Search results for: fault detection and identification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6281

Search results for: fault detection and identification

11 General Evaluation of a Three-Year Holistic Physical Activity Interventions Program in Qatar Campuses: Step into Health (SIH) in Campuses 2013- 2016

Authors: Daniela Salih Khidir, Mohamed G. Al Kuwari, Mercia V. Walt, Izzeldin J. Ibrahim

Abstract:

Background: University-based physical activity interventions aim to establish durable social patterns during the transition to adulthood. This study is a comprehensive evaluation of a 3-year intervention-based program to increase the culture of physical activity (PA) routine in Qatar campuses community, using a holistic approach. Methodology: General assessment methods: formative evaluation-SIH Campuses logic model design, stakeholders’ identification; process evaluation-members’ step counts analyze and qualitative Appreciative Inquiry session (4-D model); daily steps categorized as: ≤5,000, inactive; 5,000-7,499 low active; ≥7,500, physically active; outcome evaluation - records 3 years interventions. Holistic PA interventions methods: walking interventions - pedometers distributions and walking competitions for students and staff; educational interventions - in campuses implementation of bilingual educational materials, lectures, video related to PA in prevention of non-communicable diseases (NCD); articles published online; monthly emails and sms notifications for pedometer use; mass media campaign - radio advertising, yearly pre/post press releases; community stakeholders interventions-biyearly planning/reporting/achievements rewarding/ qualitative meetings; continuous follow-up communication, biweekly steps reports. Findings: Results formative evaluation - SIH in Campuses logic model identified the need of PA awareness and education within universities, resources, activities, health benefits, program continuity. Results process evaluation: walking interventions: Phase 1: 5 universities recruited, 2352 members, 3 months competition; Phase 2: 6 new universities recruited, 1328 members in addition, 4 months competition; Phase 3: 4 new universities recruited in addition, 1210 members, 6 months competition. Results phase 1 and 2: 1,299 members eligible for analyzes: 800 females (62%), 499 males (38%); 86% non-Qataris, 14% Qatari nationals, daily step count 5,681 steps, age groups 18–24 (n=841; 68%) students, 25–64; (n=458; 35.3%) staff; 38% - low active, 37% physically active and 25% inactive. The AI main themes engaging stakeholders: awareness/education - 5 points (100%); competition, multi levels of involvement in SIH, community-based program/motivation - 4 points each (80%). The AI points represent themes’ repetition within stakeholders’ discussions. Results education interventions: 2 videos implementation, 35 000 educational materials, 3 online articles, 11 walking benefits lectures, 40 emails and sms notifications. Results community stakeholders’ interventions: 6 stakeholders meetings, 3 rewarding gatherings, 1 focus meeting, 40 individual reports, 18 overall reports. Results mass media campaign: 1 radio campaign, 7 press releases, 52 campuses newsletters. Results outcome evaluation: overall 2013-2016, the study used: 1 logic model, 3 PA holistic interventions, partnerships 15 universities, registered 4890 students and staff (aged 18-64 years), engaged 30 campuses stakeholders and 14 internal stakeholders; Total registered population: 61.5% female (2999), 38.5% male (1891), 20.2% (988) Qatari nationals, 79.8% (3902) non-Qataris, 55.5% (2710) students aged 18 – 25 years, 44.5% (2180) staff aged 26 - 64 years. Overall campaign 1,558 members eligible for analyzes: daily step count 7,923; 37% - low active, 43% physically active and 20% inactive. Conclusion: The study outcomes confirm program effectiveness and engagement of young campuses community, specifically female, in PA. The authors recommend implementations of 'holistic PA intervention program approach in Qatar' aiming to impact the community at national level for PA guidelines achievement in support of NCD prevention.

Keywords: campuses, evaluation, Qatar, step-count

Procedia PDF Downloads 295
10 Settings of Conditions Leading to Reproducible and Robust Biofilm Formation in vitro in Evaluation of Drug Activity against Staphylococcal Biofilms

Authors: Adela Diepoltova, Klara Konecna, Ondrej Jandourek, Petr Nachtigal

Abstract:

A loss of control over antibiotic-resistant pathogens has become a global issue due to severe and often untreatable infections. This state is reflected in complicated treatment, health costs, and higher mortality. All these factors emphasize the urgent need for the discovery and development of new anti-infectives. One of the most common pathogens mentioned in the phenomenon of antibiotic resistance are bacteria of the genus Staphylococcus. These bacterial agents have developed several mechanisms against the effect of antibiotics. One of them is biofilm formation. In staphylococci, biofilms are associated with infections such as endocarditis, osteomyelitis, catheter-related bloodstream infections, etc. To author's best knowledge, no validated and standardized methodology evaluating candidate compound activity against staphylococcal biofilms exists. However, a variety of protocols for in vitro drug activity testing has been suggested, yet there are often fundamental differences. Based on our experience, a key methodological step that leads to credible results is to form a robust biofilm with appropriate attributes such as firm adherence to the substrate, a complex arrangement in layers, and the presence of extracellular polysaccharide matrix. At first, for the purpose of drug antibiofilm activity evaluation, the focus was put on various conditions (supplementation of cultivation media by human plasma/fetal bovine serum, shaking mode, the density of initial inoculum) that should lead to reproducible and robust in vitro staphylococcal biofilm formation in microtiter plate model. Three model staphylococcal reference strains were included in the study: Staphylococcus aureus (ATCC 29213), methicillin-resistant Staphylococcus aureus (ATCC 43300), and Staphylococcus epidermidis (ATCC 35983). The total biofilm biomass was quantified using the Christensen method with crystal violet, and results obtained from at least three independent experiments were statistically processed. Attention was also paid to the viability of the biofilm-forming staphylococcal cells and the presence of extracellular polysaccharide matrix. The conditions that led to robust biofilm biomass formation with attributes for biofilms mentioned above were then applied by introducing an alternative method analogous to the commercially available test system, the Calgary Biofilm Device. In this test system, biofilms are formed on pegs that are incorporated into the lid of the microtiter plate. This system provides several advantages (in situ detection and quantification of biofilm microbial cells that have retained their viability after drug exposure). Based on our preliminary studies, it was found that the attention to the peg surface and substrate on which the bacterial biofilms are formed should also be paid to. Therefore, further steps leading to the optimization were introduced. The surface of pegs was coated by human plasma, fetal bovine serum, and L-polylysine. Subsequently, the willingness of bacteria to adhere and form biofilm was monitored. In conclusion, suitable conditions were revealed, leading to the formation of reproducible, robust staphylococcal biofilms in vitro for the microtiter model and the system analogous to the Calgary biofilm device, as well. The robustness and typical slime texture could be detected visually. Likewise, an analysis by confocal laser scanning microscopy revealed a complex three-dimensional arrangement of biofilm forming organisms surrounded by an extracellular polysaccharide matrix.

Keywords: anti-biofilm drug activity screening, in vitro biofilm formation, microtiter plate model, the Calgary biofilm device, staphylococcal infections, substrate modification, surface coating

Procedia PDF Downloads 140
9 Results concerning the University: Industry Partnership for a Research Project Implementation (MUROS) in the Romanian Program Star

Authors: Loretta Ichim, Dan Popescu, Grigore Stamatescu

Abstract:

The paper reports the collaboration between a top university from Romania and three companies for the implementation of a research project in a multidisciplinary domain, focusing on the impact and benefits both for the education and industry. The joint activities were developed under the Space Technology and Advanced Research Program (STAR), funded by the Romanian Space Agency (ROSA) for a university-industry partnership. The context was defined by linking the European Space Agency optional programs, with the development and promotion national research, with the educational and industrial capabilities in the aeronautics, security and related areas by increasing the collaboration between academic and industrial entities as well as by realizing high-level scientific production. The project name is Multisensory Robotic System for Aerial Monitoring of Critical Infrastructure Systems (MUROS), which was carried 2013-2016. The project included the University POLITEHNICA of Bucharest (coordinator) and three companies, which manufacture and market unmanned aerial systems. The project had as main objective the development of an integrated system for combined ground wireless sensor networks and UAV monitoring in various application scenarios for critical infrastructure surveillance. This included specific activities related to fundamental and applied research, technology transfer, prototype implementation and result dissemination. The core area of the contributions laid in distributed data processing and communication mechanisms, advanced image processing and embedded system development. Special focus is given by the paper to analyzing the impact the project implementation in the educational process, directly or indirectly, through the faculty members (professors and students) involved in the research team. Three main directions are discussed: a) enabling students to carry out internships at the partner companies, b) handling advanced topics and industry requirements at the master's level, c) experiments and concept validation for doctoral thesis. The impact of the research work (as the educational component) developed by the faculty members on the increasing performances of the companies’ products is highlighted. The collaboration between university and companies was well balanced both for contributions and results. The paper also presents the outcomes of the project which reveals the efficient collaboration between high education and industry: master thesis, doctoral thesis, conference papers, journal papers, technical documentation for technology transfer, prototype, and patent. The experience can provide useful practices of blending research and education within an academia-industry cooperation framework while the lessons learned represent a starting point in debating the new role of advanced research and development performing companies in association with higher education. This partnership, promoted at UE level, has a broad impact beyond the constrained scope of a single project and can develop into long-lasting collaboration while benefiting all stakeholders: students, universities and the surrounding knowledge-based economic and industrial ecosystem. Due to the exchange of experiences between the university (UPB) and the manufacturing company (AFT Design), a new project, SIMUL, under the Bridge Grant Program (Romanian executive agency UEFISCDI) was started (2016 – 2017). This project will continue the educational research for innovation on master and doctoral studies in MUROS thematic (collaborative multi-UAV application for flood detection).

Keywords: education process, multisensory robotic system, research and innovation project, technology transfer, university-industry partnership

Procedia PDF Downloads 221
8 Advancing Dialysis Care Access And Health Information Management: A Blueprint For Nairobi Hospital

Authors: Kimberly Winnie Achieng Otieno

Abstract:

The Nairobi Hospital plays a pivotal role in healthcare provision in East and Central Africa, yet it faces challenges in providing accessible dialysis care. This paper explores strategic interventions to enhance dialysis care, improve access and streamline health information management, with an aim of fostering an integrated and patient-centered healthcare system in our region. Challenges at The Nairobi Hospital The Nairobi Hospital currently grapples with insufficient dialysis machines which results in extended turn around times. This issue stems from both staffing bottle necks and infrastructural limitations given our growing demand for renal care services. Our Paper-based record keeping system and fragmented flow of information downstream hinders the hospital’s ability to manage health data effectively. There is also a need for investment in expanding The Nairobi Hospital dialysis facilities to far reaching communities. Setting up satellite clinics that are closer to people who live in areas far from the main hospital will ensure better access to underserved areas. Community Outreach and Education Implementing education programs on kidney health within local communities is vital for early detection and prevention. Collaborating with local leaders and organizations can establish a proactive approach to renal health hence reducing the demand for acute dialysis interventions. We can amplify this effort by expanding The Nairobi Hospital’s corporate social responsibility outreach program with weekend engagement activities such as walks, awareness classes and fund drives. Enhancing Efficiency in Dialysis Care Demand for dialysis services continues to rise due to an aging Kenyan population and the increasing prevalence of chronic kidney disease (CKD). Present at this years International Nursing Conference are a diverse group of caregivers from around the world who can share with us their process optimization strategies, patient engagement techniques and resource utilization efficiencies to catapult The Nairobi Hospital to the 21st century and beyond. Plans are underway to offer ongoing education opportunities to keep staff updated on best practices and emerging technologies in addition to utilizing a patient feedback mechanisms to identify areas for improvement and enhance satisfaction. Staff empowerment and suggestion boxes address The Nairobi Hospital’s organizational challenges. Current financial constraints may limit a leapfrog in technology integration such as the acquisition of new dialysis machines and an investment in predictive analytics to forecast patient needs and optimize resource allocation. Streamlining Health Information Management Fully embracing a shift to 100% Electronic Health Records (EHRs) is a transformative step toward efficient health information management. Shared information promotes a holistic understanding of patients’ medical history, minimizing redundancies and enhancing overall care quality. To manage the transition to community-based care and EHRs effectively, a phased implementation approach is recommended. Conclusion By strategically enhancing dialysis care access and streamlining health information management, The Nairobi Hospital can strengthen its position as a leading healthcare institution in both East and Central Africa. This comprehensive approach aligns with the hospital’s commitment to providing high-quality, accessible, and patient-centered care in an evolving landscape of healthcare delivery.

Keywords: Africa, urology, diaylsis, healthcare

Procedia PDF Downloads 39
7 Interference of Polymers Addition in Wastewaters Microbial Survey: Case Study of Viral Retention in Sludges

Authors: Doriane Delafosse, Dominique Fontvieille

Abstract:

Background: Wastewater treatment plants (WWTPs) generally display significant efficacy in virus retention yet, are sometimes highly variable, partly in relation to large fluctuating loads at the head of the plant and partly because of episodic dysfunctions in some treatment processes. The problem is especially sensitive when human enteric viruses, such as human Noroviruses Genogroup I or Adenoviruses, are in concern: their release downstream WWTP, in environments often interconnected to recreational areas, may be very harmful to human communities even at low concentrations. It points out the importance of WWTP permanent monitoring from which their internal treatment processes could be adjusted. One way to adjust primary treatments is to add coagulants and flocculants to sewage ahead settling tanks to improve decantation. In this work, sludge produced by three coagulants (two organics, one mineral), four flocculants (three cationic, one anionic), and their combinations were studied for their efficacy in human enteric virus retention. Sewage samples were coming from a WWTP in the vicinity of the laboratory. All experiments were performed three times and in triplicates in laboratory pilots, using Murine Norovirus (MNV-1), a surrogate of human Norovirus, as an internal control (spiking). Viruses were quantified by (RT-)qPCR after nucleic acid extraction from both treated water and sediment. Results: Low values of sludge virus retention (from 4 to 8% of the initial sewage concentration) were observed with each cationic organic flocculant added to wastewater and no coagulant. The largest part of the virus load was detected in the treated water (48 to 90%). However, it was not counterbalancing the amount of the introduced virus (MNV-1). The results pertained to two types of cationic flocculants, branched and linear, and in the last case, to two percentages of cations. Results were quite similar to the association of a linear cationic organic coagulant and an anionic flocculant, though suggesting that differences between water and sludges would sometimes be related to virus size or virus origins (autochthonous/allochthonous). FeCl₃, as a mineral coagulant associated with an anionic flocculant, significantly increased both auto- and allochthonous virus retention in the sediments (15 to 34%). Accordingly, virus load in treated water was lower (14 to 48%) but with a total that still does not reach the amount of the introduced virus (MNV-1). It also appeared that the virus retrieval in a bare 0.1M NaCl suspension varied rather strongly according to the FeCl₃ concentration, suggesting an inhibiting effect on the molecular analysis used to detect the virus. Finally, no viruses were detected in both phases (sediment and water) with the combination branched cationic coagulant-linear anionic flocculant, which was later demonstrated as an effect, here also, of polymers on the virus detection-molecular analysis. Conclusions: The combination of FeCl₃-anionic flocculant gave its highest performance to the decantation-based virus removal process. However, large unbalanced values in spiking experiments were observed, suggesting that polymers cast additional obstacles to both elution buffer and lysis buffer on their way to reach the virus. The situation was probably even worse with autochthonous viruses already embedded into sewage's particulate matter. Polymers and FeCl₃ also appeared to interfere in some steps of molecular analyses. More attention should be paid to such impediments wherever chemical additives are considered to be used to enhance WWTP processes. Acknowledgments: This research was supported by the ABIOLAB laboratory (Montbonnot Saint-Martin, France) and by the ASPOSAN association. Field experiments were possible thanks to the Grand Chambéry WWTP authorities (Chambéry, France).

Keywords: flocculants-coagulants, polymers, enteric viruses, wastewater sedimentation treatment plant

Procedia PDF Downloads 100
6 Restoring Total Form and Function in Patients with Lower Limb Bony Defects Utilizing Patient-Specific Fused Deposition Modelling- A Neoteric Multidisciplinary Reconstructive Approach

Authors: Divya SY. Ang, Mark B. Tan, Nicholas EM. Yeo, Siti RB. Sudirman, Khong Yik Chew

Abstract:

Introduction: The importance of the amalgamation of technological and engineering advances with surgical principles of reconstruction cannot be overemphasized. With earlier detection of cancer, consequences of high-speed living and neglect, like traumatic injuries and infection, resulting in increasingly younger patients with bone defects. This may result in malformations and suboptimal function that is more noticeable and palpable in the younger, active demographic. Our team proposes a technique that encapsulates a mesh of multidisciplinary effort, tissue engineering and reconstructive principles. Methods/Materials: Our patient was a young competitive footballer in his early 30s who was diagnosed with submandibular adenoid cystic carcinoma with bony involvement. He was thus counselled for a right hemi mandibulectomy, the floor of mouth resection, right selective neck dissection, tracheostomy, and free fibular flap reconstruction of his mandible and required post-operative radiotherapy. Being young and in his prime sportsman years, he was unable to accept the morbidities associated with using his fibula to reconstruct his mandible despite it being the gold standard reconstructive option. The fibula is an ideal vascularized bone flap because it’s reliable and easily shaped with relatively minimal impact on functional outcomes. The fibula contributes to 30% of weightbearing and is the attachment for the lateral compartment muscles; it is stronger in footballers concerning lateral bending. When harvesting the fibula, the distal 6-8cm and up to 10% of the total length is preserved to maintain the ankle’s stability, thus, minimizing the impact on daily activities. There are studies that have noted gait variability post-operatively. Therefore, returning to a premorbid competitive level may be doubtful. To improve his functional outcomes, the decision was made to try and restore the fibula's form and function. Using the concept of Fused Deposition Modelling (FDM), our team comprising of Plastics, Otolaryngology, Orthopedics and Radiology, worked with Osteopore to design a 3D bioresorbable implant to regenerate the fibula defect (14.5cm). Bone marrow was harvested via reaming the contralateral hip prior to the wide resection. 30mls of his blood was obtained for extracting platelet rich plasma. These were packed into the Osteopore 3D-printed bone scaffold. This was then secured into the fibula defect with titanium plates and screws. The flexor hallucis longus and soleus were anchored along the construct and intraosseous membrane, done in a single setting. Results: He was reviewed closely as an outpatient over 10 months post operatively. He reported no discernable loss or difference in ankle function. He is satisfied and back in training and our team has video and photographs that substantiate his progress. Conclusion: FDM allows regeneration of long bone defects. However, we aimed to also restore his eversion and inversion that is imperative for footballers and hence reattached his previously dissected muscles along the length of the Osteopore implant. We believe that the reattachment of the muscle stabilizes not only the construct but allows optimum muscle tensioning when moving his ankle. This is a simple but effective technique in restoring complete function and form in a young patient whose minute muscle control is imperative to life.

Keywords: fused deposition modelling, functional reconstruction, lower limb bony defects, regenerative surgery, 3D printing, tissue engineering

Procedia PDF Downloads 56
5 Identification of the Antimicrobial Property of Double Metal Oxide/Bioactive Glass Nanocomposite Against Multi Drug Resistant Staphylococcus aureus Causing Implant Infections

Authors: M. H. Pazandeh, M. Doudi, S. Barahimi, L. Rahimzadeh Torabi

Abstract:

The use of antibiotics is essential in reducing the occurrence of adverse effects and inhibiting the emergence of antibiotic resistance in microbial populations. The necessity for a novel methodology concerning local administration of antibiotics has arisen, with particular focus on dealing with localized infections prompted by bacterial colonization of medical devices or implant materials. Bioactive glasses (BG) are extensively employed in the field of regenerative medicine, encompassing a diverse range of materials utilized for drug delivery systems. In the present investigation, various drug carriers for imipenem and tetracycline, namely single systems BG/SnO2, BG/NiO with varying proportions of metal oxide, and nanocomposite BG/SnO2/NiO, were synthesized through the sol-gel technique. The antibacterial efficacy of the synthesized samples was assessed through the utilization of the disk diffusion method with the aim of neutralizing Staphylococcus aureus as the bacterial model. The current study involved the examination of the bioactivity of two samples, namely BG10SnO2/10NiO and BG20SnO2, which were chosen based on their heightened bacterial inactivation properties. This evaluation entailed the employment of two techniques: the measurement of the pH of simulated body fluid (SBF) solution and the analysis of the sample tablets through X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) spectroscopy. The sample tablets were submerged in SBF for varying durations of 7, 14, and 28 days. The bioactivity of the composite bioactive glass sample was assessed through characterization of alterations in its surface morphology, structure, and chemical composition. This evaluation was performed using scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy, and X-ray diffraction spectroscopy. Subsequently, the sample was immersed in simulated liquids to simulate its behavior in biological environments. The specific body fat percentage (SBF) was assessed over a 28-day period. The confirmation of the formation of a hydroxyapatite surface layer serves as a distinct indicator of bioactivity. The infusion of antibiotics into the composite bioactive glass specimen was done separately, and then the release kinetics of tetracycline and imipenem were tested in simulated body fluid (SBF). Antimicrobial effectiveness against various bacterial strains have been proven in numerous instances using both melt and sol-gel techniques to create multiple bioactive glass compositions. An elevated concentration of calcium ions within a solution has been observed to cause an increase in the pH level. In aqueous suspensions, bioactive glass particles manifest a significant antimicrobial impact. The composite bioactive glass specimen exhibits a gradual and uninterrupted release, which is highly desirable for a drug delivery system over a span of 72 hours. The reduction in absorption, which signals the loss of a portion of the antibiotic during the loading process from the initial phosphate-buffered saline solution, indicates the successful bonding of the two antibiotics to the surfaces of the bioactive glass samples. The sample denoted as BG/10SnO2/10NiO exhibits a higher loading of particles compared to the sample designated as BG/20SnO2 in the context of bioactive glass. The enriched sample demonstrates a heightened bactericidal impact on the bacteria under investigation while concurrently preserving its antibacterial characteristics. Tailored bioactive glass that incorporates hydroxyapatite, with a regulated and efficient release of drugs targeting bacterial infections, holds promise as a potential framework for bone implant scaffolds following rigorous clinical evaluation, thereby establishing potential future biomedical uses. During the modification process, the introduction of metal oxides into bioactive glass resulted in improved antibacterial characteristics, particularly in the composite bioactive glass sample that displayed the highest level of efficiency.

Keywords: antibacterial, bioactive glasses, implant infections, multi drug resistant

Procedia PDF Downloads 80
4 Fabrication of Highly Stable Low-Density Self-Assembled Monolayers by Thiolyne Click Reaction

Authors: Leila Safazadeh, Brad Berron

Abstract:

Self-assembled monolayers have tremendous impact in interfacial science, due to the unique opportunity they offer to tailor surface properties. Low-density self-assembled monolayers are an emerging class of monolayers where the environment-interfacing portion of the adsorbate has a greater level of conformational freedom when compared to traditional monolayer chemistries. This greater range of motion and increased spacing between surface-bound molecules offers new opportunities in tailoring adsorption phenomena in sensing systems. In particular, we expect low-density surfaces to offer a unique opportunity to intercalate surface bound ligands into the secondary structure of protiens and other macromolecules. Additionally, as many conventional sensing surfaces are built upon gold surfaces (SPR or QCM), these surfaces must be compatible with gold substrates. Here, we present the first stable method of generating low-density self assembled monolayer surfaces on gold for the analysis of their interactions with protein targets. Our approach is based on the 2:1 addition of thiol-yne chemistry to develop new classes of y-shaped adsorbates on gold, where the environment-interfacing group is spaced laterally from neighboring chemical groups. This technique involves an initial deposition of a crystalline monolayer of 1,10 decanedithiol on the gold substrate, followed by grafting of a low-packed monolayer on through a photoinitiated thiol-yne reaction in presence of light. Orthogonality of the thiol-yne chemistry (commonly referred to as a click chemistry) allows for preparation of low-density monolayers with variety of functional groups. To date, carboxyl, amine, alcohol, and alkyl terminated monolayers have been prepared using this core technology. Results from surface characterization techniques such as FTIR, contact angle goniometry and electrochemical impedance spectroscopy confirm the proposed low chain-chain interactions of the environment interfacing groups. Reductive desorption measurements suggest a higher stability for the click-LDMs compared to traditional SAMs, along with the equivalent packing density at the substrate interface, which confirms the proposed stability of the monolayer-gold interface. In addition, contact angle measurements change in the presence of an applied potential, supporting our description of a surface structure which allows the alkyl chains to freely orient themselves in response to different environments. We are studying the differences in protein adsorption phenomena between well packed and our loosely packed surfaces, and we expect this data will be ready to present at the GRC meeting. This work aims to contribute biotechnology science in the following manner: Molecularly imprinted polymers are a promising recognition mode with several advantages over natural antibodies in the recognition of small molecules. However, because of their bulk polymer structure, they are poorly suited for the rapid diffusion desired for recognition of proteins and other macromolecules. Molecularly imprinted monolayers are an emerging class of materials where the surface is imprinted, and there is not a bulk material to impede mass transfer. Further, the short distance between the binding site and the signal transduction material improves many modes of detection. My dissertation project is to develop a new chemistry for protein-imprinted self-assembled monolayers on gold, for incorporation into SPR sensors. Our unique contribution is the spatial imprinting of not only physical cues (seen in current imprinted monolayer techniques), but to also incorporate complementary chemical cues. This is accomplished through a photo-click grafting of preassembled ligands around a protein template. This conference is important for my development as a graduate student to broaden my appreciation of the sensor development beyond surface chemistry.

Keywords: low-density self-assembled monolayers, thiol-yne click reaction, molecular imprinting

Procedia PDF Downloads 213
3 Targeting Tumour Survival and Angiogenic Migration after Radiosensitization with an Estrone Analogue in an in vitro Bone Metastasis Model

Authors: Jolene M. Helena, Annie M. Joubert, Peace Mabeta, Magdalena Coetzee, Roy Lakier, Anne E. Mercier

Abstract:

Targeting the distant tumour and its microenvironment whilst preserving bone density is important in improving the outcomes of patients with bone metastases. 2-Ethyl-3-O-sulphamoyl-estra1,3,5(10)16-tetraene (ESE-16) is an in-silico-designed 2- methoxyestradiol analogue which aimed at enhancing the parent compound’s cytotoxicity and providing a more favourable pharmacokinetic profile. In this study, the potential radiosensitization effects of ESE-16 were investigated in an in vitro bone metastasis model consisting of murine pre-osteoblastic (MC3T3-E1) and pre-osteoclastic (RAW 264.7) bone cells, metastatic prostate (DU 145) and breast (MDA-MB-231) cancer cells, as well as human umbilical vein endothelial cells (HUVECs). Cytotoxicity studies were conducted on all cell lines via spectrophotometric quantification of 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide. The experimental set-up consisted of flow cytometric analysis of cell cycle progression and apoptosis detection (Annexin V-fluorescein isothiocyanate) to determine the lowest ESE-16 and radiation doses to induce apoptosis and significantly reduce cell viability. Subsequent experiments entailed a 24-hour low-dose ESE-16-exposure followed by a single dose of radiation. Termination proceeded 2, 24 or 48 hours thereafter. The effect of the combination treatment was investigated on osteoclasts via tartrate-resistant acid phosphatase (TRAP) activity- and actin ring formation assays. Tumour cell experiments included investigation of mitotic indices via haematoxylin and eosin staining; pro-apoptotic signalling via spectrophotometric quantification of caspase 3; deoxyribonucleic acid (DNA) damage via micronuclei analysis and histone H2A.X phosphorylation (γ-H2A.X); and Western blot analyses of bone morphogenetic protein-7 and matrix metalloproteinase-9. HUVEC experiments included flow cytometric quantification of cell cycle progression and free radical production; fluorescent examination of cytoskeletal morphology; invasion and migration studies on an xCELLigence platform; and Western blot analyses of hypoxia-inducible factor 1-alpha and vascular endothelial growth factor receptor 1 and 2. Tumour cells yielded half-maximal growth inhibitory concentration (GI50) values in the nanomolar range. ESE-16 concentrations of 235 nM (DU 145) and 176 nM (MDA-MB-231) and a radiation dose of 4 Gy were found to be significant in cell cycle and apoptosis experiments. Bone and endothelial cells were exposed to the same doses as DU 145 cells. Cytotoxicity studies on bone cells reported that RAW 264.7 cells were more sensitive to the combination treatment than MC3T3-E1 cells. Mature osteoclasts were more sensitive than pre-osteoclasts with respect to TRAP activity. However, actin ring morphology was retained. The mitotic arrest was evident in tumour and endothelial cells in the mitotic index and cell cycle experiments. Increased caspase 3 activity and superoxide production indicated pro-apoptotic signalling in tumour and endothelial cells. Increased micronuclei numbers and γ-H2A.X foci indicated increased DNA damage in tumour cells. Compromised actin and tubulin morphologies and decreased invasion and migration were observed in endothelial cells. Western blot analyses revealed reduced metastatic and angiogenic signalling. ESE-16-induced radiosensitization inhibits metastatic signalling and tumour cell survival whilst preferentially preserving bone cells. This low-dose combination treatment strategy may promote the quality of life of patients with metastatic bone disease. Future studies will include 3-dimensional in-vitro and murine in-vivo models.

Keywords: angiogenesis, apoptosis, bone metastasis, cancer, cell migration, cytoskeleton, DNA damage, ESE-16, radiosensitization.

Procedia PDF Downloads 143
2 Times2D: A Time-Frequency Method for Time Series Forecasting

Authors: Reza Nematirad, Anil Pahwa, Balasubramaniam Natarajan

Abstract:

Time series data consist of successive data points collected over a period of time. Accurate prediction of future values is essential for informed decision-making in several real-world applications, including electricity load demand forecasting, lifetime estimation of industrial machinery, traffic planning, weather prediction, and the stock market. Due to their critical relevance and wide application, there has been considerable interest in time series forecasting in recent years. However, the proliferation of sensors and IoT devices, real-time monitoring systems, and high-frequency trading data introduce significant intricate temporal variations, rapid changes, noise, and non-linearities, making time series forecasting more challenging. Classical methods such as Autoregressive integrated moving average (ARIMA) and Exponential Smoothing aim to extract pre-defined temporal variations, such as trends and seasonality. While these methods are effective for capturing well-defined seasonal patterns and trends, they often struggle with more complex, non-linear patterns present in real-world time series data. In recent years, deep learning has made significant contributions to time series forecasting. Recurrent Neural Networks (RNNs) and their variants, such as Long short-term memory (LSTMs) and Gated Recurrent Units (GRUs), have been widely adopted for modeling sequential data. However, they often suffer from the locality, making it difficult to capture local trends and rapid fluctuations. Convolutional Neural Networks (CNNs), particularly Temporal Convolutional Networks (TCNs), leverage convolutional layers to capture temporal dependencies by applying convolutional filters along the temporal dimension. Despite their advantages, TCNs struggle with capturing relationships between distant time points due to the locality of one-dimensional convolution kernels. Transformers have revolutionized time series forecasting with their powerful attention mechanisms, effectively capturing long-term dependencies and relationships between distant time points. However, the attention mechanism may struggle to discern dependencies directly from scattered time points due to intricate temporal patterns. Lastly, Multi-Layer Perceptrons (MLPs) have also been employed, with models like N-BEATS and LightTS demonstrating success. Despite this, MLPs often face high volatility and computational complexity challenges in long-horizon forecasting. To address intricate temporal variations in time series data, this study introduces Times2D, a novel framework that parallelly integrates 2D spectrogram and derivative heatmap techniques. The spectrogram focuses on the frequency domain, capturing periodicity, while the derivative patterns emphasize the time domain, highlighting sharp fluctuations and turning points. This 2D transformation enables the utilization of powerful computer vision techniques to capture various intricate temporal variations. To evaluate the performance of Times2D, extensive experiments were conducted on standard time series datasets and compared with various state-of-the-art algorithms, including DLinear (2023), TimesNet (2023), Non-stationary Transformer (2022), PatchTST (2023), N-HiTS (2023), Crossformer (2023), MICN (2023), LightTS (2022), FEDformer (2022), FiLM (2022), SCINet (2022a), Autoformer (2021), and Informer (2021) under the same modeling conditions. The initial results demonstrated that Times2D achieves consistent state-of-the-art performance in both short-term and long-term forecasting tasks. Furthermore, the generality of the Times2D framework allows it to be applied to various tasks such as time series imputation, clustering, classification, and anomaly detection, offering potential benefits in any domain that involves sequential data analysis.

Keywords: derivative patterns, spectrogram, time series forecasting, times2D, 2D representation

Procedia PDF Downloads 24
1 Impacts of Transformational Leadership: Petronas Stations in Sabah, Malaysia

Authors: Lizinis Cassendra Frederick Dony, Jirom Jeremy Frederick Dony, Cyril Supain Christopher

Abstract:

The purpose of this paper is to improve the devotion to leadership through HR practices implementation at the PETRONAS stations. This emphasize the importance of personal grooming and Customer Care hospitality training for their front line working individuals and teams’ at PETRONAS stations in Sabah. Based on Thomas Edison, International Leadership Journal, theory, research, education and development practice and application to all organizational phenomena may affect or be affected by leadership. FINDINGS – PETRONAS in short called Petroliam Nasional Berhad is a Malaysian oil and gas company that was founded on August 17, 1974. Wholly owned by the Government of Malaysia, the corporation is vested with the entire oil and gas resources in Malaysia and is entrusted with the responsibility of developing and adding value to these resources. Fortune ranks PETRONAS as the 68th largest company in the world in 2012. It also ranks PETRONAS as the 12th most profitable company in the world and the most profitable in Asia. As of the end of March 2005, the PETRONAS Group comprised 103 wholly owned subsidiaries, 19 partly owned outfits and 57 associated companies. The group is engaged in a wide spectrum of petroleum activities, including upstream exploration and production of oil and gas to downstream oil refining, marketing and distribution of petroleum products, trading, gas processing and liquefaction, gas transmission pipeline network operations, marketing of liquefied natural gas; petrochemical manufacturing and marketing; shipping; automotive engineering and property investment. PETRONAS has growing their marketing channel in a competitive market. They have combined their resources to pursue common goals. PETRONAS provides opportunity to carry out Industrial Training Job Placement to the University students in Malaysia for 6-8 months. The effects of the Industrial Training have exposed them to the real working environment experience acting representing on behalf of General Manager for almost one year. Thus, the management education and reward incentives schemes have aspire the working teams transformed to gain their good leadership. Furthermore, knowledge and experiences are very important in the human capital development transformation. SPSS extends the accurate analysis PETRONAS achievement through 280 questionnaires and 81 questionnaires through excel calculation distributed to interview face to face with the customers, PETRONAS dealers and front desk staffs stations in the 17 stations in Kota Kinabalu, Sabah. Hence, this research study will improve its service quality innovation and business sustainability performance optimization. ORIGINALITY / VALUE – The impact of Transformational Leadership practices have influenced the working team’s behaviour as a Brand Ambassadors of PETRONAS. Finally, the findings correlation indicated that PETRONAS stations needs more HR resources practices to deploy more customer care retention resources in mitigating the business challenges in oil and gas industry. Therefore, as the business established at stiff competition globally (Cooper, 2006; Marques and Simon, 2006), it is crucial for the team management should be capable to minimize noises risk, financial risk and mitigating any other risks as a whole at the optimum level. CONCLUSION- As to conclude this research found that both transformational and transactional contingent reward leadership4 were positively correlated with ratings of platoon potency and ratings of leadership for the platoon leader and sergeant were moderately inter correlated. Due to this identification, we recommended that PETRONAS management should offers quality team management in PETRONAS stations in a broader variety of leadership training specialization in the operation efficiency at the front desk Customer Care hospitality. By having the reliability and validity of job experiences, it leverages diversity teamwork and cross collaboration. Other than leveraging factor, PETRONAS also will strengthen the interpersonal front liners effectiveness and enhance quality of interaction through effective communication. Finally, through numerous CSR correlation studies regression PETRONAS performance on Corporate Social Performance and several control variables.1 CSR model activities can be mis-specified if it is not controllable under R & D which evident in various feedbacks collected from the local communities and younger generation is inclined to higher financial expectation from PETRONAS. But, however, it created a huge impact on the nation building as part of its social adaptability overreaching their business stakeholders’ satisfaction in Sabah.

Keywords: human resources practices implementation (hrpi), source of competitive advantage in people’s development (socaipd), corporate social responsibility (csr), service quality at front desk stations (sqafd), impacts of petronas leadership (iopl)

Procedia PDF Downloads 331