Search results for: train positioning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1046

Search results for: train positioning

446 Large Core Silica Few-Mode Optical Fibers with Reduced Differential Mode Delay and Enhanced Mode Effective Area over 'C'-Band

Authors: Anton V. Bourdine, Vladimir A. Burdin, Oleg R. Delmukhametov

Abstract:

This work presents a fast and simple method for the design of large core silica optical fibers with differential mode delay (DMD) management. Some results are reported concerned with refractive index profile optimization for 42 µm core 16-LP-mode optical fiber for next-generation optical networks. Here special refractive index profile form provides total DMD reducing over all mode staff under desired enhanced mode effective area. Method for the simulation of 'real manufactured' few-mode optical fiber (FMF) core geometry differing from the desired optimized structure by core non-symmetrical ellipticity and refractive index profile deviation including local fluctuations is proposed. Results of the following analysis of optimized FMF with inserted geometry distortions performed by earlier on developed modification of rigorous mixed finite-element method showed strong DMD degradation that requires additional higher-order mode management. In addition, this work also presents a method for design mode division multiplexer channel precision spatial positioning scheme at FMF core end that provides one of the potentiality solutions of described DMD degradation problem concerned with 'distorted' core geometry due to features of optical fiber manufacturing techniques.

Keywords: differential mode delay, few-mode optical fibers, nonlinear Shannon limit, optical fiber non-circularity, ‘real manufactured’ optical fiber core geometry simulation, refractive index profile optimization

Procedia PDF Downloads 157
445 Thin-Film Nanocomposite Membrane with Single-Walled Carbon Nanotubes Axial Positioning in Support Layer for Desalination of Water

Authors: Ahmed A. Alghamdi

Abstract:

Single-walled carbon nanotubes (SWCNTs) are an outstanding material for applications in thermoelectric power generation, nanoelectronics, electrochemical energy storage, photovoltaics, and light emission. They are ultra-lightweight and possess electrical as well as thermal conductivity, flexibility, and mechanical strength. SWCNT is applicable in water treatment, brine desalination, removal of heavy metal ions associated with pollutants, and oil-water separation. Carbon nanotube (CNT) is believed to tackle the trade-off issue between permeability, selectivity, and fouling issues in membrane filtration applications. Studying these CNT structures, as well as their interconnection in nanotechnology, assists in finding the precise position to be placed for water desalination. Reverse osmosis (RO) has been used globally for desalination, resulting in purified water. Thin film composite (TFC) membranes were utilized in the RO process for desalination. The sheet thickness increases the salt rejection and decreases the water flux when CNT is utilized as a support layer to this membrane. Thus, through a temperature-induced phase separation technique (TIPS), axially aligned SWCNT (AASWCNT) is fabricated, and its use enhances the salt rejection and water flux at short reaction times with a modified procedure. An evaluation was conducted and analogized with prior works in the literature, which exhibited that the prepared TFC membrane showed a better outcome.

Keywords: single-walled carbon nanotubes, thin film composite, axially aligned swcnt, temperature induced phase separation technique, reverse osmosis

Procedia PDF Downloads 51
444 A Study on Employer Branding and Its Impact on Employee

Authors: Kvnkc Sharma

Abstract:

Globalization, coupled with increase in competition is compelling organizations to adopt innovative strategies and identify core competencies in order to distinguish themselves from the competition. The capability of an organization is no longer determined by their products or services alone. The intellectual assets and quality of the human resource are fast emerging as key differentiators. Corporations are now positioning themselves as ‘brands’ not solely to market their products and services, but also to lure and to retain the best talent in the business. This paper identifies leadership as the ‘key element’ in developing an organization’s brand, which has a significant influence on the employee’s eventual perception of this external brand as portrayed by the organization. External branding incorporates innovation, consumer concern, trust, quality and sustainability. The paper contends that employees are indeed an organization’s ‘brand ambassadors. Internal branding involves taking care of these ambassadors of corporate brand i.e. human resource. If employees of an organization are not exposed to the organization’s branding (an ongoing process that functionally aligns, motivates and empower employees at all levels to consistently provide a satisfying customer experience), the external brand could be jeopardized. Internal branding, on the other hand, refers to employee’s perception of the organization’s brand. The current business environment can at best, be termed as volatile. Employees with the right technical and behavioral skills remain a scarce resource and the employers need to be ready to capture the attention, interest and commitment of the best and brightest candidates. This paper attempts to review and understand the relationship between employer branding and employee retention. The paper also seeks to identify potential impact of employer branding across all the factors affecting employees.

Keywords: external branding, human resource, internal branding, leadership

Procedia PDF Downloads 247
443 BEATRICE: A Low-Cost Manipulator Arm for an Educational Planetary Rover

Authors: T. Pakulski, L. Kryza, A. Linossier

Abstract:

The BEar Articulated TeleRobotic Inspection and Clasping Extremity is a lightweight, 5 DoF robotic manipulator for the Berlin Educational Assistant Rover (BEAR). BEAR is one of the educational planetary rovers developed under the Space Rover projects at the Chair of Space Technology of the Technische Universität Berlin. The projects serve to conduct research and train engineers by developing rovers for competitions like the European Rover Challenge and the DLR SpaceBot Cup. BEATRICE is the result of a cost-driven design process to deliver a simple but capable platform for a variety of competition tasks: object grasping and manipulation, inspection, instrument wielding and more. The manipulator’s simple mechatronic design, based on a combination of servomotors and stepper motors with planetary gearboxes, also makes it a practical tool for developing embedded control systems. The platform’s initial implementation relies on tele-operated control but is fully instrumented for future autonomous functionality. This paper describes BEATRICE’s development from its preliminary link model to its structural and mechatronic design, embedded control and AI and T. In parallel, it examines the influence of budget constraints and high personnel turnover commonly associated with student teams on the manipulator’s design. Finally, it comments on the utility of robot design projects for educating future engineers.

Keywords: education, low-cost, manipulator, robotics, rover

Procedia PDF Downloads 255
442 ANOVA-Based Feature Selection and Machine Learning System for IoT Anomaly Detection

Authors: Muhammad Ali

Abstract:

Cyber-attacks and anomaly detection on the Internet of Things (IoT) infrastructure is emerging concern in the domain of data-driven intrusion. Rapidly increasing IoT risk is now making headlines around the world. denial of service, malicious control, data type probing, malicious operation, DDos, scan, spying, and wrong setup are attacks and anomalies that can affect an IoT system failure. Everyone talks about cyber security, connectivity, smart devices, and real-time data extraction. IoT devices expose a wide variety of new cyber security attack vectors in network traffic. For further than IoT development, and mainly for smart and IoT applications, there is a necessity for intelligent processing and analysis of data. So, our approach is too secure. We train several machine learning models that have been compared to accurately predicting attacks and anomalies on IoT systems, considering IoT applications, with ANOVA-based feature selection with fewer prediction models to evaluate network traffic to help prevent IoT devices. The machine learning (ML) algorithms that have been used here are KNN, SVM, NB, D.T., and R.F., with the most satisfactory test accuracy with fast detection. The evaluation of ML metrics includes precision, recall, F1 score, FPR, NPV, G.M., MCC, and AUC & ROC. The Random Forest algorithm achieved the best results with less prediction time, with an accuracy of 99.98%.

Keywords: machine learning, analysis of variance, Internet of Thing, network security, intrusion detection

Procedia PDF Downloads 125
441 Geophysical Approach in the Geological Characterization of a Dam Site: Case of the Chebabta-Dam, Meskiana, Oum El-Bouaghi

Authors: Benhammadi Hocine, Djamel Boubaya, Chaffai Hicham

Abstract:

Meskiana Area is characterized by a semi-arid climate where the water supply for irrigation and industry is not sufficient as the priority goes for domestic use. To meet the increasing population growth and development, the authorities have considered building a new water retaining structure on some major temporary water streams. For this purpose Chebabta site on Oued Meskiana was chosen as the future dam site. It is large enough to store the desired volume of water. This study comes to investigate the conditions of the site and the adequacy of the ground as a foundation for the projected dam. The conditions of the site include the geological structure and mainly the presence of discontinuities in the formation on which the dam will be built, the nature of the lithologies under the foundation and the future lake, and the presence of any hazard. This site characterization is usually carried out using different methods in order to highlight any underground buried problematic structure. In this context, the different geophysical technics remain the most used ones. Three geophysical methods were used in the case of the Chebabta dam site, namely, electric survey, seismic refraction, and tomography. The choice of the technics and the location of the scan line was made on the basis of the available geological data. In this sense, profiles have been established on both banks of Oued Meskiana. The obtained results have allowed a better characterization of the geological structure, defining the limit between the surface cover and the bedrock, which is, in other words, the limit between the weathered zone and the bedrock. Their respective thicknesses were also determined by seismic refraction and electrical resistivity sounding. However, the tomography imaging technic has succeeded in positioning a fault structure passing through the right bank of the wadi.

Keywords: dam site, fault, geophysic, investigation, Meskiana

Procedia PDF Downloads 88
440 Acceleration-Based Motion Model for Visual Simultaneous Localization and Mapping

Authors: Daohong Yang, Xiang Zhang, Lei Li, Wanting Zhou

Abstract:

Visual Simultaneous Localization and Mapping (VSLAM) is a technology that obtains information in the environment for self-positioning and mapping. It is widely used in computer vision, robotics and other fields. Many visual SLAM systems, such as OBSLAM3, employ a constant-speed motion model that provides the initial pose of the current frame to improve the speed and accuracy of feature matching. However, in actual situations, the constant velocity motion model is often difficult to be satisfied, which may lead to a large deviation between the obtained initial pose and the real value, and may lead to errors in nonlinear optimization results. Therefore, this paper proposed a motion model based on acceleration, which can be applied on most SLAM systems. In order to better describe the acceleration of the camera pose, we decoupled the pose transformation matrix, and calculated the rotation matrix and the translation vector respectively, where the rotation matrix is represented by rotation vector. We assume that, in a short period of time, the changes of rotating angular velocity and translation vector remain the same. Based on this assumption, the initial pose of the current frame is estimated. In addition, the error of constant velocity model was analyzed theoretically. Finally, we applied our proposed approach to the ORBSLAM3 system and evaluated two sets of sequences on the TUM dataset. The results showed that our proposed method had a more accurate initial pose estimation and the accuracy of ORBSLAM3 system is improved by 6.61% and 6.46% respectively on the two test sequences.

Keywords: error estimation, constant acceleration motion model, pose estimation, visual SLAM

Procedia PDF Downloads 94
439 Analysis of Cascade Control Structure in Train Dynamic Braking System

Authors: B. Moaveni, S. Morovati

Abstract:

In recent years, increasing the usage of railway transportations especially in developing countries caused more attention to control systems railway vehicles. Consequently, designing and implementing the modern control systems to improve the operating performance of trains and locomotives become one of the main concerns of researches. Dynamic braking systems is an important safety system which controls the amount of braking torque generated by traction motors, to keep the adhesion coefficient between the wheel-sets and rail road in optimum bound. Adhesion force has an important role to control the braking distance and prevent the wheels from slipping during the braking process. Cascade control structure is one of the best control methods for the wide range of industrial plants in the presence of disturbances and errors. This paper presents cascade control structure based on two forward simple controllers with two feedback loops to control the slip ratio and braking torque. In this structure, the inner loop controls the angular velocity and the outer loop control the longitudinal velocity of the locomotive that its dynamic is slower than the dynamic of angular velocity. This control structure by controlling the torque of DC traction motors, tries to track the desired velocity profile to access the predefined braking distance and to control the slip ratio. Simulation results are employed to show the effectiveness of the introduced methodology in dynamic braking system.

Keywords: cascade control, dynamic braking system, DC traction motors, slip control

Procedia PDF Downloads 365
438 Evaluation System of Spatial Potential Under Bridges in High Density Urban Areas of Chongqing Municipality and Applied Research on Suitability

Authors: Xvelian Qin

Abstract:

Urban "organic renewal" based on the development of existing resources in high-density urban areas has become the mainstream of urban development in the new era. As an important stock resource of public space in high-density urban areas, promoting its value remodeling is an effective way to alleviate the shortage of public space resources. However, due to the lack of evaluation links in the process of underpass space renewal, a large number of underpass space resources have been left idle, facing the problems of low space conversion efficiency, lack of accuracy in development decision-making, and low adaptability of functional positioning to citizens' needs. Therefore, it is of great practical significance to construct the evaluation system of under-bridge space renewal potential and explore the renewal mode. In this paper, some of the under-bridge spaces in the main urban area of Chongqing are selected as the research object. Through the questionnaire interviews with the users of the built excellent space under the bridge, three types of six levels and twenty-two potential evaluation indexes of "objective demand factor, construction feasibility factor and construction suitability factor" are selected, including six levels of land resources, infrastructure, accessibility, safety, space quality and ecological environment. The analytical hierarchy process and expert scoring method are used to determine the index weight, construct the potential evaluation system of the space under the bridge in high-density urban areas of Chongqing, and explore the direction of renewal and utilization of its suitability.

Keywords: space under bridge, potential evaluation, high density urban area, updated using

Procedia PDF Downloads 78
437 Detection of Fuel Theft and Vehicle Position Using Third Party Monitoring Software

Authors: P. Senthilraja, C. Rukumani Khandhan, M. Palaniappan, S. L. Rama, P. Sai Sushimitha, R. Madhan, J. Vinumathi, N. Vijayarangan

Abstract:

Nowadays, the logistics achieve a vast improvement in efficient delivery of goods. The technology improvement also helps to improve its development, but still the owners of transport vehicles face problems, i.e., fuel theft in vehicles by the drivers or by an unknown person. There is no proper solution to overcome the problems. This scheme is to determine the amount of fuel that has been stolen and also to determine the position of the vehicle at a particular time using the technologies like GPS, GSM, ultrasonic fuel level sensor and numeric lock system. The ultrasonic sensor uses the ultrasonic waves to calculate the height of the tank up to which the fuel is available. Based on height it is possible to calculate the amount of fuel. The Global Positioning System (GPS) is a satellite-based navigation system. The scientific community uses GPS for its precision timing capability and position information. The GSM provides the periodic information about the fuel level. A numeric lock system has been provided for fuel tank opening lever. A password is provided to access the fuel tank lever and this is authenticated only by the driver and the owner. Once the fuel tank is opened an alert is sent to owner through a SMS including the timing details. Third party monitoring software is a user interface that updates the information automatically into the database which helps to retrieve the data as and when required. Third party monitoring software provides vehicle’s information to the owner and also shows the status of the vehicle. The techniques that are to be proposed will provide an efficient output. This project helps to overcome the theft and hence to put forth fuel economy.

Keywords: fuel theft, third party monitoring software, bioinformatics, biomedicine

Procedia PDF Downloads 391
436 Draw Me Close: Queering Virtual Reality through (Re)Performances of Memory

Authors: Camille Intson

Abstract:

This paper endeavors to explore the opportunities, challenges, and ethics of reconstructing and re-enacting archives of memory through virtual reality (VR) performance, using Jordan Tannahill’s Draw Me Close as an exemplary case study. Draw Me Close is a 1:1 virtual reality (VR) performance in which the artist’s childhood memories, experiences, and interactions with his mother are reconstructed in the wake of her passing. Solo audience members are positioned as Jordan (the subject and character) and taken through a series of narratives, (virtual) spaces, and interactions with his “mother,” played by a live actor. Piece by piece, audiences are brought into the world of the “shifting” archive, inhabiting Jordan’s reconstructed virtual world from his early explorations of queer sexuality through to his mother’s cancer diagnosis and passing. This paper will explore how the world of Draw Me Close represents a “touching” and/or “queering” of time within its archive, blurring and transgressing the boundaries between the animate and the inanimate, life and death. On a philosophical level, considering foundational queer performance scholarship and archival theory, it will also examine how performance’s ephemerality rewards its artists with the dual advantages of visibility and protection, allowing for an ethical exploration of traumatic memory and loss within a disappearing medium. Finally, this provocation will use Draw Me Close as a point of departure from which to outline future possibilities for performance and emerging technologies’ engagements with archival theory and practice. By positioning virtual reality (VR) as an archive-constructing medium, it aims to move beyond the question of how we can take performances seriously as archives towards how personal archive construction is itself a performative act.

Keywords: intermedial theatre, new media arts, queer performance, virtual reality

Procedia PDF Downloads 87
435 A Study on Employer Branding and Its Impacts on Employee’s

Authors: KVNKC Sharma, Soujanya Pasumarthi

Abstract:

Globalization, coupled with increase in competition is compelling organizations to adopt innovative strategies and identify core competencies in order to distinguish themselves from the competition. The capability of an organization is no longer determined by their products or services alone. The intellectual assets and quality of the human resource are fast emerging as key differentiators. Corporations are now positioning themselves as ‘brands’ not solely to market their products and services, but also to lure and to retain the best talent in the business. This paper identifies leadership as the ‘key element’ in developing an organization’s brand, which has a significant influence on the employee’s eventual perception of this external brand as portrayed by the organization. External branding incorporates innovation, consumer concern, trust, quality and sustainability. The paper contends that employees are indeed an organization’s ‘brand ambassadors. Internal branding involves taking care of these ambassadors of corporate brand i.e. human resource. If employees of an organization are not exposed to the organization’s branding (an ongoing process that functionally aligns, motivates and empower employees at all levels to consistently provide a satisfying customer experience), the external brand could be jeopardized. Internal branding, on the other hand, refers to employee’s perception of the organization’s brand. The current business environment can at best, be termed as volatile. Employees with the right technical and behavioral skills remain a scarce resource and the employers need to be ready to capture the attention, interest and commitment of the best and brightest candidates. This paper attempts to review and understand the relationship between employer branding and employee retention. The paper also seeks to identify potential impact of employer branding across all the factors affecting employees.

Keywords: alignment, external branding, internal branding, leadership

Procedia PDF Downloads 303
434 Understanding Cognitive Fatigue From FMRI Scans With Self-supervised Learning

Authors: Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki Zadeh, Fillia Makedon, Glenn Wylie

Abstract:

Functional magnetic resonance imaging (fMRI) is a neuroimaging technique that records neural activations in the brain by capturing the blood oxygen level in different regions based on the task performed by a subject. Given fMRI data, the problem of predicting the state of cognitive fatigue in a person has not been investigated to its full extent. This paper proposes tackling this issue as a multi-class classification problem by dividing the state of cognitive fatigue into six different levels, ranging from no-fatigue to extreme fatigue conditions. We built a spatio-temporal model that uses convolutional neural networks (CNN) for spatial feature extraction and a long short-term memory (LSTM) network for temporal modeling of 4D fMRI scans. We also applied a self-supervised method called MoCo (Momentum Contrast) to pre-train our model on a public dataset BOLD5000 and fine-tuned it on our labeled dataset to predict cognitive fatigue. Our novel dataset contains fMRI scans from Traumatic Brain Injury (TBI) patients and healthy controls (HCs) while performing a series of N-back cognitive tasks. This method establishes a state-of-the-art technique to analyze cognitive fatigue from fMRI data and beats previous approaches to solve this problem.

Keywords: fMRI, brain imaging, deep learning, self-supervised learning, contrastive learning, cognitive fatigue

Procedia PDF Downloads 189
433 Estimation Atmospheric parameters for Weather Study and Forecast over Equatorial Regions Using Ground-Based Global Position System

Authors: Asmamaw Yehun, Tsegaye Kassa, Addisu Hunegnaw, Martin Vermeer

Abstract:

There are various models to estimate the neutral atmospheric parameter values, such as in-suite and reanalysis datasets from numerical models. Accurate estimated values of the atmospheric parameters are useful for weather forecasting and, climate modeling and monitoring of climate change. Recently, Global Navigation Satellite System (GNSS) measurements have been applied for atmospheric sounding due to its robust data quality and wide horizontal and vertical coverage. The Global Positioning System (GPS) solutions that includes tropospheric parameters constitute a reliable set of data to be assimilated into climate models. The objective of this paper is, to estimate the neutral atmospheric parameters such as Wet Zenith Delay (WZD), Precipitable Water Vapour (PWV) and Total Zenith Delay (TZD) using six selected GPS stations in the equatorial regions, more precisely, the Ethiopian GPS stations from 2012 to 2015 observational data. Based on historic estimated GPS-derived values of PWV, we forecasted the PWV from 2015 to 2030. During data processing and analysis, we applied GAMIT-GLOBK software packages to estimate the atmospheric parameters. In the result, we found that the annual averaged minimum values of PWV are 9.72 mm for IISC and maximum 50.37 mm for BJCO stations. The annual averaged minimum values of WZD are 6 cm for IISC and maximum 31 cm for BDMT stations. In the long series of observations (from 2012 to 2015), we also found that there is a trend and cyclic patterns of WZD, PWV and TZD for all stations.

Keywords: atmosphere, GNSS, neutral atmosphere, precipitable water vapour

Procedia PDF Downloads 61
432 A Review of the Potential Impact of Employer Branding on Employee

Authors: K. V. N. K. C. Sharma

Abstract:

Globalization, coupled with increase in competition is compelling organizations to adopt innovative strategies and identify core competencies in order to distinguish themselves from the competition. The capability of an organization is no longer determined by their products or services alone. The intellectual assets and quality of the human resource are fast emerging as key differentiators. Corporations are now positioning themselves as ‘brands’ not solely to market their products and services, but also to lure and to retain the best talent in the business. This paper identifies leadership as the ‘key element’ in developing an organization’s brand, which has a significant influence on the employee’s eventual perception of this external brand as portrayed by the organization. External branding incorporates innovation, consumer concern, trust, quality and sustainability. The paper contends that employees are indeed an organization’s ‘brand ambassadors. Internal branding involves taking care of these ambassadors of corporate brand i.e. human resource. If employees of an organization are not exposed to the organization’s branding (an ongoing process that functionally aligns, motivates and empower employees at all levels to consistently provide a satisfying customer experience), the external brand could be jeopardized. Internal branding, on the other hand, refers to employee’s perception of the organization’s brand. The current business environment can at best, be termed as volatile. Employees with the right technical and behavioral skills remain a scarce resource and the employers need to be ready to capture the attention, interest and commitment of the best and brightest candidates. This paper attempts to review and understand the relationship between employer branding and employee retention. The paper also seeks to identify potential impact of employer branding across all the factors affecting employees.

Keywords: external branding, organisation personnel, internal branding, leadership

Procedia PDF Downloads 239
431 Develop a Conceptual Data Model of Geotechnical Risk Assessment in Underground Coal Mining Using a Cloud-Based Machine Learning Platform

Authors: Reza Mohammadzadeh

Abstract:

The major challenges in geotechnical engineering in underground spaces arise from uncertainties and different probabilities. The collection, collation, and collaboration of existing data to incorporate them in analysis and design for given prospect evaluation would be a reliable, practical problem solving method under uncertainty. Machine learning (ML) is a subfield of artificial intelligence in statistical science which applies different techniques (e.g., Regression, neural networks, support vector machines, decision trees, random forests, genetic programming, etc.) on data to automatically learn and improve from them without being explicitly programmed and make decisions and predictions. In this paper, a conceptual database schema of geotechnical risks in underground coal mining based on a cloud system architecture has been designed. A new approach of risk assessment using a three-dimensional risk matrix supported by the level of knowledge (LoK) has been proposed in this model. Subsequently, the model workflow methodology stages have been described. In order to train data and LoK models deployment, an ML platform has been implemented. IBM Watson Studio, as a leading data science tool and data-driven cloud integration ML platform, is employed in this study. As a Use case, a data set of geotechnical hazards and risk assessment in underground coal mining were prepared to demonstrate the performance of the model, and accordingly, the results have been outlined.

Keywords: data model, geotechnical risks, machine learning, underground coal mining

Procedia PDF Downloads 274
430 Synthesising Smart City and Smart Port Concepts: A Conceptualization for Small and Medium-Sized Port City Ecosystems

Authors: Christopher Meyer, Laima Gerlitz

Abstract:

European Ports are about to take an important step towards their future economic development. Existing legislatives such as the European Green Deal are changing the perspective on ports as individual logistic institutions and demand a more holistic view on ports in their characteristic as ecosystem involving several different actors in an interdisciplinary and multilevel approach. A special role is taken by small and medium-sized ports facing the same political restriction and future goals - such as reducing environmental impacts with 2030 and 2050 as targets - while suffering from low financing capacity, outdated infrastructure, low innovation measures and missing political support. In contrast, they are playing a key role in regional economic development and cross-border logistics as well as facilitator for the regional hinterland. Also, in comparison to their big counterparts, small and medium-sized ports are often located within or close to city areas. This does not only bear more challenges especially when it comes to the environmental performance, but can also carry out growth potentials by putting the city as a key actor into the port ecosystem. For city development, the Smart City concept is one of the key strategies currently applied mostly on demonstration level in selected cities. Hence, the basic idea behind is par to the Smart Port concept. Thus, this paper is analysing potential synergetic effects resulting from the application of Smart City and Smart Port concepts for small and medium-sized ports' ecosystems closely located to cities with focus on innovation application, greening measurements and economic performances as well as strategic positioning of the ports in Smart City initiatives.

Keywords: port-city ecosystems, regional development, sustainability transition, innovation policy

Procedia PDF Downloads 78
429 Deep Feature Augmentation with Generative Adversarial Networks for Class Imbalance Learning in Medical Images

Authors: Rongbo Shen, Jianhua Yao, Kezhou Yan, Kuan Tian, Cheng Jiang, Ke Zhou

Abstract:

This study proposes a generative adversarial networks (GAN) framework to perform synthetic sampling in feature space, i.e., feature augmentation, to address the class imbalance problem in medical image analysis. A feature extraction network is first trained to convert images into feature space. Then the GAN framework incorporates adversarial learning to train a feature generator for the minority class through playing a minimax game with a discriminator. The feature generator then generates features for minority class from arbitrary latent distributions to balance the data between the majority class and the minority class. Additionally, a data cleaning technique, i.e., Tomek link, is employed to clean up undesirable conflicting features introduced from the feature augmentation and thus establish well-defined class clusters for the training. The experiment section evaluates the proposed method on two medical image analysis tasks, i.e., mass classification on mammogram and cancer metastasis classification on histopathological images. Experimental results suggest that the proposed method obtains superior or comparable performance over the state-of-the-art counterparts. Compared to all counterparts, our proposed method improves more than 1.5 percentage of accuracy.

Keywords: class imbalance, synthetic sampling, feature augmentation, generative adversarial networks, data cleaning

Procedia PDF Downloads 127
428 A Novel Approach of NPSO on Flexible Logistic (S-Shaped) Model for Software Reliability Prediction

Authors: Pooja Rani, G. S. Mahapatra, S. K. Pandey

Abstract:

In this paper, we propose a novel approach of Neural Network and Particle Swarm Optimization methods for software reliability prediction. We first explain how to apply compound function in neural network so that we can derive a Flexible Logistic (S-shaped) Growth Curve (FLGC) model. This model mathematically represents software failure as a random process and can be used to evaluate software development status during testing. To avoid trapping in local minima, we have applied Particle Swarm Optimization method to train proposed model using failure test data sets. We drive our proposed model using computational based intelligence modeling. Thus, proposed model becomes Neuro-Particle Swarm Optimization (NPSO) model. We do test result with different inertia weight to update particle and update velocity. We obtain result based on best inertia weight compare along with Personal based oriented PSO (pPSO) help to choose local best in network neighborhood. The applicability of proposed model is demonstrated through real time test data failure set. The results obtained from experiments show that the proposed model has a fairly accurate prediction capability in software reliability.

Keywords: software reliability, flexible logistic growth curve model, software cumulative failure prediction, neural network, particle swarm optimization

Procedia PDF Downloads 344
427 Applying Artificial Neural Networks to Predict Speed Skater Impact Concussion Risk

Authors: Yilin Liao, Hewen Li, Paula McConvey

Abstract:

Speed skaters often face a risk of concussion when they fall on the ice floor and impact crash mats during practices and competitive races. Several variables, including those related to the skater, the crash mat, and the impact position (body side/head/feet impact), are believed to influence the severity of the skater's concussion. While computer simulation modeling can be employed to analyze these accidents, the simulation process is time-consuming and does not provide rapid information for coaches and teams to assess the skater's injury risk in competitive events. This research paper promotes the exploration of the feasibility of using AI techniques for evaluating skater’s potential concussion severity, and to develop a fast concussion prediction tool using artificial neural networks to reduce the risk of treatment delays for injured skaters. The primary data is collected through virtual tests and physical experiments designed to simulate skater-mat impact. It is then analyzed to identify patterns and correlations; finally, it is used to train and fine-tune the artificial neural networks for accurate prediction. The development of the prediction tool by employing machine learning strategies contributes to the application of AI methods in sports science and has theoretical involvements for using AI techniques in predicting and preventing sports-related injuries.

Keywords: artificial neural networks, concussion, machine learning, impact, speed skater

Procedia PDF Downloads 109
426 Methodology and Credibility of Unmanned Aerial Vehicle-Based Cadastral Mapping

Authors: Ajibola Isola, Shattri Mansor, Ojogbane Sani, Olugbemi Tope

Abstract:

The cadastral map is the rationale behind city management planning and development. For years, cadastral maps have been produced by ground and photogrammetry platforms. Recent evolution in photogrammetry and remote sensing sensors ignites the use of Unmanned Aerial Vehicle systems (UAVs) for cadastral mapping. Despite the time-saving and multi-dimensional cost-effectiveness of the UAV platform, issues related to cadastral map accuracy are a hindrance to the wide applicability of UAVs' cadastral mapping. This study aims to present an approach leading to the generation and assessing the credibility of UAV cadastral mapping. Different sets of Red, Green, and Blue (RGB) photos were obtained from the Tarot 680-hexacopter UAV platform flown over the Universiti Putra Malaysia campus sports complex at an altitude range of 70 m, 100 m, and 250. Before flying the UAV, twenty-eight ground control points were evenly established in the study area with a real-time kinematic differential global positioning system. The second phase of the study utilizes an image-matching algorithm for photos alignment wherein camera calibration parameters and ten of the established ground control points were used for estimating the inner, relative, and absolute orientations of the photos. The resulting orthoimages are exported to ArcGIS software for digitization. Visual, tabular, and graphical assessments of the resulting cadastral maps showed a different level of accuracy. The results of the study show a gradual approach for generating UAV cadastral mapping and that the cadastral map acquired at 70 m altitude produced better results.

Keywords: aerial mapping, orthomosaic, cadastral map, flying altitude, image processing

Procedia PDF Downloads 81
425 Composite 'C' Springs for Anti-Seismic Building Suspension: Positioning 'Virtual Center of Pendulation above Gravity Center'

Authors: Max Sardou, Patricia Sardou

Abstract:

Now that weight saving is mandatory, to author best knowledge composite springs, that we have invented, are best choice for automotive suspensions, against steel. So, we have created a Joint Ventures called S.ARA, in order to mass produce composite coils springs. Start of Production of composite coils springs was in 2014 for AUDI. As we have demonstrated, on the road, that composite springs are not a sweet dream. The present paper describes all the benefits of ‘C’ springs and ‘S’ springs for high performance vehicles suspension, for rocket stage separation, and for satellite injection into orbit. Developing rocket stage separation, we have developed for CNES (Centre National d’Etudes Spatiales) the following concept. If we call ‘line of action’ a line going from one end of a spring to the other. Our concept is to use for instance two springs inclined. In such a way that their line of action cross together and create at this crossing point a virtual center well above the springs. This virtual center, is pulling from above the top stage and is offering a guidance, perfectly stable and straight. About buildings, our solution is to transfer this rocket technology, creating a ‘virtual center’ of pendulation positioned above the building center of gravity. This is achieved by using tilted composite springs benches oriented in such a way that their line of action converges creating the ‘virtual center’. Thanks to the ‘virtual center’ position, the building behaves as a pendulum, hanged from above. When earthquake happen then the building will oscillate around its ‘virtual center’ and will go back safely to equilibrium after the tremor. ‘C’ springs, offering anti-rust, anti-settlement, fail-safe suspension, plus virtual center solution is the must for long-lasting, perfect protection of buildings against earthquakes.

Keywords: virtual center of tilt, composite springs, fail safe springs, antiseismic suspention

Procedia PDF Downloads 244
424 PaSA: A Dataset for Patent Sentiment Analysis to Highlight Patent Paragraphs

Authors: Renukswamy Chikkamath, Vishvapalsinhji Ramsinh Parmar, Christoph Hewel, Markus Endres

Abstract:

Given a patent document, identifying distinct semantic annotations is an interesting research aspect. Text annotation helps the patent practitioners such as examiners and patent attorneys to quickly identify the key arguments of any invention, successively providing a timely marking of a patent text. In the process of manual patent analysis, to attain better readability, recognising the semantic information by marking paragraphs is in practice. This semantic annotation process is laborious and time-consuming. To alleviate such a problem, we proposed a dataset to train machine learning algorithms to automate the highlighting process. The contributions of this work are: i) we developed a multi-class dataset of size 150k samples by traversing USPTO patents over a decade, ii) articulated statistics and distributions of data using imperative exploratory data analysis, iii) baseline Machine Learning models are developed to utilize the dataset to address patent paragraph highlighting task, and iv) future path to extend this work using Deep Learning and domain-specific pre-trained language models to develop a tool to highlight is provided. This work assists patent practitioners in highlighting semantic information automatically and aids in creating a sustainable and efficient patent analysis using the aptitude of machine learning.

Keywords: machine learning, patents, patent sentiment analysis, patent information retrieval

Procedia PDF Downloads 90
423 Study on the Evaluation and Utilization of Space Renewal Potential under Bridge in Chongqing

Authors: Qin Xvelian

Abstract:

organic renewal" based on the development of existing resources in high-density urban areas has become the mainstream of urban development in the new era. As an important stock resource of public space in high-density urban areas, promoting its value remodeling is an effective way to alleviate the shortage of public space resources. However, due to the lack of evaluation links in the process of underpass space renewal, a large number of underpass space resources have been left idle, facing the problems of low space conversion efficiency, lack of accuracy in development decision-making, and low adaptability of functional positioning to citizens' needs. Therefore, it is of great practical significance to construct the evaluation system of under-bridge space renewal potential and explore the renewal mode. In this paper, some of the under-bridge spaces in the main urban area of Chongqing are selected as the research object. Through the questionnaire interviews with the users of the built excellent space under the bridge, three types of six levels and twenty-two potential evaluation indexes of "objective demand factor, construction feasibility factor and construction suitability factor" are selected, including six levels of land resources, infrastructure, accessibility, safety, space quality and ecological environment. The analytical hierarchy process and expert scoring method are used to determine the index weight, construct the potential evaluation system of the space under the bridge in high-density urban areas of Chongqing, and explore the direction of renewal and utilization of its suitability. To provide feasible theoretical basis and scientific decision support for the use of under bridge space in the future.

Keywords: high density urban area, potential evaluation, space under bridge, updated using

Procedia PDF Downloads 67
422 Positioning Organisational Culture in Knowledge Management Research

Authors: Said Al Saifi

Abstract:

This paper proposes a conceptual model for understanding the impact of organisational culture on knowledge management processes and their link with organisational performance. It is suggested that organisational culture should be assessed as a multi-level construct comprising artifacts, espoused beliefs and values, and underlying assumptions. A holistic view of organisational culture and knowledge management processes, and their link with organisational performance, is presented. A comprehensive review of previous literature was undertaken in the development of the conceptual model. Taken together, the literature and the proposed model reveal possible relationships between organisational culture, knowledge management processes, and organisational performance. Potential implications of organisational culture levels for the creation, sharing, and application of knowledge are elaborated. In addition, the paper offers possible new insight into the impact of organisational culture on various knowledge management processes and their link with organisational performance. A number of possible relationships between organisational culture factors, knowledge management processes, and their link with organisational performance were employed to examine such relationships. The research model highlights the multi-level components of organisational culture. These are: the artifacts, the espoused beliefs and values, and the underlying assumptions. Through a conceptualisation of the relationships between organisational culture, knowledge management processes, and organisational performance, the study provides practical guidance for practitioners during the implementation of knowledge management processes. The focus of previous research on knowledge management has been on understanding organisational culture from the limited perspective of promoting knowledge creation and sharing. This paper proposes a more comprehensive approach to understanding organisational culture in that it draws on artifacts, espoused beliefs and values, and underlying assumptions, and reveals their impact on the creation, sharing, and application of knowledge which can affect overall organisational performance.

Keywords: knowledge application, knowledge creation, knowledge management, knowledge sharing, organisational culture, organisational performance

Procedia PDF Downloads 576
421 Linking Theory to Practice: An Analysis of Papers Submitted by Participants in a Teacher Mentoring Course

Authors: Varda Gil, Ella Shoval, Tussia Mira

Abstract:

Teacher mentoring is a complex practical profession whose unique characteristic is the teacher-mentors' commitment to helping teachers link theory with teaching practice in the process of decision-making and in their reflections on teaching. The aim of this research is to examine the way practicing teacher-mentors participating in a teacher mentoring course made the connection between theory and practice. The researchers analyzed 20 final papers submitted by participants in a course to train teacher mentors. The participants were all veteran high-school teachers. The course comprised 112 in-class hours in addition to mentoring novices in the field. The course covered the following topics: The teacher-mentors' perception of their role; formative and summative evaluation of the novices; tutoring strategies and tools; types of learners; and ways of communicating and dealing with novice teachers' resistance to counseling. The course participants were required to write a 4-5 page reflective summary of their field mentoring practice. In addition, they were required to link theories explicitly learned in the course to their practice in the field. A qualitative analysis of the papers led to the creation of the taxonomy of the link between theory and practice relating to four topics: The kinds of links made between theory and practice, the quality of these links, the links made between private teaching theories and official teaching theory, and the qualities of these links. This taxonomy may prove to be a useful tool in the teacher-mentor training processes.

Keywords: taxonomy, teacher-mentors, theory, practice, teacher-mentor training

Procedia PDF Downloads 354
420 General Architecture for Automation of Machine Learning Practices

Authors: U. Borasi, Amit Kr. Jain, Rakesh, Piyush Jain

Abstract:

Data collection, data preparation, model training, model evaluation, and deployment are all processes in a typical machine learning workflow. Training data needs to be gathered and organised. This often entails collecting a sizable dataset and cleaning it to remove or correct any inaccurate or missing information. Preparing the data for use in the machine learning model requires pre-processing it after it has been acquired. This often entails actions like scaling or normalising the data, handling outliers, selecting appropriate features, reducing dimensionality, etc. This pre-processed data is then used to train a model on some machine learning algorithm. After the model has been trained, it needs to be assessed by determining metrics like accuracy, precision, and recall, utilising a test dataset. Every time a new model is built, both data pre-processing and model training—two crucial processes in the Machine learning (ML) workflow—must be carried out. Thus, there are various Machine Learning algorithms that can be employed for every single approach to data pre-processing, generating a large set of combinations to choose from. Example: for every method to handle missing values (dropping records, replacing with mean, etc.), for every scaling technique, and for every combination of features selected, a different algorithm can be used. As a result, in order to get the optimum outcomes, these tasks are frequently repeated in different combinations. This paper suggests a simple architecture for organizing this largely produced “combination set of pre-processing steps and algorithms” into an automated workflow which simplifies the task of carrying out all possibilities.

Keywords: machine learning, automation, AUTOML, architecture, operator pool, configuration, scheduler

Procedia PDF Downloads 57
419 Experiences of Extension Officers on the Provision of Agricultural Facilities to Rural Farmers towards Improving Agricultural Practice in South Africa

Authors: Mfaniseni Wiseman Mbatha

Abstract:

The extension officers are regarded as the key role players in the provision of agricultural facilities to farmers across the world. The government of South Africa has shown a commitment to provide extensive support to farmers by the means of disseminating information and other agricultural facilities. This qualitative study on the experiences of extension officers on the provision of agricultural facilities to rural farmers towards improving agricultural practice was conducted in Msinga Local Municipality. The data was collected through the use of semi-structured interviews with extension officers who were sampled using the purposive sampling method. The qualitative data was analysed through the use of content analysis. The critical part of the findings reveals that the availability of arable land for agricultural practice, availability of agricultural schemes and availability of proper functioning community gardens were indicators of the high level of agricultural practice in the Msinga area. Therefore, the extension officers from the municipality department have shown to provide the agricultural budget to support rural farmers. Whereas, the department of agriculture provides well knowledgeable staff to train farmers about the process of farming and how they can address issues of livestock and crop diseases and also adapting to issues of climate change. The rural farmers, however, find it very difficult to learn and put into practice things that were thought by extension officers during training. There is, therefore, a need for recruitment of more extension staff and the involvement of Non-Government Organizations to increase access to extension facilities to the farmers.

Keywords: agricultural facilities, agricultural practice, extension officers, rural farmers

Procedia PDF Downloads 145
418 The Impact of Hospital Intensive Care Unit Window Design on Daylighting and Energy Performance in Desert Climate

Authors: A. Sherif, H. Sabry, A. Elzafarany, M. Gadelhak, R. Arafa, M. Aly

Abstract:

This paper addresses the design of hospital Intensive Care Unit windows for the achievement of visual comfort and energy savings. The aim was to identify the window size and shading system configurations that could fulfill daylighting adequacy, avoid glare and reduce energy consumption. The study focused on addressing the effect of utilizing different shading systems in association with a range of Window-to-Wall Ratios (WWR) in different orientations under the desert clear-sky of Cairo, Egypt. The results of this study demonstrated that solar penetration is a critical concern affecting the design of ICU windows in desert locations, as in Cairo, Egypt. Use of shading systems was found to be essential in providing acceptable daylight performance and energy saving. Careful positioning of the ICU window towards a proper orientation can dramatically improve performance. It was observed that ICU windows facing the north direction enjoyed the widest range of successful window configuration possibilities at different WWRs. ICU windows facing south enjoyed a reasonable number of configuration options as well. By contrast, the ICU windows facing the east orientation had a very limited number of options that provide acceptable performance. These require additional local shading measures at certain times due to glare incidence. Moreover, use of horizontal sun breakers and solar screens to protect the ICU windows proved to be more successful than the other alternatives in a wide range of Window to Wall Ratios. By contrast, the use of light shelves and vertical shading devices seemed questionable.

Keywords: daylighting, desert, energy efficiency, shading

Procedia PDF Downloads 431
417 Numerical Analysis of Supersonic Impinging Jets onto Resonance Tube

Authors: Shinji Sato, M. M. A. Alam, Manabu Takao

Abstract:

In recent, investigation of an unsteady flow inside the resonance tube have become a strongly motivated research field for their potential application as high-frequency actuators. By generating a shock wave inside the resonance tube, a high temperature and pressure can be achieved inside the tube, and this high temperature can also be used to ignite a jet engine. In the present research, a computational fluid dynamics (CFD) analysis was carried out to investigate the flow inside the resonance tube. The density-based solver of rhoCentralFoam in OpenFOAM was used to numerically simulate the flow. The supersonic jet that was driven by a cylindrical nozzle with a nominal exit diameter of φd = 20.3 mm impinged onto the resonance tube. The jet pressure ratio was varied between 2.6 and 7.8. The gap s between the nozzle exit and tube entrance was changed between 1.5d and 3.0d. The diameter and length of the tube were taken as D = 1.25d and L=3.0D, respectively. As a result, when a supersonic jet has impinged onto the resonance tube, a compression wave was found generating inside the tube and propagating towards the tube end wall. This wave train resulted in a rise in the end wall gas temperature and pressure. While, in an outflow phase, the gas near tube enwall was found cooling back isentropically to its initial temperature. Thus, the compression waves repeated a reciprocating motion in the tube like a piston, and a fluctuation in the end wall pressures and temperatures were observed. A significant change was found in the end wall pressures and temperatures with a change of jet flow conditions. In this study, the highest temperature was confirmed at a jet pressure ratio of 4.2 and a gap of s=2.0d

Keywords: compressible flow, OpenFOAM, oscillations, a resonance tube, shockwave

Procedia PDF Downloads 149