Search results for: real time control
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28744

Search results for: real time control

28144 Augmented Reality and Its Impact on Education

Authors: Aliakbar Alijarahi, Ali Khaleghi, Azadehe Afrasiyabi

Abstract:

One of the emerging technologies in the field of education that can be effectively profitable, called augmented reality, where the combination of real world and virtual images in real time produces new concepts that can facilitate learning. The paper, providing an introduction to the general concept of augmented reality, aims at surveying its capabitities in different areas, with an emphasis on Education, It seems quite necessary to have comparative study on virtual/e-learning and augmented reality and conclude their differences in education methods. As an review article, the paper is composed, instead of producing new concepts, to sum-up and analayze accomplished works related to the subject.

Keywords: augmented reality, education, virtual learning, e-learning

Procedia PDF Downloads 341
28143 Time and Kinematics of Moving Bodies

Authors: Muhammad Omer Farooq Saeed

Abstract:

The purpose of the proposal is to find out what time actually is! And to understand the natural phenomenon of the behavior of time and light corresponding to the motion of the bodies at relatively high speeds. The utmost concern of the paper is to deal with the possible demerits in the equations of relativity, thereby providing some valuable extensions in those equations and concepts. The idea used develops the most basic conception of the relative motion of the body with respect to space and a real understanding of time and the variation of energy of the body in different frames of reference. The results show the development of a completely new understanding of time, relative motion and energy, along with some extensions in the equations of special relativity most importantly the time dilation and the mass-energy relationship that will explain all frames of a body, all in one go. The proposal also raises serious questions on the validity of the “Principle of Equivalence” on which the General Relativity is based, most importantly a serious case of the bending light that eventually goes against its own governing concepts of space-time being proposed in the theory. The results also predict the existence of a completely new field that explains the fact just how and why bodies acquire energy in space-time. This field explains the production of gravitational waves based on time. All in all, this proposal challenges the formulas and conceptions of Special and General Relativity, respectively.

Keywords: time, relative motion, energy, speed, frame of reference, photon, curvature, space-time, time –differentials

Procedia PDF Downloads 70
28142 The Importance of Localization in Large Constraction Projects

Authors: Ali Mohammadi

Abstract:

The basis for the construction of any project is a map, a map where the surveyor can determine the coordinates of the points on the ground by using the coordinates and using the total station, projects such as dams, roads, tunnels and pipelines, if the base points are determined using GPS prepared can create challenges for the surveyor to control. First, we will examine some map projection on which the maps are designed, and a summary of their differences and the challenges that surveyors face in order to control them, because in order to build projects, we need real lengths and angles, so we have to use coordinates that provide us with the results of the calculations. We will examine some examples to understand the concept of localization so that the surveyor knows if he is facing a challenge or not and if he is faced with this challenge, how should he solve this problem.

Keywords: UTM, scale factor, cartesian, traverse

Procedia PDF Downloads 81
28141 Circadian Disruption in Polycystic Ovary Syndrome Model Rats

Authors: Fangfang Wang, Fan Qu

Abstract:

Polycystic ovary syndrome (PCOS), the most common endocrinopathy among women of reproductive age, is characterized by ovarian dysfunction, hyperandrogenism and reduced fecundity. The aim of this study is to investigate whether the circadian disruption is involved in pathogenesis of PCOS in androgen-induced animal model. We established a rat model of PCOS using single subcutaneous injection with testosterone propionate on the ninth day after birth, and confirmed their PCOS-like phenotypes with vaginal smears, ovarian hematoxylin and eosin (HE) staining and serum androgen measurement. The control group rats received the vehicle only. Gene expression was detected by real-time quantitative PCR. (1) Compared with control group, PCOS model rats of 10-week group showed persistently keratinized vaginal cells, while all the control rats showed at least two consecutive estrous cycles. (2) Ovarian HE staining and histological examination showed that PCOS model rats of 10-week group presented many cystic follicles with decreased numbers of granulosa cells and corpora lutea in their ovaries, while the control rats had follicles with normal layers of granulosa cells at various stages of development and several generations of corpora lutea. (3) In the 10-week group, serum free androgen index was notably higher in PCOS model rats than controls. (4) Disturbed mRNA expression patterns of core clock genes were found in ovaries of PCOS model rats of 10-week group. Abnormal expression of key genes associated with circadian rhythm in ovary may be one of the mechanisms for ovarian dysfunction in PCOS model rats induced by androgen.

Keywords: polycystic ovary syndrome, androgen, animal model, circadian disruption

Procedia PDF Downloads 230
28140 Effects of Palm Kernel Expeller Processing on the Ileal Populations of Lactobacilli and Escherichia Coli in Broiler Chickens

Authors: B. Navidshad

Abstract:

The main objective of this study was to examine the effects of enzymatic treatment and shell content of palm kernel expeller (PKE) on the ileal Lactobacilli and Escherichia coli populations in broiler chickens. At the finisher phase, one hundred male broiler chickens (Cobb-500) were fed a control diet or the diets containing 200 g/kg of normal PKE (70 g/kg shell), low shell PKE (30 g/kg shell), enzymatic treated PKE or low shell-enzymatic treated PKE. The quantitative real-time PCR were used to determine the ileal bacteria populations. The lowest ileal Lactobacilli population was found in the chickens fed the low shell PKE diet. Dietary normal PKE or low shell-enzymatic treated PKE decreased the Escherichia coli population compared to the control diet. The results suggested that PKE could be included up to 200 g/kg in the finisher diet, however, any screening practice to reduce the shell content of PKE without enzymatic degradation of β-mannan, decrease ileal Lactobacilli population.

Keywords: palm kernel expeller, exogenous enzyme, shell content, ileum bacteria, broiler chickens

Procedia PDF Downloads 351
28139 A Study of Effect of Yoga on Choice Visual Reaction Time of Soccer Players

Authors: Vikram Singh, Parmod Kumar Sethi

Abstract:

The objective of the study was to study the effectiveness of common yoga protocol on reaction time (choice visual reaction time, measured in milliseconds/seconds) of male football players in the age group of 16 to 21 years. The 40 boys were measured initially on parameters of years of experience, level of participation. They were randomly assigned into two groups i.e. control and experimental. CVRT for both the groups was measured on day-1 and post intervention (common yoga protocol here) was measured after 45 days of training to the experimental group after they had finished with their regular fitness and soccer skill training. One way ANOVA (Univariate analysis) and Independent t-test using SPSS 23 statistical package were applied to get and analyze the results. The experimental yoga protocol group showed a significant reduction in CVRT, whereas the insignificant difference in reaction times was observed for control group after 45 days. The effect size was more than 52% for CVRT indicating that the effect of treatment was large. Power of the study was also found to be high (> .80). There was a significant difference after 45 days of yoga protocol in choice visual reaction time of experimental group (p = .000), t (21.93) = 6.410, p = .000 (two-tailed). The null hypothesis (that there would be no difference in reaction times of control and experimental groups) was rejected. Where p< .05. Therefore alternate hypothesis was accepted.

Keywords: reaction time, yoga protocol, t-test, soccer players

Procedia PDF Downloads 236
28138 The Evolution of Amazon Alexa: From Voice Assistant to Smart Home Hub

Authors: Abrar Abuzaid, Maha Alaaeddine, Haya Alesayi

Abstract:

This project is centered around understanding the usage and impact of Alexa, Amazon's popular virtual assistant, in everyday life. Alexa, known for its integration into devices like Amazon Echo, offers functionalities such as voice interaction, media control, providing real-time information, and managing smart home devices. Our primary focus is to conduct a straightforward survey aimed at uncovering how people use Alexa in their daily routines. We plan to reach out to a wide range of individuals to get a diverse perspective on how Alexa is being utilized for various tasks, the frequency and context of its use, and the overall user experience. The survey will explore the most common uses of Alexa, its impact on daily life, features that users find most beneficial, and improvements they are looking for. This project is not just about collecting data but also about understanding the real-world applications of a technology like Alexa and how it fits into different lifestyles. By examining the responses, we aim to gain a practical understanding of Alexa's role in homes and possibly in workplaces. This project will provide insights into user satisfaction and areas where Alexa could be enhanced to meet the evolving needs of its users. It’s a step towards connecting technology with everyday life, making it more accessible and user-friendly

Keywords: Amazon Alexa, artificial intelligence, smart speaker, natural language processing

Procedia PDF Downloads 63
28137 Real-Time Pothole Detection Using YOLOv11

Authors: Kosuri Harshitha Durga, Ritesh Yaduwanshi

Abstract:

Potholes are one of the most significant problems that affect road safety and the quality of infrastructure. The aim of pothole detection using OpenCV is to design an automated system that will detect and create a map of potholes on the road surfaces to improve the safety of roads and ease the maintenance process. This system is based on high-powered computer vision methods that use still images or video footage taken by cameras located in cars or drones. This paper presents an analysis of the implementation of the YOLOv11 model in pedestrian detection and demonstrates greater effectiveness of this method in regards to accuracy, speed, and efficiency of inference. The improved system now supports enhanced prompt diagnosis and timely repair leaving little or no damage on the infrastructure and also ensuring that enhanced road safety is achieved. This technology can also be used as a safety feature for the car itself by being installed in ADAS systems that would alert drivers in real-time while driving to avoid driving over potholes.

Keywords: deep learning, Potholes, segmentation, object detection, YOLO

Procedia PDF Downloads 5
28136 Necessary Condition to Utilize Adaptive Control in Wind Turbine Systems to Improve Power System Stability

Authors: Javad Taherahmadi, Mohammad Jafarian, Mohammad Naser Asefi

Abstract:

The global capacity of wind power has dramatically increased in recent years. Therefore, improving the technology of wind turbines to take different advantages of this enormous potential in the power grid, could be interesting subject for scientists. The doubly-fed induction generator (DFIG) wind turbine is a popular system due to its many advantages such as the improved power quality, high energy efficiency and controllability, etc. With an increase in wind power penetration in the network and with regard to the flexible control of wind turbines, the use of wind turbine systems to improve the dynamic stability of power systems has been of significance importance for researchers. Subsynchronous oscillations are one of the important issues in the stability of power systems. Damping subsynchronous oscillations by using wind turbines has been studied in various research efforts, mainly by adding an auxiliary control loop to the control structure of the wind turbine. In most of the studies, this control loop is composed of linear blocks. In this paper, simple adaptive control is used for this purpose. In order to use an adaptive controller, the convergence of the controller should be verified. Since adaptive control parameters tend to optimum values in order to obtain optimum control performance, using this controller will help the wind turbines to have positive contribution in damping the network subsynchronous oscillations at different wind speeds and system operating points. In this paper, the application of simple adaptive control in DFIG wind turbine systems to improve the dynamic stability of power systems is studied and the essential condition for using this controller is considered. It is also shown that this controller has an insignificant effect on the dynamic stability of the wind turbine, itself.

Keywords: almost strictly positive real (ASPR), doubly-fed induction generator (DIFG), simple adaptive control (SAC), subsynchronous oscillations, wind turbine

Procedia PDF Downloads 377
28135 Trip Reduction in Turbo Machinery

Authors: Pranay Mathur, Carlo Michelassi, Simi Karatha, Gilda Pedoto

Abstract:

Industrial plant uptime is top most importance for reliable, profitable & sustainable operation. Trip and failed start has major impact on plant reliability and all plant operators focussed on efforts required to minimise the trips & failed starts. The performance of these CTQs are measured with 2 metrics, MTBT(Mean time between trips) and SR (Starting reliability). These metrics helps to identify top failure modes and identify units need more effort to improve plant reliability. Baker Hughes Trip reduction program structured to reduce these unwanted trip 1. Real time machine operational parameters remotely available and capturing the signature of malfunction including related boundary condition. 2. Real time alerting system based on analytics available remotely. 3. Remote access to trip logs and alarms from control system to identify the cause of events. 4. Continuous support to field engineers by remotely connecting with subject matter expert. 5. Live tracking of key CTQs 6. Benchmark against fleet 7. Break down to the cause of failure to component level 8. Investigate top contributor, identify design and operational root cause 9. Implement corrective and preventive action 10. Assessing effectiveness of implemented solution using reliability growth models. 11. Develop analytics for predictive maintenance With this approach , Baker Hughes team is able to support customer in achieving their Reliability Key performance Indicators for monitored units, huge cost savings for plant operators. This Presentation explains these approach while providing successful case studies, in particular where 12nos. of LNG and Pipeline operators with about 140 gas compressing line-ups has adopted these techniques and significantly reduce the number of trips and improved MTBT

Keywords: reliability, availability, sustainability, digital infrastructure, weibull, effectiveness, automation, trips, fail start

Procedia PDF Downloads 76
28134 Deep Reinforcement Learning for Advanced Pressure Management in Water Distribution Networks

Authors: Ahmed Negm, George Aggidis, Xiandong Ma

Abstract:

With the diverse nature of urban cities, customer demand patterns, landscape topologies or even seasonal weather trends; managing our water distribution networks (WDNs) has proved a complex task. These unpredictable circumstances manifest as pipe failures, intermittent supply and burst events thus adding to water loss, energy waste and increased carbon emissions. Whilst these events are unavoidable, advanced pressure management has proved an effective tool to control and mitigate them. Henceforth, water utilities have struggled with developing a real-time control method that is resilient when confronting the challenges of water distribution. In this paper we use deep reinforcement learning (DRL) algorithms as a novel pressure control strategy to minimise pressure violations and leakage under both burst and background leakage conditions. Agents based on asynchronous actor critic (A2C) and recurrent proximal policy optimisation (Recurrent PPO) were trained and compared to benchmarked optimisation algorithms (differential evolution, particle swarm optimisation. A2C manages to minimise leakage by 32.48% under burst conditions and 67.17% under background conditions which was the highest performance in the DRL algorithms. A2C and Recurrent PPO performed well in comparison to the benchmarks with higher processing speed and lower computational effort.

Keywords: deep reinforcement learning, pressure management, water distribution networks, leakage management

Procedia PDF Downloads 93
28133 SIRT1 Gene Polymorphisms and Its Protein Level in Colorectal Cancer

Authors: Olfat Shaker, Miriam Wadie, Reham Ali, Ayman Yosry

Abstract:

Colorectal cancer (CRC) is a major cause of mortality and morbidity and accounts for over 9% of cancer incidence worldwide. Silent information regulator 2 homolog 1 (SIRT1) gene is located in the nucleus and exert its effects via modulation of histone and non-histone targets. They function in the cell via histone deacetylase (HDAC) and/or adenosine diphosphate ribosyl transferase (ADPRT) enzymatic activity. The aim of this work was to study the relationship between SIRT1 polymorphism and its protein level in colorectal cancer patients in comparison to control cases. This study includes 2 groups: thirty healthy subjects (control group) & one hundred CRC patients. All subjects were subjected to: SIRT-1 serum level was measured by ELISA and gene polymorphisms of rs12778366, rs375891 and rs3740051 were detected by real time PCR. For CRC patients clinical data were collected (size, site of tumor as well as its grading, obesity) CRC patients showed high significant increase in the mean level of serum SIRT-1 compared to control group (P<0.001). Mean serum level of SIRT-1 showed high significant increase in patients with tumor size ≥5 compared to the size < 5 cm (P<0.05). In CRC patients, percentage of T allele of rs12778366 was significantly lower than controls, CC genotype and C allele C of rs 375891 were significantly higher than control group. In CRC patients, the CC genotype of rs12778366, was 75% in rectosigmoid and 25% in cecum & ascending colon. According to tumor size, the percentage of CC genotype was 87.5% in tumor size ≥5 cm. Conclusion: serum level of SIRT-1 and T allele, C allele of rs12778366 and rs 375891 respectively can be used as diagnostic markers for CRC patients.

Keywords: CRC, SIRT1, polymorphisms, ELISA

Procedia PDF Downloads 218
28132 Prediction on Housing Price Based on Deep Learning

Authors: Li Yu, Chenlu Jiao, Hongrun Xin, Yan Wang, Kaiyang Wang

Abstract:

In order to study the impact of various factors on the housing price, we propose to build different prediction models based on deep learning to determine the existing data of the real estate in order to more accurately predict the housing price or its changing trend in the future. Considering that the factors which affect the housing price vary widely, the proposed prediction models include two categories. The first one is based on multiple characteristic factors of the real estate. We built Convolution Neural Network (CNN) prediction model and Long Short-Term Memory (LSTM) neural network prediction model based on deep learning, and logical regression model was implemented to make a comparison between these three models. Another prediction model is time series model. Based on deep learning, we proposed an LSTM-1 model purely regard to time series, then implementing and comparing the LSTM model and the Auto-Regressive and Moving Average (ARMA) model. In this paper, comprehensive study of the second-hand housing price in Beijing has been conducted from three aspects: crawling and analyzing, housing price predicting, and the result comparing. Ultimately the best model program was produced, which is of great significance to evaluation and prediction of the housing price in the real estate industry.

Keywords: deep learning, convolutional neural network, LSTM, housing prediction

Procedia PDF Downloads 307
28131 Implementation of Model Reference Adaptive Control in Tuning of Controller Gains for Following-Vehicle System with Fixed Time Headway

Authors: Fatemeh Behbahani, Rubiyah Yusof

Abstract:

To avoid collision between following vehicles and vehicles in front, it is vital to keep appropriate, safe spacing between both vehicles over all speeds. Therefore, the following vehicle needs to have exact information regarding the speed and spacing between vehicles. This project is conducted to simulate the tuning of controller gain for a vehicle-following system through the selected control strategy, spacing control policy and fixed-time headway policy. In addition, the paper simulates and designs an adaptive gain controller for a road-vehicle-following system which uses information on the spacing, velocity and also acceleration of a preceding vehicle in the proposed one-vehicle look-ahead strategy. The mathematical model is implemented using Kirchhoff and Newton’s Laws, and stability simulated. The trial-error method was used to obtain a suitable value of controller gain. However, the adaptive-based controller system was able to optimize the gain value automatically. Model Reference Adaptive Control (MRAC) is designed and utilized and based on firstly the Gradient and secondly the Lyapunov approach. The Lyapunov approach considers stability. The Gradient approach was found to improve the best value of gain in the controller system with fixed-time headway.

Keywords: one-vehicle look-ahead, model reference adaptive, stability, tuning gain controller, MRAC

Procedia PDF Downloads 238
28130 Earnings Management and Firm’s Creditworthiness

Authors: Maria A. Murtiati, Ancella A. Hermawan

Abstract:

The objective of this study is to examine whether the firm’s eligibility to get a bank loan is influenced by earnings management. The earnings management is distinguished between accruals and real earnings management. Hypothesis testing is carried out with logistic regression model using sample of 285 companies listed at Indonesian Stock Exchange in 2010. The result provides evidence that a greater magnitude in accruals earnings management increases the firm’s probability to be eligible to get bank loan. In contrast, real earnings management through abnormal cash flow and abnormal discretionary expenses decrease firm’s probability to be eligible to get bank loan, while real management through abnormal production cost increases such probability. The result of this study suggests that if the earnings management is assumed to be opportunistic purpose, the accruals based earnings management can distort the banks credit analysis using financial statements. Real earnings management has more impact on the cash flows, and banks are very concerned on the firm’s cash flow ability. Therefore, this study indicates that banks are more able to detect real earnings management, except abnormal production cost in real earning management.

Keywords: discretionary accruals, real earning management, bank loan, credit worthiness

Procedia PDF Downloads 347
28129 Automotive Emotions: An Investigation of Their Natures, Frequencies of Occurrence and Causes

Authors: Marlene Weber, Joseph Giacomin, Alessio Malizia, Lee Skrypchuk, Voula Gkatzidou

Abstract:

Technological and sociological developments in the automotive sector are shifting the focus of design towards developing a better understanding of driver needs, desires and emotions. Human centred design methods are being more frequently applied to automotive research, including the use of systems to detect human emotions in real-time. One method for a non-contact measurement of emotion with low intrusiveness is Facial-Expression Analysis (FEA). This paper describes a research study investigating emotional responses of 22 participants in a naturalistic driving environment by applying a multi-method approach. The research explored the possibility to investigate emotional responses and their frequencies during naturalistic driving through real-time FEA. Observational analysis was conducted to assign causes to the collected emotional responses. In total, 730 emotional responses were measured in the collective study time of 440 minutes. Causes were assigned to 92% of the measured emotional responses. This research establishes and validates a methodology for the study of emotions and their causes in the driving environment through which systems and factors causing positive and negative emotional effects can be identified.

Keywords: affective computing, case study, emotion recognition, human computer interaction

Procedia PDF Downloads 204
28128 Hands-off Parking: Deep Learning Gesture-based System for Individuals with Mobility Needs

Authors: Javier Romera, Alberto Justo, Ignacio Fidalgo, Joshue Perez, Javier Araluce

Abstract:

Nowadays, individuals with mobility needs face a significant challenge when docking vehicles. In many cases, after parking, they encounter insufficient space to exit, leading to two undesired outcomes: either avoiding parking in that spot or settling for improperly placed vehicles. To address this issue, the following paper presents a parking control system employing gestural teleoperation. The system comprises three main phases: capturing body markers, interpreting gestures, and transmitting orders to the vehicle. The initial phase is centered around the MediaPipe framework, a versatile tool optimized for real-time gesture recognition. MediaPipe excels at detecting and tracing body markers, with a special emphasis on hand gestures. Hands detection is done by generating 21 reference points for each hand. Subsequently, after data capture, the project employs the MultiPerceptron Layer (MPL) for indepth gesture classification. This tandem of MediaPipe's extraction prowess and MPL's analytical capability ensures that human gestures are translated into actionable commands with high precision. Furthermore, the system has been trained and validated within a built-in dataset. To prove the domain adaptation, a framework based on the Robot Operating System (ROS), as a communication backbone, alongside CARLA Simulator, is used. Following successful simulations, the system is transitioned to a real-world platform, marking a significant milestone in the project. This real vehicle implementation verifies the practicality and efficiency of the system beyond theoretical constructs.

Keywords: gesture detection, mediapipe, multiperceptron layer, robot operating system

Procedia PDF Downloads 103
28127 Adaptive Control of Magnetorheological Damper Using Duffing-Like Model

Authors: Hung-Jiun Chi, Cheng-En Tsai, Jia-Ying Tu

Abstract:

Semi-active control of Magnetorheological (MR) dampers for vibration reduction of structural systems has received considerable attention in civil and earthquake engineering, because the effective stiffness and damping properties of MR fluid can change in a very short time in reaction to external loading, requiring only a low level of power. However, the inherent nonlinear dynamics of hysteresis raise challenges in the modeling and control processes. In order to control the MR damper, an innovative Duffing-like equation is proposed to approximate the hysteresis dynamics in a deterministic and systematic manner than previously has been possible. Then, the model-reference adaptive control technique based on the Duffing-like model and the Lyapunov method is discussed. Parameter identification work with experimental data is presented to show the effectiveness of the Duffing-like model. In addition, simulation results show that the resulting adaptive gains enable the MR damper force to track the desired response of the reference model satisfactorily, verifying the effectiveness of the proposed modeling and control techniques.

Keywords: magnetorheological damper, duffing equation, model-reference adaptive control, Lyapunov function, hysteresis

Procedia PDF Downloads 370
28126 The Predictive Value of Micro Rna 451 on the Outcome of Imatinib Treatment in Chronic Myeloid Leukemia Patients

Authors: Nehal Adel Khalil, Amel Foad Ketat, Fairouz Elsayed Mohamed Ali, Nahla Abdelmoneim Hamid, Hazem Farag Manaa

Abstract:

Background: Chronic myeloid leukemia (CML) represents 15% of adult leukemias. Imatinib Mesylate (IM) is the gold standard treatment for new cases of CML. Treatment with IM results in improvement of the majority of cases. However, about 25% of cases may develop resistance. Sensitive and specific early predictors of IM resistance in CML patients have not been established to date. Aim: To investigate the value of miR-451 in CML as an early predictor for IM resistance in Egyptian CML patients. Methods: The study employed Real time Polymerase Reaction (qPCR) technique to investigate the leucocytic expression of miR-451 in fifteen newly diagnosed CML patients (group I), fifteen IM responder CML patients (group II), fifteen IM resistant CML patients (group III) and fifteen healthy subjects of matched age and sex as a control group (group IV). The response to IM was defined as < 10% BCR-ABL transcript level after 3 months of therapy. The following parameters were assessed in subjects of all the studied groups: 1- Complete blood count (CBC). 2- Measurement of plasma level of miRNA 451 using real-time Polymerase Chain Reaction (qPCR). 3- Detection of BCR-ABL gene mutation in CML using qPCR. Results: The present study revealed that miR-451 was significantly down-regulated in leucocytes of newly diagnosed CML patients as compared to healthy subjects. IM responder CML patients showed an up-regulation of miR- 451 compared with IM resistant CML patients. Conclusion: According to the data from the present study, it can be concluded that leucocytic miR- 451 expression is a useful additional follow-up marker for the response to IM and a promising prognostic biomarker for CML.

Keywords: chronic myeloid leukemia, imatinib resistance, microRNA 451, Polymerase Chain Reaction

Procedia PDF Downloads 295
28125 Distribution-Free Exponentially Weighted Moving Average Control Charts for Monitoring Process Variability

Authors: Chen-Fang Tsai, Shin-Li Lu

Abstract:

Distribution-free control chart is an oncoming area from the statistical process control charts in recent years. Some researchers have developed various nonparametric control charts and investigated the detection capability of these charts. The major advantage of nonparametric control charts is that the underlying process is not specifically considered the assumption of normality or any parametric distribution. In this paper, two nonparametric exponentially weighted moving average (EWMA) control charts based on nonparametric tests, namely NE-S and NE-M control charts, are proposed for monitoring process variability. Generally, weighted moving average (GWMA) control charts are extended by utilizing design and adjustment parameters for monitoring the changes in the process variability, namely NG-S and NG-M control charts. Statistical performance is also investigated on NG-S and NG-M control charts with run rules. Moreover, sensitivity analysis is performed to show the effects of design parameters under the nonparametric NG-S and NG-M control charts.

Keywords: Distribution-free control chart, EWMA control charts, GWMA control charts

Procedia PDF Downloads 275
28124 Sampled-Data Model Predictive Tracking Control for Mobile Robot

Authors: Wookyong Kwon, Sangmoon Lee

Abstract:

In this paper, a sampled-data model predictive tracking control method is presented for mobile robots which is modeled as constrained continuous-time linear parameter varying (LPV) systems. The presented sampled-data predictive controller is designed by linear matrix inequality approach. Based on the input delay approach, a controller design condition is derived by constructing a new Lyapunov function. Finally, a numerical example is given to demonstrate the effectiveness of the presented method.

Keywords: model predictive control, sampled-data control, linear parameter varying systems, LPV

Procedia PDF Downloads 311
28123 Process Capability Analysis by Using Statistical Process Control of Rice Polished Cylinder Turning Practice

Authors: S. Bangphan, P. Bangphan, T.Boonkang

Abstract:

Quality control helps industries in improvements of its product quality and productivity. Statistical Process Control (SPC) is one of the tools to control the quality of products that turning practice in bringing a department of industrial engineering process under control. In this research, the process control of a turning manufactured at workshops machines. The varying measurements have been recorded for a number of samples of a rice polished cylinder obtained from a number of trials with the turning practice. SPC technique has been adopted by the process is finally brought under control and process capability is improved.

Keywords: rice polished cylinder, statistical process control, control charts, process capability

Procedia PDF Downloads 489
28122 A Multi-Dimensional Neural Network Using the Fisher Transform to Predict the Price Evolution for Algorithmic Trading in Financial Markets

Authors: Cristian Pauna

Abstract:

Trading the financial markets is a widespread activity today. A large number of investors, companies, public of private funds are buying and selling every day in order to make profit. Algorithmic trading is the prevalent method to make the trade decisions after the electronic trading release. The orders are sent almost instantly by computers using mathematical models. This paper will present a price prediction methodology based on a multi-dimensional neural network. Using the Fisher transform, the neural network will be instructed for a low-latency auto-adaptive process in order to predict the price evolution for the next period of time. The model is designed especially for algorithmic trading and uses the real-time price series. It was found that the characteristics of the Fisher function applied at the nodes scale level can generate reliable trading signals using the neural network methodology. After real time tests it was found that this method can be applied in any timeframe to trade the financial markets. The paper will also include the steps to implement the presented methodology into an automated trading system. Real trading results will be displayed and analyzed in order to qualify the model. As conclusion, the compared results will reveal that the neural network methodology applied together with the Fisher transform at the nodes level can generate a good price prediction and can build reliable trading signals for algorithmic trading.

Keywords: algorithmic trading, automated trading systems, financial markets, high-frequency trading, neural network

Procedia PDF Downloads 162
28121 Female’s Involvement in Real Estate Business in Nigeria: A Case Study of Lagos State

Authors: Osaretin Rosemary Uyi, A. O. Ogungbemi

Abstract:

Female involvement in policy making and partnership in a man-driven-world is fast gaining international recognition. The Nigeria commercial real estate is one of the sectors of the economy that has a significant number of the male in the business. This study was conducted to assess the participation of females in estate management in Lagos state, Nigeria. Lagos is the commercial nerve center of Nigeria having the highest number of real estate practitioners and investors. The population due to the daily influx of people has made real estate business to continue to grow in this part of Nigeria. A structured questionnaire duly pre-tested and validated was used to elicit information from the respondents. The data collected were presented using tables and charts and were analyzed using descriptive statistical tools such as frequency counts, percentages, were used to test the hypothesis. The results also indicated that most females that participated in commercial real estate business are educated (80%), fell within 31-40 years of age (75%) and of high income status (88%) earn above ₦800,000 per year, while 10% are real estate investors and 82% of the female in the sector are employee. The study concluded that the number of female participating in various aspect of commercial real estate business in the study area was moderate while the numbers of female investors are low when compared to male. This might be due to the problems associated with rent collection, land disputes and other issues that are associated with property management in Nigeria. It is therefore recommended that females in real estate should be empowered and encouraged to match with their male counterpart.

Keywords: commercial real estate, empowerment, female, participation, property management

Procedia PDF Downloads 333
28120 Approximation of the Time Series by Fractal Brownian Motion

Authors: Valeria Bondarenko

Abstract:

In this paper, we propose two problems related to fractal Brownian motion. First problem is simultaneous estimation of two parameters, Hurst exponent and the volatility, that describe this random process. Numerical tests for the simulated fBm provided an efficient method. Second problem is approximation of the increments of the observed time series by a power function by increments from the fractional Brownian motion. Approximation and estimation are shown on the example of real data, daily deposit interest rates.

Keywords: fractional Brownian motion, Gausssian processes, approximation, time series, estimation of properties of the model

Procedia PDF Downloads 377
28119 Forest Soil Greenhouse Gas Real-Time Analysis Using Quadrupole Mass Spectrometry

Authors: Timothy L. Porter, T. Randy Dillingham

Abstract:

Vegetation growth and decomposition, along with soil microbial activity play a complex role in the production of greenhouse gases originating in forest soils. The absorption or emission (respiration) of these gases is a function of many factors relating to the soils themselves, the plants, and the environment in which the plants are growing. For this study, we have constructed a battery-powered, portable field mass spectrometer for use in analyzing gases in the soils surrounding trees, plants, and other areas. We have used the instrument to sample in real-time the greenhouse gases carbon dioxide and methane in soils where plant life may be contributing to the production of gases such as methane. Gases such as isoprene, which may help correlate gas respiration to microbial activity have also been measured. The instrument is composed of a quadrupole mass spectrometer with part per billion or better sensitivity, coupled to battery-powered turbo and diaphragm pumps. A unique ambient air pressure differentially pumped intake apparatus allows for the real-time sampling of gases in the soils from the surface to several inches below the surface. Results show that this instrument is capable of instant, part-per-billion sensitivity measurement of carbon dioxide and methane in the near surface region of various forest soils. We have measured differences in soil respiration resulting from forest thinning, forest burning, and forest logging as compared to pristine, untouched forests. Further studies will include measurements of greenhouse gas respiration as a function of temperature, microbial activity as measured by isoprene production, and forest restoration after fire.

Keywords: forest, soil, greenhouse, quadrupole

Procedia PDF Downloads 117
28118 Arduino Robot Car Controlled via Android

Authors: Touil Issam, Bouraghda Skander

Abstract:

This paper elaborates on the comprehensive design, development, and evaluation of an Arduino-powered robot car operated through an Android-based application. The system is built upon an Arduino UNO microcontroller, leveraging Bluetooth technology to facilitate seamless communication between the robot and the Android control interface. The primary objective of the project is to provide users with an intuitive and interactive means to control autonomous systems while ensuring simplicity, cost-efficiency, and reliability. The architecture of the system encompasses hardware and software integration, where the microcontroller acts as the central processing unit, handling signals received via Bluetooth and translating them into precise motor commands. The Android application serves as a user-friendly interface, enabling real-time control of the robot's movement and functionality. This paper delves into the technical aspects of system architecture, including the hardware components, wiring schematics, and Bluetooth module integration. Additionally, it highlights the software development process, emphasizing the programming logic, algorithm design, and debugging techniques employed. Testing and validation phases are thoroughly documented, showcasing the system's performance under various conditions, including speed, maneuverability, and Bluetooth signal range. The results confirm the project's success in achieving its goals, offering a robust and accessible solution for educational and practical applications in robotics.

Keywords: Arduino Robot, car, microcontroller, Bluetooth communication

Procedia PDF Downloads 5
28117 Intelligent Fishers Harness Aquatic Organisms and Climate Change

Authors: Shih-Fang Lo, Tzu-Wei Guo, Chih-Hsuan Lee

Abstract:

Tropical fisheries are vulnerable to the physical and biogeochemical oceanic changes associated with climate change. Warmer temperatures and extreme weather have beendamaging the abundance and growth patterns of aquatic organisms. In recent year, the shrinking of fish stock and labor shortage have increased the threat to global aquacultural production. Thus, building a climate-resilient and sustainable mechanism becomes an urgent, important task for global citizens. To tackle the problem, Taiwanese fishermen applies the artificial intelligence (AI) technology. In brief, the AI system (1) measures real-time water quality and chemical parameters infish ponds; (2) monitors fish stock through segmentation, detection, and classification; and (3) implements fishermen’sprevious experiences, perceptions, and real-life practices. Applying this system can stabilize the aquacultural production and potentially increase the labor force. Furthermore, this AI technology can build up a more resilient and sustainable system for the fishermen so that they can mitigate the influence of extreme weather while maintaining or even increasing their aquacultural production. In the future, when the AI system collected and analyzed more and more data, it can be applied to different regions of the world or even adapt to the future technological or societal changes, continuously providing the most relevant and useful information for fishermen in the world.

Keywords: aquaculture, artificial intelligence (AI), real-time system, sustainable fishery

Procedia PDF Downloads 113
28116 A Laser Instrument Rapid-E+ for Real-Time Measurements of Airborne Bioaerosols Such as Bacteria, Fungi, and Pollen

Authors: Minghui Zhang, Sirine Fkaier, Sabri Fernana, Svetlana Kiseleva, Denis Kiselev

Abstract:

The real-time identification of bacteria and fungi is difficult because they emit much weaker signals than pollen. In 2020, Plair developed Rapid-E+, which extends abilities of Rapid-E to detect smaller bioaerosols such as bacteria and fungal spores with diameters down to 0.3 µm, while keeping the similar or even better capability for measurements of large bioaerosols like pollen. Rapid-E+ enables simultaneous measurements of (1) time-resolved, polarization and angle dependent Mie scattering patterns, (2) fluorescence spectra resolved in 16 channels, and (3) fluorescence lifetime of individual particles. Moreover, (4) it provides 2D Mie scattering images which give the full information on particle morphology. The parameters of every single bioaerosol aspired into the instrument are subsequently analysed by machine learning. Firstly, pure species of microbes, e.g., Bacillus subtilis (a species of bacteria), and Penicillium chrysogenum (a species of fungal spores), were aerosolized in a bioaerosol chamber for Rapid-E+ training. Afterwards, we tested microbes under different concentrations. We used several steps of data analysis to classify and identify microbes. All single particles were analysed by the parameters of light scattering and fluorescence in the following steps. (1) They were treated with a smart filter block to get rid of non-microbes. (2) By classification algorithm, we verified the filtered particles were microbes based on the calibration data. (3) The probability threshold (defined by the user) step provides the probability of being microbes ranging from 0 to 100%. We demonstrate how Rapid-E+ identified simultaneously microbes based on the results of Bacillus subtilis (bacteria) and Penicillium chrysogenum (fungal spores). By using machine learning, Rapid-E+ achieved identification precision of 99% against the background. The further classification suggests the precision of 87% and 89% for Bacillus subtilis and Penicillium chrysogenum, respectively. The developed algorithm was subsequently used to evaluate the performance of microbe classification and quantification in real-time. The bacteria and fungi were aerosolized again in the chamber with different concentrations. Rapid-E+ can classify different types of microbes and then quantify them in real-time. Rapid-E+ enables classifying different types of microbes and quantifying them in real-time. Rapid-E+ can identify pollen down to species with similar or even better performance than the previous version (Rapid-E). Therefore, Rapid-E+ is an all-in-one instrument which classifies and quantifies not only pollen, but also bacteria and fungi. Based on the machine learning platform, the user can further develop proprietary algorithms for specific microbes (e.g., virus aerosols) and other aerosols (e.g., combustion-related particles that contain polycyclic aromatic hydrocarbons).

Keywords: bioaerosols, laser-induced fluorescence, Mie-scattering, microorganisms

Procedia PDF Downloads 91
28115 Low-Cost Embedded Biometric System Based on Fingervein Modality

Authors: Randa Boukhris, Alima Damak, Dorra Sellami

Abstract:

Fingervein biometric authentication is one of the most popular and accurate technologies. However, low cost embedded solution is still an open problem. In this paper, a real-time implementation of fingervein recognition process embedded in Raspberry-Pi has been proposed. The use of Raspberry-Pi reduces overall system cost and size while allowing an easy user interface. Implementation of a target technology has guided to opt some specific parallel and simple processing algorithms. In the proposed system, we use four structural directional kernel elements for filtering finger vein images. Then, a Top-Hat and Bottom-Hat kernel filters are used to enhance the visibility and the appearance of venous images. For feature extraction step, a simple Local Directional Code (LDC) descriptor is applied. The proposed system presents an Error Equal Rate (EER) and Identification Rate (IR), respectively, equal to 0.02 and 98%. Furthermore, experimental results show that real-time operations have good performance.

Keywords: biometric, Bottom-Hat, Fingervein, LDC, Rasberry-Pi, ROI, Top-Hat

Procedia PDF Downloads 205