balance the differences existing between helicopter and tilt-rotor during flight. Time-domain system identification from flight data is exploited to optimize the model structure and to estimate the model parameters. The presented model-building process was applied to simulated flight data of the ERICA Tilt-Rotor, generated by using a high fidelity simulation model implemented in FlightLab environment. The validation of the obtained model was very satisfying, confirming the validity of the proposed approach.

Keywords: flapping dynamics, flight dynamics, system identification, tilt-rotor modeling and simulation

Procedia PDF Downloads 197
617 Risk-Sharing Financing of Islamic Banks: Better Shielded against Interest Rate Risk

Authors: Mirzet SeHo, Alaa Alaabed, Mansur Masih

Abstract:

In theory, risk-sharing-based financing (RSF) is considered a corner stone of Islamic finance. It is argued to render Islamic banks more resilient to shocks. In practice, however, this feature of Islamic financial products is almost negligible. Instead, debt-based instruments, with conventional like features, have overwhelmed the nascent industry. In addition, the framework of present-day economic, regulatory and financial reality inevitably exposes Islamic banks in dual banking systems to problems of conventional banks. This includes, but is not limited to, interest rate risk. Empirical evidence has, thus far, confirmed such exposures, despite Islamic banks’ interest-free operations. This study applies system GMM in modeling the determinants of RSF, and finds that RSF is insensitive to changes in interest rates. Hence, our results provide support to the “stability” view of risk-sharing-based financing. This suggests RSF as the way forward for risk management at Islamic banks, in the absence of widely acceptable Shariah compliant hedging instruments. Further support to the stability view is given by evidence of counter-cyclicality. Unlike debt-based lending that inflates artificial asset bubbles through credit expansion during the upswing of business cycles, RSF is negatively related to GDP growth. Our results also imply a significantly strong relationship between risk-sharing deposits and RSF. However, the pass-through of these deposits to RSF is economically low. Only about 40% of risk-sharing deposits are channeled to risk-sharing financing. This raises questions on the validity of the industry’s claim that depositors accustomed to conventional banking shun away from risk sharing and signals potential for better balance sheet management at Islamic banks. Overall, our findings suggest that, on the one hand, Islamic banks can gain ‘independence’ from conventional banks and interest rates through risk-sharing products, the potential for which is enormous. On the other hand, RSF could enable policy makers to improve systemic stability and restrain excessive credit expansion through its countercyclical features.

Keywords: Islamic banks, risk-sharing, financing, interest rate, dynamic system GMM

Procedia PDF Downloads 316
616 Process of Production of an Artisanal Brewery in a City in the North of the State of Mato Grosso, Brazil

Authors: Ana Paula S. Horodenski, Priscila Pelegrini, Salli Baggenstoss

Abstract:

The brewing industry with artisanal concepts seeks to serve a specific market, with diversified production that has been gaining ground in the national environment, also in the Amazon region. This growth is due to the more demanding consumer, with a diversified taste that wants to try new types of beer, enjoying products with new aromas, flavors, as a differential of what is so widely spread through the big industrial brands. Thus, through qualitative research methods, the study aimed to investigate how is the process of managing the production of a craft brewery in a city in the northern State of Mato Grosso (BRAZIL), providing knowledge of production processes and strategies in the industry. With the efficient use of resources, it is possible to obtain the necessary quality and provide better performance and differentiation of the company, besides analyzing the best management model. The research is descriptive with a qualitative approach through a case study. For the data collection, a semi-structured interview was elaborated, composed of the areas: microbrewery characterization, artisan beer production process, and the company supply chain management. Also, production processes were observed during technical visits. With the study, it was verified that the artisan brewery researched develops preventive maintenance strategies with the inputs, machines, and equipment, so that the quality of the product and the production process are achieved. It was observed that the distance from the supplying centers makes the management of processes and the supply chain be carried out with a longer planning time so that the delivery of the final product is satisfactory. The production process of the brewery is composed of machines and equipment that allows the control and quality of the product, which the manager states that for the productive capacity of the industry and its consumer market, the available equipment meets the demand. This study also contributes to highlight one of the challenges for the development of small breweries in front of the market giants, that is, the legislation, which fits the microbreweries as producers of alcoholic beverages. This makes the micro and small business segment to be taxed as a major, who has advantages in purchasing large batches of raw materials and tax incentives because they are large employers and tax pickers. It was possible to observe that the supply chain management system relies on spreadsheets and notes that are done manually, which could be simplified with a computer program to streamline procedures and reduce risks and failures of the manual process. In relation to the control of waste and effluents affected by the industry is outsourced and meets the needs. Finally, the results showed that the industry uses preventive maintenance as a productive strategy, which allows better conditions for the production and quality of artisanal beer. The quality is directly related to the satisfaction of the final consumer, being prized and performed throughout the production process, with the selection of better inputs, the effectiveness of the production processes and the relationship with the commercial partners.

Keywords: artisanal brewery, production management, production processes, supply chain

Procedia PDF Downloads 119
615 Strength Properties of Ca-Based Alkali Activated Fly Ash System

Authors: Jung-Il Suh, Hong-Gun Park, Jae-Eun Oh

Abstract:

Recently, the use of long-span precast concrete (PC) construction has increased in modular construction such as storage buildings and parking facilities. When applying long span PC member, reducing weight of long span PC member should be conducted considering lifting capacity of crane and self-weight of PC member and use of structural lightweight concrete made by lightweight aggregate (LWA) can be considered. In the process of lightweight concrete production, segregation and bleeding could occur due to difference of specific gravity between cement (3.3) and lightweight aggregate (1.2~1.8) and reducing weight of binder is needed to prevent the segregation between binder and aggregate. Also, lightweight precast concrete made by cementitious materials such as fly ash and ground granulated blast furnace (GGBFS) which is lower than specific gravity of cement as a substitute for cement has been studied. When only using fly ash for cementless binder alkali-activation of fly ash is most important chemical process in which the original fly ash is dissolved by a strong alkaline medium in steam curing with high-temperature condition. Because curing condition is similar with environment of precast member production, additional process is not needed. Na-based chloride generally used as a strong alkali activator has a practical problem such as high pH toxicity and high manufacturing cost. Instead of Na-based alkali activator calcium hydroxide [Ca(OH)2] and sodium hydroxide [Na2CO3] might be used because it has a lower pH and less expensive than Na-based alkali activator. This study explored the influences on Ca(OH)2-Na2CO3-activated fly ash system in its microstructural aspects and strength and permeability using powder X-ray analysis (XRD), thermogravimetry (TGA), mercury intrusion porosimetry (MIP). On the basis of microstructural analysis, the conclusions are made as follows. Increase of Ca(OH)2/FA wt.% did not affect improvement of compressive strength. Also, Ca(OH)2/FA wt.% and Na2CO3/FA wt.% had little effect on specific gravity of saturated surface dry (SSD) and absolute dry (AD) condition to calculate water absorption. Especially, the binder is appropriate for structural lightweight concrete because specific gravity of the hardened paste has no difference with that of lightweight aggregate. The XRD and TGA/DTG results did not present considerable difference for the types and quantities of hydration products depending on w/b ratio, Ca(OH)2 wt.%, and Na2CO3 wt.%. In the case of higher molar quantity of Ca(OH)2 to Na2CO3, XRD peak indicated unreacted Ca(OH)2 while DTG peak was not presented because of small quantity. Thus, presence of unreacted Ca(OH)2 is too small quantity to effect on mechanical performance. As a result of MIP, the porosity volume related to capillary pore depends on the w/b ratio. In the same condition of w/b ratio, quantities of Ca(OH)2 and Na2CO3 have more influence on pore size distribution rather than total porosity. While average pore size decreased as Na2CO3/FA w.t% increased, the average pore size increased over 20 nm as Ca(OH)2/FA wt.% increased which has inverse proportional relationship between pore size and mechanical properties such as compressive strength and water permeability.

Keywords: Ca(OH)2, compressive strength, microstructure, fly ash, Na2CO3, water absorption

Procedia PDF Downloads 223
614 From Industry 4.0 to Agriculture 4.0: A Framework to Manage Product Data in Agri-Food Supply Chain for Voluntary Traceability

Authors: Angelo Corallo, Maria Elena Latino, Marta Menegoli

Abstract:

Agri-food value chain involves various stakeholders with different roles. All of them abide by national and international rules and leverage marketing strategies to advance their products. Food products and related processing phases carry with it a big mole of data that are often not used to inform final customer. Some data, if fittingly identified and used, can enhance the single company, and/or the all supply chain creates a math between marketing techniques and voluntary traceability strategies. Moreover, as of late, the world has seen buying-models’ modification: customer is careful on wellbeing and food quality. Food citizenship and food democracy was born, leveraging on transparency, sustainability and food information needs. Internet of Things (IoT) and Analytics, some of the innovative technologies of Industry 4.0, have a significant impact on market and will act as a main thrust towards a genuine ‘4.0 change’ for agriculture. But, realizing a traceability system is not simple because of the complexity of agri-food supply chain, a lot of actors involved, different business models, environmental variations impacting products and/or processes, and extraordinary climate changes. In order to give support to the company involved in a traceability path, starting from business model analysis and related business process a Framework to Manage Product Data in Agri-Food Supply Chain for Voluntary Traceability was conceived. Studying each process task and leveraging on modeling techniques lead to individuate information held by different actors during agri-food supply chain. IoT technologies for data collection and Analytics techniques for data processing supply information useful to increase the efficiency intra-company and competitiveness in the market. The whole information recovered can be shown through IT solutions and mobile application to made accessible to the company, the entire supply chain and the consumer with the view to guaranteeing transparency and quality.

Keywords: agriculture 4.0, agri-food suppy chain, industry 4.0, voluntary traceability

Procedia PDF Downloads 146
613 Working Without a Safety Net: Exploring Struggles and Dilemmas Faced by Greek Orthodox Married Clergy Through a Mental Health Lens, in the Australian Context

Authors: Catherine Constantinidis (Nee Tsacalos)

Abstract:

This paper presents one aspect of the larger Masters qualitative study exploring the roles of married Greek Orthodox clergy, the Priest and Presbytera, under the wing of the Greek Orthodox Archdiocese of Australia. This ground breaking research necessitated the creation of primary data within a phenomenological paradigm drawing from lived experiences of the Priests and Presbyteres in contemporary society. As a Social Worker, a bilingual (Greek/English) Mental Health practitioner and a Presbytera, the questions constantly raised and pondered are: Who do the Priest and Presbytera turn to when they experience difficulties or problems? Where do they go for support? What is in place for their emotional and psychological health and well-being? Who cares for the spiritual carer? Who is there to catch our falling clergy and their wives? What is their 'safety net'? Identified phenomena of angst, stress, frustration and confusion experienced by the Priest and (by extension) the Presbytera, within their position, coupled with basic assumptions, perceptions and expectations about their roles, the role of the organisation (the Church), and their role as spouse often caused confusion and in some cases conflict. Unpacking this complex and multi-dimensional relationship highlighted not only the roller coaster of emotions, potentially affecting their physical and mental health, but also the impact on the interwoven relationships of marriage and ministry. The author considers these phenomena in the light of bilingual cultural and religious organisational practice frameworks, specifically the Greek Orthodox Church, whilst filtering these findings through a mental health lens. One could argue that it is an expectation that clergy (and by default their wives) take on the responsibility to be kind, nurturing and supportive to others. However, when it comes to taking care of self, they are not nearly as kind. This research looks at a recurrent theme throughout the interviews where all participants talked about limited support systems and poor self care strategies and the impact this has on their ministry, mental, emotional, and physical health and ultimately on their relationships with self and others. The struggle all participants encountered at some point in their ministry was physical, spiritual and psychological burn out. The overall aim of the researcher is to provide a voice for the Priest and the Presbytera painting a clearer picture of these roles and facilitating an awareness of struggles and dilemmas faced in their ministry. It is hoped these identified gaps in self care strategies and support systems will provide solid foundations for building a culturally sensitive, empathetic and effective support system framework, incorporating the spiritual and psychological well-being of the Priest and Presbytera, a ‘safety net’. A supplementary aim is to inform and guide ministry practice frameworks for clergy, spouses, the church hierarchy and religious organisations on a local and global platform incorporating some sort of self-care system.

Keywords: care for the carer, mental health, Priest, Presbytera, religion, support system

Procedia PDF Downloads 392