Search results for: shear connection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2535

Search results for: shear connection

1935 Stability Assessment of Underground Power House Encountering Shear Zone: Sunni Dam Hydroelectric Project (382 MW), India

Authors: Sanjeev Gupta, Ankit Prabhakar, K. Rajkumar Singh

Abstract:

Sunni Dam Hydroelectric Project (382 MW) is a run of river type development with an underground powerhouse, proposed to harness the hydel potential of river Satluj in Himachal Pradesh, India. The project is located in the inner lesser Himalaya between Dhauladhar Range in the south and the higher Himalaya in the north. The project comprises two large underground caverns, a Powerhouse cavern (171m long, 22.5m wide and 51.2m high) and another transformer hall cavern (175m long, 18.7m wide and 27m high) and the rock pillar between the two caverns is 50m. The highly jointed, fractured, anisotropic rock mass is a key challenge in Himalayan geology for an underground structure. The concern for the stability of rock mass increases when weak/shear zones are encountered in the underground structure. In the Sunni Dam project, 1.7m to 2m thick weak/shear zone comprising of deformed, weak material with gauge has been encountered in powerhouse cavern at 70m having dip direction 325 degree and dip amount 38 degree which also intersects transformer hall at initial reach. The rock encountered in the powerhouse area is moderate to highly jointed, pink quartz arenite belonging to the Khaira Formation, a transition zone comprising of alternate grey, pink & white quartz arenite and shale sequence and dolomite at higher reaches. The rock mass is intersected by mainly 3 joint sets excluding bedding joints and a few random joints. The rock class in powerhouse mainly varies from poor class (class IV) to lower order fair class (class III) and in some reaches, very poor rock mass has also been encountered. To study the stability of the underground structure in weak/shear rock mass, a 3D numerical model analysis has been carried out using RS3 software. Field studies have been interpreted and analysed to derive Bieniawski’s RMR, Barton’s “Q” class and Geological Strength Index (GSI). The various material parameters, in-situ characteristics have been determined based on tests conducted by Central Soil and Materials Research Station, New Delhi. The behaviour of the cavern has been studied by assessing the displacement contours, major and minor principal stresses and plastic zones for different stage excavation sequences. For optimisation of the support system, the stability of the powerhouse cavern with different powerhouse orientations has also been studied. The numerical modeling results indicate that cavern will not likely face stress governed by structural instability with the support system to be applied to the crown and side walls.

Keywords: 3D analysis, Himalayan geology, shear zone, underground power house

Procedia PDF Downloads 88
1934 Secularism and Political Inclusion: Turkey in the 2000s

Authors: Edgar Sar

Abstract:

For more than a decade, secularism’s compatibility with religion has been called into question. Particularly, secular states’ exclusionary practices were raised to prove that secularism is not necessary for democracy. Meanwhile, with the debut of Turkey’s Justice and Development Party (AKP) in 2002, Turkish state’s approach to religion has gradually changed. It is argued in that presentation that this change has led Turkey to a process of de-secularization, which refers to a considerable regress in state’s inclusionary and pluralist credentials. In this regard, this study both reflects on the relationship between secularism and democracy within the context of Turkish experience and analyses the consequences of the process of de-secularization of state in Turkey. To analyze Turkish state’s changing approach to religion and measure the de-secularization of the state, the connection between state and religion will be examined in three levels: ends, institutions, and law and policies. The presentation will indicate that Turkish state’s connection with religion in all three levels significantly weakened its secular credentials, which at the same time risked state’s commitment to neutrality, freedom of conscience and equality. In this regard, the change in Turkish state’s approach to religion throughout the 2000s, which this study refers to as the process of the de-secularization of the state, also brought about a process of de-democratization for Turkey.

Keywords: AKP, political inclusion, secularism, Turkey

Procedia PDF Downloads 347
1933 The Connection of the Nibbāna with the Six Sense Bases

Authors: Wattegama Subhavi

Abstract:

A being is the working of the six sense bases. The sense bases are the eye, the ear, the nose, the tongue, the body and the mind. Buddhism describes what these sense bases are and how they work. These sense bases can be related to many of the philosophical and psychological teachings of the Buddha. One of the most important teachings of the Buddha is the Four Noble Truths. Buddhism explains that one who needs to attain Nibbāna must understand and realize these Four Noble Truths. These noble truths have a direct connection with the sense bases. The ultimate goal of Buddhism is Nibbāna. But there is no place or a special world called the “Nibbāna”. This paper describes that the noble truths can be identified within one’s own sense bases. The noble truth of suffering occurs within the functioning of the sense bases and the cause of suffering, “craving” operates inside the senses bases and the cessation of suffering, or Nibbāna is also experienced in the Sense Bases. Relevant material will be drawn for this paper directly from the Pāli canonical sources. The major finding is that the first three noble truths can be experienced through the six sense bases. The conclusion derived from the study is that the sense bases have direct relevance to Nibbāna, which is not to be conceived as another place or another dimension, but phenomena that can be experienced through one’s own sense bases, and that the other noble truths are also to be experienced in relation to one’s own sense bases.

Keywords: Buddhism, Four Noble Truths, sense bases, Nibbāna

Procedia PDF Downloads 181
1932 Noticing Nature: Benefits for Connectedness to Nature and Wellbeing

Authors: Dawn Watling, Lorraine Lecourtois, Adnan Levent, Ryan Jeffries, Aysha Bellamy

Abstract:

Mental health diagnoses are on the rise for adolescents worldwide, with many being unable to access support and increasing use of social prescribing time in nature. There is an increasing need to better understand the preventive benefits of spending time in nature. In this paper, research findings from 599 seven to 12-year-olds completed two sets of questionnaires (before the visit and after a walk in nature). Participants spent time in one of three different biodiverse habitats. Findings explore predictors (including age, sex, and mental health) of increases in connection to nature and well-being. Secondly, research findings from 313 eighteen to 87-year-olds who completed questionnaires and had their heart rate monitored, followed by a self-guided walk, will be discussed. Findings explore predictors (including age, sex, connectedness to nature, well-being, and heart rate as a proxy measure of stress) of increases in mood and feelings of restoration. The discussion will focus on the converging evidence for taking time to notice nature and the role of different environments in enhancing connection to nature, well-being, and positive mental health.

Keywords: nature, connectedness to nature, social prescribing, wellbeing

Procedia PDF Downloads 31
1931 Determination of Mechanical Properties of Adhesives via Digital Image Correlation (DIC) Method

Authors: Murat Demir Aydin, Elanur Celebi

Abstract:

Adhesively bonded joints are used as an alternative to traditional joining methods due to the important advantages they provide. The most important consideration in the use of adhesively bonded joints is that these joints have appropriate requirements for their use in terms of safety. In order to ensure control of this condition, damage analysis of the adhesively bonded joints should be performed by determining the mechanical properties of the adhesives. When the literature is investigated; it is generally seen that the mechanical properties of adhesives are determined by traditional measurement methods. In this study, to determine the mechanical properties of adhesives, the Digital Image Correlation (DIC) method, which can be an alternative to traditional measurement methods, has been used. The DIC method is a new optical measurement method which is used to determine the parameters of displacement and strain in an appropriate and correct way. In this study, tensile tests of Thick Adherent Shear Test (TAST) samples formed using DP410 liquid structural adhesive and steel materials and bulk tensile specimens formed using and DP410 liquid structural adhesive was performed. The displacement and strain values of the samples were determined by DIC method and the shear stress-strain curves of the adhesive for TAST specimens and the tensile strain curves of the bulk adhesive specimens were obtained. Various methods such as numerical methods are required as conventional measurement methods (strain gauge, mechanic extensometer, etc.) are not sufficient in determining the strain and displacement values of the very thin adhesive layer such as TAST samples. As a result, the DIC method removes these requirements and easily achieves displacement measurements with sufficient accuracy.

Keywords: structural adhesive, adhesively bonded joints, digital image correlation, thick adhered shear test (TAST)

Procedia PDF Downloads 321
1930 A Comprehensive Comparative Study on Seasonal Variation of Parameters Involved in Site Characterization and Site Response Analysis by Using Microtremor Data

Authors: Yehya Rasool, Mohit Agrawal

Abstract:

The site characterization and site response analysis are the crucial steps for reliable seismic microzonation of an area. So, the basic parameters involved in these fundamental steps are required to be chosen properly in order to efficiently characterize the vulnerable sites of the study region. In this study, efforts are made to delineate the variations in the physical parameter of the soil for the summer and monsoon seasons of the year (2021) by using Horizontal-to-Vertical Spectral Ratios (HVSRs) recorded at five sites of the Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India. The data recording at each site was done in such a way that less amount of anthropogenic noise was recorded at each site. The analysis has been done for five seismic parameters like predominant frequency, H/V ratio, the phase velocity of Rayleigh waves, shear wave velocity (Vs), compressional wave velocity (Vp), and Poisson’s ratio for both the seasons of the year. From the results, it is observed that these parameters majorly vary drastically for the upper layers of soil, which in turn may affect the amplification ratios and probability of exceedance obtained from seismic hazard studies. The HVSR peak comes out to be higher in monsoon, with a shift in predominant frequency as compared to the summer season of the year 2021. Also, the drastic reduction in shear wave velocity (up to ~10 m) of approximately 7%-15% is also perceived during the monsoon period with a slight decrease in compressional wave velocity. Generally, the increase in the Poisson ratios is found to have higher values during monsoon in comparison to the summer period. Our study may be very beneficial to various agricultural and geotechnical engineering projects.

Keywords: HVSR, shear wave velocity profile, Poisson ratio, microtremor data

Procedia PDF Downloads 90
1929 Sediment Patterns from Fluid-Bed Interactions: A Direct Numerical Simulations Study on Fluvial Turbulent Flows

Authors: Nadim Zgheib, Sivaramakrishnan Balachandar

Abstract:

We present results on the initial formation of ripples from an initially flattened erodible bed. We use direct numerical simulations (DNS) of turbulent open channel flow over a fixed sinusoidal bed coupled with hydrodynamic stability analysis. We use the direct forcing immersed boundary method to account for the presence of the sediment bed. The resolved flow provides the bed shear stress and consequently the sediment transport rate, which is needed in the stability analysis of the Exner equation. The approach is different from traditional linear stability analysis in the sense that the phase lag between the bed topology, and the sediment flux is obtained from the DNS. We ran 11 simulations at a fixed shear Reynolds number of 180, but for different sediment bed wavelengths. The analysis allows us to sweep a large range of physical and modelling parameters to predict their effects on linear growth. The Froude number appears to be the critical controlling parameter in the early linear development of ripples, in contrast with the dominant role of particle Reynolds number during the equilibrium stage.

Keywords: direct numerical simulation, immersed boundary method, sediment-bed interactions, turbulent multiphase flow, linear stability analysis

Procedia PDF Downloads 186
1928 A Frictional-Collisional Closure Model for the Saturated Granular Flow: Experimental Evidence and Two Phase Modelling

Authors: Yunhui Sun, Qingquan Liu, Xiaoliang Wang

Abstract:

Dense granular flows widely exist in geological flows such as debris flow, landslide, or sheet flow, where both the interparticle and solid-liquid interactions are important to modify the flow. So, a two-phase approach with both phases correctly modelled is important for a better investigation of the saturated granular flows. However, a proper closure model covering a wide range of flowing states for the solid phase is still lacking. This study first employs a chute flow experiment based on the refractive index matching method, which makes it possible to obtain internal flow information such as velocity, shear rate, granular fluctuation, and volume fraction. The granular stress is obtained based on a steady assumption. The kinetic theory is found to describe the stress dependence on the flow state well. More importantly, the granular rheology is found to be frictionally dominated under weak shear and collisionally dominated under strong shear. The results presented thus provide direct experimental evidence on a possible frictional-collisional closure model for the granular phase. The data indicates that both frictional stresses exist over a wide range of the volume fraction, though traditional theory believes it vanishes below a critical volume fraction. Based on the findings, a two-phase model is used to simulate the chute flow. Both phases are modelled as continuum media, and the inter-phase interactions, such as drag force and pressure gradient force, are considered. The frictional-collisional model is used for the closure of the solid phase stress. The profiles of the kinematic properties agree well with the experiments. This model is further used to simulate immersed granular collapse, which is unsteady in nature, to study the applicability of this model, which is derived from steady flow.

Keywords: closure model, collision, friction, granular flow, two-phase model

Procedia PDF Downloads 59
1927 Characteristics of the Wake behind a Heated Cylinder in Relatively High Reynolds Number

Authors: Morteza Khashehchi, Kamel Hooman

Abstract:

Thermal effects on the dynamics and stability of the flow past a circular cylinder operating in the mixed convection regime is studied experimentally for Reynolds number (ReD) between 1000 and 4000, and different cylinder wall temperatures (Tw) between 25 and 75°C by means of Particle Image Velocimetry (PIV). The experiments were conducted in a horizontal wind tunnel with the heated cylinder placed horizontally. With such assumptions, the direction of the thermally induced buoyancy force acting on the fluid surrounding the heated cylinder would be perpendicular to the flow direction. In each experiment, to acquire 3000 PIV image pairs, the temperature and Reynolds number of the approach flow were held constant. By adjusting different temperatures in different Reynolds numbers, the corresponding Richardson number (RiD = Gr/Re^2) was varied between 0:0 (unheated) and 10, resulting in a change in the heat transfer process from forced convection to mixed convection. With increasing temperature of the wall cylinder, significant modifications of the wake flow pattern and wake vortex shedding process were clearly revealed. For cylinder at low wall temperature, the size of the wake and the vortex shedding process are found to be quite similar to those of an unheated cylinder. With high wall temperature, however, the high temperature gradient in the wake shear layer creates a type of vorticity with opposite sign to that of the shear layer vorticity. This temperature gradient vorticity weakens the strength of the shear layer vorticity, causing delay in reaching the recreation point. In addition to the wake characteristics, the shedding frequency for the heated cylinder is determined for all aforementioned cases. It is found that, as the cylinder wall is heated, the organization of the vortex shedding is altered and the relative position of the first detached vortices with respect to the second one is changed. This movement of the first detached vortex toward the second one increases the frequency of the shedding process. It is also found that the wake closure length decreases with increasing the Richardson number.

Keywords: heated cylinder, PIV, wake, Reynolds number

Procedia PDF Downloads 389
1926 New Highly-Scalable Carbon Nanotube-Reinforced Glasses and Ceramics

Authors: Konstantinos G. Dassios, Guillaume Bonnefont, Gilbert Fantozzi, Theodore E. Matikas, Costas Galiotis

Abstract:

We report herein the development and preliminary mechanical characterization of fully-dense multi-wall carbon nanotube (MWCNT)-reinforced ceramics and glasses based on a completely new methodology termed High Shear Compaction (HSC). The tubes are introduced and bound to the matrix grains by aid of polymeric binders to form flexible green bodies which are sintered and densified by spark plasma sintering to unprecedentedly high densities of 100% of the pure-matrix value. The strategy was validated across a PyrexTM glass / MWCNT composite while no identifiable factors limit application to other types of matrices. Non-destructive evaluation, based on ultrasonics, of the dynamic mechanical properties of the materials including elastic, shear and bulk modulus as well as Poisson’s ratio showed optimum property improvement at 0.5 %wt tube loading while evidence of nanoscale-specific energy dissipative characteristics acting complementary to nanotube bridging and pull-out indicate a high potential in a wide range of reinforcing and multifunctional applications.

Keywords: ceramic matrix composites, carbon nanotubes, toughening, ultrasonics

Procedia PDF Downloads 374
1925 Non-Linear Static Analysis of Screwed Moment Connections in Cold-Formed Steel Frames

Authors: Jikhil Joseph, Satish Kumar S R.

Abstract:

Cold-formed steel frames are preferable for framed constructions due to its low seismic weights and results into low seismic forces, but on the contrary, significant lateral deflections are expected under seismic/wind loading. The various factors affecting the lateral stiffness of steel frames are the stiffness of connections, beams and columns. So, by increasing the stiffness of beam, column and making the connections rigid will enhance the lateral stiffness. The present study focused on Structural elements made of rectangular hollow sections and fastened with screwed in-plane moment connections for the building frames. The self-drilling screws can be easily drilled on either side of the connection area with the help of gusset plates. The strength of screwed connections can be made 1.2 times the connecting elements. However, achieving high stiffness in connections is also a challenging job. Hence in addition to beam and column stiffness’s the connection stiffness are also going to be a governing parameter in the lateral deflections of the frames. SAP 2000 Non-linear static analysis has been planned to study the seismic behavior of steel frames. The SAP model will be consisting of nonlinear spring model for the connection to account the semi-rigid connections and the nonlinear hinges will be assigned for beam and column sections according to FEMA 273 guidelines. The reliable spring and hinge parameters will be assigned based on an experimental and analytical database. The non-linear static analysis is mainly focused on the identification of various hinge formations and the estimation of lateral deflection and these will contribute as an inputs for the direct displacement-based Seismic design. The research output from this study are the modelling techniques and suitable design guidelines for the performance-based seismic design of cold-formed steel frames.

Keywords: buckling, cold formed steel, nonlinear static analysis, screwed connections

Procedia PDF Downloads 177
1924 An Analytical Study on Rotational Capacity of Beam-Column Joints in Unit Modular Frames

Authors: Kyung-Suk Choi, Hyung-Joon Kim

Abstract:

Modular structural systems are constructed using a method that they are assembled with prefabricated unit modular frames on-site. This provides a benefit that can significantly reduce building construction time. Their structural design is usually carried out under the assumption that the load-carrying mechanism is similar to that of a traditional steel moment-resisting system. However, both systems are different in terms of beam-column connection details which may strongly influence the lateral structural behavior. Specially, the presence of access holes in a beam-column joint of a unit modular frame could cause undesirable failure during strong earthquakes. Therefore, this study carried out finite element analyses (FEM) of unit modular frames to investigate the cyclic behavior of beam-column joints with the structural influence of access holes. Analysis results show that the unit modular frames present stable cyclic response with large deformation capacities, and their joints are classified into semi-rigid connections.

Keywords: unit modular frame, steel moment connection, nonlinear analytical model, moment-rotation relation

Procedia PDF Downloads 619
1923 The Role of Gender Ideology in the Legality of Same-Sex Marriage: A Cross-National Analysis

Authors: Amber Salamanca-Blazek

Abstract:

This paper explores the connection between gender ideology and the legality of same-sex marriage cross-nationally. The author questions what role gender ideology plays in the cultural shift concerning same-sex marriage currently underway around the world and the variations in the legal treatment of same-sex marriage at the national level. Existing literature on gender, gender ideology, the role of gender ideology in traditional and same-sex marriage, and the extent to which this connection has previously been examined is explored. Also, the author explores the relationship between gender ideology and the legality of same-sex marriage in three countries with the differing legality of same-sex marriage - The United States, where same-sex marriage was legalized in 2015, Australia, where same-sex marriage was legalized in 2017, and Iran, where the death penalty for homosexuality still exists. A comparison of gender ideology frameworks and an analysis of the political rhetoric surrounding same-sex marriage in each country are performed. It is argued that the important role of gender ideology in the legality of same-sex marriage has been greatly ignored and is in need of increased attention to assist gay rights activists in their framework. The link of gender ideology and patriarchal authority between the gay rights movement and the women’s rights movement are subsequently discussed. The author argues that because of this linkage between movements, there is a necessity for joint frameworks. Suggestions for future research are also provided.

Keywords: gender ideology, same-sex marriage, same-sex marriage legality, women's rights movement

Procedia PDF Downloads 244
1922 Study on Seismic Assessment of Earthquake-Damaged Reinforced Concrete Buildings

Authors: Fu-Pei Hsiao, Fung-Chung Tu, Chien-Kuo Chiu

Abstract:

In this work, to develop a method for detailed assesses of post-earthquake seismic performance for RC buildings in Taiwan, experimental data for several column specimens with various failure modes (flexural failure, flexural-shear failure, and shear failure) are used to derive reduction factors of seismic capacity for specified damage states. According to the damage states of RC columns and their corresponding seismic reduction factors suggested by experimental data, this work applies the detailed seismic performance assessment method to identify the seismic capacity of earthquake-damaged RC buildings. Additionally, a post-earthquake emergent assessment procedure is proposed that can provide the data needed for decision about earthquake-damaged buildings in a region with high seismic hazard. Finally, three actual earthquake-damaged school buildings in Taiwan are used as a case study to demonstrate application of the proposed assessment method.

Keywords: seismic assessment, seismic reduction factor, residual seismic ratio, post-earthquake, reinforced concrete, building

Procedia PDF Downloads 400
1921 Thermal Property of Multi-Walled-Carbon-Nanotube Reinforced Epoxy Composites

Authors: Min Ye Koo, Gyo Woo Lee

Abstract:

In this study, epoxy composite specimens reinforced with multi-walled carbon nanotube filler were fabricated using shear mixer and ultra-sonication processor. The mechanical and thermal properties of the fabricated specimens were measured and evaluated. From the electron microscope images and the results from the measurements of tensile strengths, the specimens having 0.6 wt% nanotube content show better dispersion and higher strength than those of the other specimens. The Young’s moduli of the specimens increased as the contents of the nanotube filler in the matrix were increased. The specimen having a 0.6 wt% nanotube filler content showed higher thermal conductivity than that of the other specimens. While, in the measurement of thermal expansion, specimens having 0.4 and 0.6 wt% filler contents showed a lower value of thermal expansion than that of the other specimens. On the basis of the measured and evaluated properties of the composites, we believe that the simple and time-saving fabrication process used in this study was sufficient to obtain improved properties of the specimens.

Keywords: carbon nanotube filler, epoxy composite, ultra-sonication, shear mixer, mechanical property, thermal property

Procedia PDF Downloads 370
1920 Consumer Reactions to Hospitality Social Robots Across Cultures

Authors: Lisa C. Wan

Abstract:

To address customers’ safety concerns, more and more hospitality companies are using service robots to provide contactless services. For many companies, the switch from human employees to service robots to lower the contagion risk during and after the pandemic may be permanent. The market size for hospitality service robots is estimated to reach US$3,083 million by 2030, registering a CAGR of 25.5% from 2021 to 2030. While service robots may effectively reduce interpersonal contacts and health risk, it also eliminates the social interactions desired by customers. A recent survey revealed that more than 60% of Americans feel lonely during the pandemic. People who are traveling can also feel isolated when they are at a hotel far away from home. It is therefore important for the hospitality companies to understand whether and how social robots can remedy deprived social connection not only due to a pandemic but also for a trip away from home in the post-pandemic future. This study complements extant hospitality literature regarding service robots by examining how service robots can forge social connections with customers. The service robots we are concerned with are those that can interact and communicate with humans; we broadly refer to them as social robots. We define a social robot as one that is equipped with interaction capabilities – it can either be one that directly interacts with the consumer or one through which the consumer can interact with other humans. Drawing on the theories of mind perception, we propose that service robots can foster social connectedness and increase the perception of social competence of the robot, but these effects will vary across cultures. By applying theories of mind perception and cultural dimension to the hospitality setting, this study shows that service robots that are equipped with social connection function will receive a more favorable evaluation from the consumers and enhance their intention to visit a hotel. The more favorable reaction to social robots is stronger for collectivists (i.e., Asians) than individualists (i.e., Westerners). To our knowledge, this is among the first studies to investigate the impact of culture on consumer reactions to social robots in the hospitality and tourism context. Moreover, this research extends the literature by examining whether people imbue non-human entities (i.e., telepresence social robots) with social competence. Because social robots that foster social connection with humans are still rare in hospitality and tourism, this aspect is an underexplored research area. Our study is the first to propose that, just like their human counterparts that possess relevant social skills, social robots’ interaction capabilities (e.g., telepresence robots) are used to infer social competence. More studies will be conducted to examine consumer reactions to humanoid (vs. non-humanoid) robot in the hospitality settings to generalize our research findings.

Keywords: service robots, COVID-19, social connection, cultures

Procedia PDF Downloads 103
1919 Seismic Behavior of Three-Dimensional Steel Buildings with Post-Tensioned Connections

Authors: Manuel E. Soto-López, Israel Gaxiola-Avendaño, Alfredo Reyes-Salazar, Eden Bojórquez, Sonia E. Ruiz

Abstract:

The seismic responses of steel buildings with semi-rigid post-tensioned connections (PC) are estimated and compared with those of steel buildings with typical rigid (welded) connections (RC). The comparison is made in terms of global and local response parameters. The results indicate that the seismic responses in terms of interstory shears, roof displacements, axial load and bending moments are smaller for the buildings with PC connection. The difference is larger for global than for local parameters, which in turn varies from one column location to another. The reason for this improved behavior is that the buildings with PC dissipate more hysteretic energy than those with RC. In addition, unlike the case of buildings with WC, for the PC structures the hysteretic energy is mostly dissipated at the connections, which implies that structural damage in beams and columns is not significant. According to this results, steel buildings with PC are a viable option in highseismicity areas because of their smaller response and self-centering connection capacity as well as the fact that brittle failure is avoided.

Keywords: inter-story drift, nonlinear time-history analysis, post-tensioned connections, steel buildings

Procedia PDF Downloads 499
1918 Effect of Bentonite on Shear Strength of Bushehr Calcareous Sand

Authors: Arash Poordana, Reza Ziaie Moayed

Abstract:

Calcareous sands are found most commonly in areas adjacent to crude oil and gas, and particularly around water. These types of soil have high compressibility due to high inter-granular porosity, irregularity, fragility, and especially crushing. Also, based on experience, it has been shown that the behavior of these types of soil is not similar to silica sand in loading. Since the destructive effects of cement on the environment are obvious, other alternatives such as bentonite are popular to be used. Bentonite has always been used commercially in civil engineering projects and according to its low hydraulic conductivity, it is used for landfills, cut-off walls, and nuclear wastelands. In the present study, unconfined compression tests in five ageing periods (1, 3, 7, 14, and 28 days) after mixing different percentages of bentonite (5%, 7.5% and 10%) with Bushehr calcareous sand were performed. The relative density considered for the specimens is 50%. Optimum water content was then added to each specimen accordingly (19%, 18.5%, and 17.5%). The sample preparation method was wet tamping and the specimens were compacted in five layers. It can be concluded from the results that as the bentonite content increases, the unconfined compression strength of the soil increases. Based on the obtained results, 3-day and 7-day ageing periods showed 30% and 50% increase in the shear strength of soil, respectively.

Keywords: unconfined compression test, bentonite, Bushehr, calcareous sand

Procedia PDF Downloads 129
1917 Main Control Factors of Fluid Loss in Drilling and Completion in Shunbei Oilfield by Unmanned Intervention Algorithm

Authors: Peng Zhang, Lihui Zheng, Xiangchun Wang, Xiaopan Kou

Abstract:

Quantitative research on the main control factors of lost circulation has few considerations and single data source. Using Unmanned Intervention Algorithm to find the main control factors of lost circulation adopts all measurable parameters. The degree of lost circulation is characterized by the loss rate as the objective function. Geological, engineering and fluid data are used as layers, and 27 factors such as wellhead coordinates and WOB are used as dimensions. Data classification is implemented to determine function independent variables. The mathematical equation of loss rate and 27 influencing factors is established by multiple regression method, and the undetermined coefficient method is used to solve the undetermined coefficient of the equation. Only three factors in t-test are greater than the test value 40, and the F-test value is 96.557%, indicating that the correlation of the model is good. The funnel viscosity, final shear force and drilling time were selected as the main control factors by elimination method, contribution rate method and functional method. The calculated values of the two wells used for verification differ from the actual values by -3.036m3/h and -2.374m3/h, with errors of 7.21% and 6.35%. The influence of engineering factors on the loss rate is greater than that of funnel viscosity and final shear force, and the influence of the three factors is less than that of geological factors. Quantitatively calculate the best combination of funnel viscosity, final shear force and drilling time. The minimum loss rate of lost circulation wells in Shunbei area is 10m3/h. It can be seen that man-made main control factors can only slow down the leakage, but cannot fundamentally eliminate it. This is more in line with the characteristics of karst caves and fractures in Shunbei fault solution oil and gas reservoir.

Keywords: drilling and completion, drilling fluid, lost circulation, loss rate, main controlling factors, unmanned intervention algorithm

Procedia PDF Downloads 112
1916 Turbulence Measurement Over Rough and Smooth Bed in Open Channel Flow

Authors: Kirti Singh, Kesheo Prasad

Abstract:

A 3D Acoustic Doppler velocimeter was used in the current investigation to quantify the mean and turbulence characteristics in non-uniform open-channel flows. Results are obtained from studies done in the laboratory, analysing the behavior of sand particles under turbulent open channel flow conditions flowing through rough, porous beds. Data obtained from ADV is used to calculate turbulent flow characteristics, Reynolds stresses and turbulent kinetic energy. Theoretical formulations for the distribution of Reynolds stress and the vertical velocity have been constructed using the Reynolds equation and the continuity equation of 2D open-channel flow. The measured Reynolds stress profile and the vertical velocity are comparable with the derived expressions. This study uses the Navier-Stokes equations for analysing the behavior of the vertical velocity profile in the dominant region of full-fledged turbulent flows in open channels, and it gives a new origination of the profile. For both wide and narrow open channels, this origination can estimate the time-averaged primary velocity in the turbulent boundary layer's outer region.

Keywords: turbulence, bed roughness, logarithmic law, shear stress correlations, ADV, Reynolds shear stress

Procedia PDF Downloads 107
1915 Effects of Using Gusset Plate Stiffeners on the Seismic Performance of Concentrically Braced Frame

Authors: B. Mohebi, N. Asadi, F. Kazemi

Abstract:

Inelastic deformation of the brace in Special Concentrically Braced Frame (SCBF) creates inelastic damages on gusset plate connections such as buckling at edges. In this study, to improve the seismic performance of SCBFs connections, an analytical study was undertaken. To improve the gusset plate connection, this study proposes using ‎edge’s stiffeners in both sides of gusset plate.‎ For this purpose, in order to examine edge’s stiffeners effect on gusset plate connections, two groups of modeling with and without considering edge’s stiffener and different types of braces were modeled using ABAQUS software. The results show that considering the edge’s stiffener reduces the equivalent plastic strain values at a connection region of gusset plate with beam and column, which can improve the seismic performance of gusset plate. Furthermore, considering the edge’s stiffeners significantly decreases the strain concentration at regions where gusset plates have been connected to beam and column. Moreover, considering 2tpl distance causes reduction in the plastic strain.

Keywords: special concentrically braced frame, gusset plate, edge's stiffener, seismic performance

Procedia PDF Downloads 126
1914 Algorithmic Generation of Carbon Nanochimneys

Authors: Sorin Muraru

Abstract:

Computational generation of carbon nanostructures is still a very demanding process. This work provides an alternative to manual molecular modeling through an algorithm meant to automate the design of such structures. Specifically, carbon nanochimneys are obtained through the bonding of a carbon nanotube with the smaller edge of an open carbon nanocone. The methods of connection rely on mathematical, geometrical and chemical properties. Non-hexagonal rings are used in order to perform the correct bonding of dangling bonds. Once obtained, they are useful for thermal transport, gas storage or other applications such as gas separation. The carbon nanochimneys are meant to produce a less steep connection between structures such as the carbon nanotube and graphene sheet, as in the pillared graphene, but can also provide functionality on its own. The method relies on connecting dangling bonds at the edges of the two carbon nanostructures, employing the use of two different types of auxiliary structures on a case-by-case basis. The code is implemented in Python 3.7 and generates an output file in the .pdb format containing all the system’s coordinates. Acknowledgment: This work was supported by a grant of the Executive Agency for Higher Education, Research, Development and innovation funding (UEFISCDI), project number PN-III-P1-1.1-TE-2016-24-2, contract TE 122/2018.

Keywords: carbon nanochimneys, computational, carbon nanotube, carbon nanocone, molecular modeling, carbon nanostructures

Procedia PDF Downloads 170
1913 Flexural Analysis of Symmetric Laminated Composite Timoshenko Beams under Harmonic Forces: An Analytical Solution

Authors: Mohammed Ali Hjaji, A.K. El-Senussi, Said H. Eshtewi

Abstract:

The flexural dynamic response of symmetric laminated composite beams subjected to general transverse harmonic forces is investigated. The dynamic equations of motion and associated boundary conditions based on the first order shear deformation are derived through the use of Hamilton’s principle. The influences of shear deformation, rotary inertia, Poisson’s ratio and fibre orientation are incorporated in the present formulation. The resulting governing flexural equations for symmetric composite Timoshenko beams are exactly solved and the closed form solutions for steady state flexural response are then obtained for cantilever and simply supported boundary conditions. The applicability of the analytical closed-form solution is demonstrated via several examples with various transverse harmonic loads and symmetric cross-ply and angle-ply laminates. Results based on the present solution are assessed and validated against other well established finite element solutions and exact solutions available in the literature.

Keywords: analytical solution, flexural response, harmonic forces, symmetric laminated beams, steady state response

Procedia PDF Downloads 487
1912 Packet Fragmentation Caused by Encryption and Using It as a Security Method

Authors: Said Rabah Azzam, Andrew Graham

Abstract:

Fragmentation of packets caused by encryption applied on the network layer of the IOS model in Internet Protocol version 4 (IPv4) networks as well as the possibility of using fragmentation and Access Control Lists (ACLs) as a method of restricting network access to certain hosts or areas of a network.Using default settings, fragmentation is expected to occur and each fragment to be reassembled at the other end. If this does not occur then a high number of ICMP messages should be generated back towards the source host indicating that the packet is too large and that it needs to be made smaller. This result is also expected when the MTU is changed for certain links between devices.When using ACLs and packet fragments to restrict access to hosts or network segments it is possible that ACLs cannot be set up in this way. If ACLs cannot be setup to allow only fragments then it is a limitation of the hardware’s firmware holding back this particular method. If the ACL on the restricted switch can be set up in such a way to allow only fragments then a connection that forces packets to fragment should be allowed to pass through the ACL. This should then make a network connection to the destination machine allowing data to be sent to and from the destination machine. ICMP messages from the restricted access switch and host should also be blocked from being sent back across the link which will be shown in an SSH session into the switch.

Keywords: fragmentation, encryption, security, switch

Procedia PDF Downloads 334
1911 Nonlinear Static Analysis of Laminated Composite Hollow Beams with Super-Elliptic Cross-Sections

Authors: G. Akgun, I. Algul, H. Kurtaran

Abstract:

In this paper geometrically nonlinear static behavior of laminated composite hollow super-elliptic beams is investigated using generalized differential quadrature method. Super-elliptic beam can have both oval and elliptic cross-sections by adjusting parameters in super-ellipse formulation (also known as Lamé curves). Equilibrium equations of super-elliptic beam are obtained using the virtual work principle. Geometric nonlinearity is taken into account using von-Kármán nonlinear strain-displacement relations. Spatial derivatives in strains are expressed with the generalized differential quadrature method. Transverse shear effect is considered through the first-order shear deformation theory. Static equilibrium equations are solved using Newton-Raphson method. Several composite super-elliptic beam problems are solved with the proposed method. Effects of layer orientations of composite material, boundary conditions, ovality and ellipticity on bending behavior are investigated.

Keywords: generalized differential quadrature, geometric nonlinearity, laminated composite, super-elliptic cross-section

Procedia PDF Downloads 295
1910 Physical and Rheological Properties of Asphalt Modified with Cellulose Date Palm Fibers

Authors: Howaidi M. Al-Otaibi, Abdulrahman S. Al-Suhaibani, Hamad A. Alsoliman

Abstract:

Fibers are extensively used in civil engineering applications for many years. In this study, empty fruit bunch of date palm trees were used to produce cellulose fiber that were used as additives in the asphalt binder. Two sizes (coarse and fine) of cellulose fibers were pre-blended in PG64-22 binder with various contents of 1.5%, 3%, 4.5%, 6%, and 7.5% by weight of asphalt binder. The physical and rheological properties of fiber modified asphalt binders were tested by using conventional tests such as penetration, softening point and viscosity; and SHRP test such as dynamic shear rheometer. The results indicated that the fiber modified asphalt binders were higher in softening point, viscosity, and complex shear modulus, and lower in penetration compared to pure asphalt. The fiber modified binders showed an improvement in rheological properties since it was possible to raise the control binder (pure asphalt) PG from 64 to 70 by adding 6% (by weight) of either fine or coarse fibers. Such improvement in stiffness of fiber modified binder is expected to improve pavement resistance to rutting.

Keywords: cellulose date palm fiber, fiber modified asphalt, physical properties, rheological properties

Procedia PDF Downloads 333
1909 Thermo-Mechanical Analysis of Dissimilar Al/Cu Foil Single Lap Joints Made by Composite Metal Foil Manufacturing

Authors: Javaid Butt, Habtom Mebrahtu, Hassan Shirvani

Abstract:

The paper presents a new additive manufacturing process for the production of metal and composite parts. It is termed as composite metal foil manufacturing and is a combination of laminated object manufacturing and brazing techniques. The process has been described in detail and is being used to produce dissimilar aluminum to copper foil single lap joints. A three dimensional finite element model has been developed to study the thermo-mechanical characteristics of the dissimilar Al/Cu single lap joint. The effects of thermal stress and strain have been analyzed by carrying out transient thermal analysis on the heated plates used to join the two 0.1mm thin metal foils. Tensile test has been carried out on the foils before joining and after the single Al/Cu lap joints are made, they are subjected to tensile lap-shear test to analyze the effect of heat on the foils. The analyses are designed to assess the mechanical integrity of the foils after the brazing process and understand whether or not the heat treatment has an effect on the fracture modes of the produced specimens.

Keywords: brazing, laminated object manufacturing, tensile lap-shear test, thermo-mechanical analysis

Procedia PDF Downloads 342
1908 Dynamic Analysis of Nanosize FG Rectangular Plates Based on Simple Nonlocal Quasi 3D HSDT

Authors: Sabrina Boutaleb, Fouad Bourad, Kouider Halim Benrahou, Abdelouahed Tounsi

Abstract:

In the present work, the dynamic analysis of the functionally graded rectangular nanoplates is studied. The theory of nonlocal elasticity based on the quasi 3D high shear deformation theory (quasi 3D HSDT) has been employed to determine the natural frequencies of the nanosized FG plate. In HSDT, a cubic function is employed in terms of thickness coordinates to introduce the influence of transverse shear deformation and stretching thickness. The theory of nonlocal elasticity is utilized to examine the impact of the small scale on the natural frequency of the FG rectangular nanoplate. The equations of motion are deduced by implementing Hamilton’s principle. To demonstrate the accuracy of the proposed method, the calculated results in specific cases are compared and examined with available results in the literature, and a good agreement is observed. Finally, the influence of the various parameters, such as the nonlocal coefficient, the material indexes, the aspect ratio, and the thickness-to-length ratio, on the dynamic properties of the FG nanoplates is illustrated and discussed in detail.

Keywords: nonlocal elasticity theory, FG nanoplate, free vibration, refined theory, elastic foundation

Procedia PDF Downloads 120
1907 Studies on Mechanical Behavior of Kevlar/Kenaf/Graphene Reinforced Polymer Based Hybrid Composites

Authors: H. K. Shivanand, Ranjith R. Hombal, Paraveej Shirahatti, Gujjalla Anil Babu, S. ShivaPrakash

Abstract:

When it comes to the selection of materials the knowledge of materials science plays a vital role in selection and enhancements of materials properties. In the world of material science a composite material has the significant role based on its application. The composite materials are those in which two or more components having different physical and chemical properties are combined to create a new enhanced property substance. In this study three different materials (Kenaf, Kevlar and Graphene) been chosen based on their properties and a composite material is developed with help of vacuum bagging process. The fibers (Kenaf and Kevlar) and Resin(vinyl ester) ratio was maintained at 70:30 during the process and 0.5% 1% and 1.5% of Graphene was added during fabrication process. The material was machined to thedimension ofASTM standards(300×300mm and thickness 3mm)with help of water jet cutting machine. The composite materials were tested for Mechanical properties such as Interlaminar shear strength(ILSS) and Flexural strength. It is found that there is significant increase in material properties in the developed composite material.

Keywords: Kevlar, Kenaf, graphene, vacuum bagging process, Interlaminar shear strength test, flexural test

Procedia PDF Downloads 93
1906 Improving the Foult Ride through Capability and Stability of Wind Farms with DFIG Wind Turbine by Using Statcom

Authors: Abdulfetah Shobole, Arif Karakas, Ugur Savas Selamogullari, Mustafa Baysal

Abstract:

The concern of reducing emissions of Co2 from the fossil fuel generating units and using renewable energy sources increased in our world. Due this fact the integration ratio of wind farms to grid reached 20-30% in some part of our world. With increased integration of large MW scaled wind farms to the electric grid, the stability of the electrical system is a great concern. Thus, operators of power systems usually deman the wind turbine generators to obey the same rules as other traditional kinds of generation, such as thermal and hydro, i.e. not affect the grid stability. FACTS devices such as SVC or STATCOM are mostly installed close to the connection point of the wind farm to the grid in order to increase the stability especially during faulty conditions. In this paper wind farm with DFIG turbine type and STATCOM are dynamically modeled and simulated under three phase short circuit fault condition. The dynamic modeling is done by DigSILENT PowerFactory for the wind farm, STATCOM and the network. The simulation results show improvement of system stability near to the connection point of the STATCOM.

Keywords: DFIG wind turbine, statcom, dynamic modeling, digsilent

Procedia PDF Downloads 712