Search results for: real estate prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7268

Search results for: real estate prediction

6668 Neural Network Based Path Loss Prediction for Global System for Mobile Communication in an Urban Environment

Authors: Danladi Ali

Abstract:

In this paper, we measured GSM signal strength in the Dnepropetrovsk city in order to predict path loss in study area using nonlinear autoregressive neural network prediction and we also, used neural network clustering to determine average GSM signal strength receive at the study area. The nonlinear auto-regressive neural network predicted that the GSM signal is attenuated with the mean square error (MSE) of 2.6748dB, this attenuation value is used to modify the COST 231 Hata and the Okumura-Hata models. The neural network clustering revealed that -75dB to -95dB is received more frequently. This means that the signal strength received at the study is mostly weak signal

Keywords: one-dimensional multilevel wavelets, path loss, GSM signal strength, propagation, urban environment and model

Procedia PDF Downloads 382
6667 Analysis and Prediction of Netflix Viewing History Using Netflixlatte as an Enriched Real Data Pool

Authors: Amir Mabhout, Toktam Ghafarian, Amirhossein Farzin, Zahra Makki, Sajjad Alizadeh, Amirhossein Ghavi

Abstract:

The high number of Netflix subscribers makes it attractive for data scientists to extract valuable knowledge from the viewers' behavioural analyses. This paper presents a set of statistical insights into viewers' viewing history. After that, a deep learning model is used to predict the future watching behaviour of the users based on previous watching history within the Netflixlatte data pool. Netflixlatte in an aggregated and anonymized data pool of 320 Netflix viewers with a length 250 000 data points recorded between 2008-2022. We observe insightful correlations between the distribution of viewing time and the COVID-19 pandemic outbreak. The presented deep learning model predicts future movie and TV series viewing habits with an average loss of 0.175.

Keywords: data analysis, deep learning, LSTM neural network, netflix

Procedia PDF Downloads 250
6666 Movie Genre Preference Prediction Using Machine Learning for Customer-Based Information

Authors: Haifeng Wang, Haili Zhang

Abstract:

Most movie recommendation systems have been developed for customers to find items of interest. This work introduces a predictive model usable by small and medium-sized enterprises (SMEs) who are in need of a data-based and analytical approach to stock proper movies for local audiences and retain more customers. We used classification models to extract features from thousands of customers’ demographic, behavioral and social information to predict their movie genre preference. In the implementation, a Gaussian kernel support vector machine (SVM) classification model and a logistic regression model were established to extract features from sample data and their test error-in-sample were compared. Comparison of error-out-sample was also made under different Vapnik–Chervonenkis (VC) dimensions in the machine learning algorithm to find and prevent overfitting. Gaussian kernel SVM prediction model can correctly predict movie genre preferences in 85% of positive cases. The accuracy of the algorithm increased to 93% with a smaller VC dimension and less overfitting. These findings advance our understanding of how to use machine learning approach to predict customers’ preferences with a small data set and design prediction tools for these enterprises.

Keywords: computational social science, movie preference, machine learning, SVM

Procedia PDF Downloads 260
6665 Using Geographic Information Systems Techniques and Multi-Source Earth Observation Data to Study the Trends of Urban Expansion in Welayat Barka Sultanate of Oman during the Period from 2002 to 2019

Authors: Eyad H. R. Fadda, Jawaher K. Al Rashdieah, Aysha H. Al Rashdieh

Abstract:

Urban Sprawl is a phenomenon that many regions in the Sultanate of Oman suffer from in general and in Welayat Barka in particular. It is considered a human phenomenon that causes many negative effects as it has increased in the last time clearly, and this study aims to diagnose the current status of urban growth taking place in Walayat Barka. The objective of this study is to monitor and follow up on the most prominent changes and developments taking place in Barka in the period from 2002 to 2019 and provide suggestions to the decision-makers to reduce the negative effects of the phenomenon. The study methodology depends on the descriptive and analytical approach to describe the phenomenon and its analysis and knowledge of the factors that helped in urban expansion in the Barka, using a number of studies and interviews with the specialists, both in governmental and private institutions, as well as with individuals who own land, real estate, and others. Geographic Information Systems (GIS) and Remote Sensing (ERDAS software) have been used to analyze the satellite images that helped in obtaining results that reflect the changes Barka, in addition to knowing the natural and human determinants that stand on Urban Sprawl Expansion. The study concluded that the geographical location of Barka has a significant role in its urban expansion, as it is the closest state to the capital Muscat, as this expansion continues toward the southern and south-western directions, as this expansion has significant negative effects represented in the low number of agricultural lands due to the continuous change in land use. In addition, it was found that there are two types of natural determinants of urban expansion in Barka, which are consumed land from the Sea of Oman and from the western sands.

Keywords: GIS applications, remote sensing, urbanization, urban sprawl expansion trends

Procedia PDF Downloads 110
6664 EU Integratıon Impact over the Real Convergence

Authors: Badoiu Mihaela Catalina

Abstract:

Main focus of COHESION policy was reducing social and economic disparities between member states and regions, sustainable development and equal opportunities. In this perspective, the present study intend to analyze the evolution of the European architecture and its direct impact over the real convergence in the member states.

Keywords: cooperation, European union, member states, cohesion policy

Procedia PDF Downloads 459
6663 Classification of Generative Adversarial Network Generated Multivariate Time Series Data Featuring Transformer-Based Deep Learning Architecture

Authors: Thrivikraman Aswathi, S. Advaith

Abstract:

As there can be cases where the use of real data is somehow limited, such as when it is hard to get access to a large volume of real data, we need to go for synthetic data generation. This produces high-quality synthetic data while maintaining the statistical properties of a specific dataset. In the present work, a generative adversarial network (GAN) is trained to produce multivariate time series (MTS) data since the MTS is now being gathered more often in various real-world systems. Furthermore, the GAN-generated MTS data is fed into a transformer-based deep learning architecture that carries out the data categorization into predefined classes. Further, the model is evaluated across various distinct domains by generating corresponding MTS data.

Keywords: GAN, transformer, classification, multivariate time series

Procedia PDF Downloads 130
6662 Digital Twin of Real Electrical Distribution System with Real Time Recursive Load Flow Calculation and State Estimation

Authors: Anosh Arshad Sundhu, Francesco Giordano, Giacomo Della Croce, Maurizio Arnone

Abstract:

Digital Twin (DT) is a technology that generates a virtual representation of a physical system or process, enabling real-time monitoring, analysis, and simulation. DT of an Electrical Distribution System (EDS) can perform online analysis by integrating the static and real-time data in order to show the current grid status and predictions about the future status to the Distribution System Operator (DSO), producers and consumers. DT technology for EDS also offers the opportunity to DSO to test hypothetical scenarios. This paper discusses the development of a DT of an EDS by Smart Grid Controller (SGC) application, which is developed using open-source libraries and languages. The developed application can be integrated with Supervisory Control and Data Acquisition System (SCADA) of any EDS for creating the DT. The paper shows the performance of developed tools inside the application, tested on real EDS for grid observability, Smart Recursive Load Flow (SRLF) calculation and state estimation of loads in MV feeders.

Keywords: digital twin, distributed energy resources, remote terminal units, supervisory control and data acquisition system, smart recursive load flow

Procedia PDF Downloads 110
6661 Detect Cable Force of Cable Stayed Bridge from Accelerometer Data of SHM as Real Time

Authors: Nguyen Lan, Le Tan Kien, Nguyen Pham Gia Bao

Abstract:

The cable-stayed bridge belongs to the combined system, in which the cables is a major strutual element. Cable-stayed bridges with large spans are often arranged with structural health monitoring systems to collect data for bridge health diagnosis. Cables tension monitoring is a structural monitoring content. It is common to measure cable tension by a direct force sensor or cable vibration accelerometer sensor, thereby inferring the indirect cable tension through the cable vibration frequency. To translate cable-stayed vibration acceleration data to real-time tension requires some necessary calculations and programming. This paper introduces the algorithm, labview program that converts cable-stayed vibration acceleration data to real-time tension. The research results are applied to the monitoring system of Tran Thi Ly cable-stayed bridge and Song Hieu cable-stayed bridge in Vietnam.

Keywords: cable-stayed bridge, cable fore, structural heath monitoring (SHM), fast fourie transformed (FFT), real time, vibrations

Procedia PDF Downloads 71
6660 Prediction Factor of Recurrence Supraventricular Tachycardia After Adenosine Treatment in the Emergency Department

Authors: Chaiyaporn Yuksen

Abstract:

Backgroud: Supraventricular tachycardia (SVT) is an abnormally fast atrial tachycardia characterized by narrow (≤ 120 ms) and constant QRS. Adenosine was the drug of choice; the first dose was 6 mg. It can be repeated with the second and third doses of 12 mg, with greater than 90% success. The study found that patients observed at 4 hours after normal sinus rhythm was no recurrence within 24 hours. The objective of this study was to investigate the factors that influence the recurrence of SVT after adenosine in the emergency department (ED). Method: The study was conducted retrospectively exploratory model, prognostic study at the Emergency Department (ED) in Faculty of Medicine, Ramathibodi Hospital, a university-affiliated super tertiary care hospital in Bangkok, Thailand. The study was conducted for ten years period between 2010 and 2020. The inclusion criteria were age > 15 years, visiting the ED with SVT, and treating with adenosine. Those patients were recorded with the recurrence SVT in ED. The multivariable logistic regression model developed the predictive model and prediction score for recurrence PSVT. Result: 264 patients met the study criteria. Of those, 24 patients (10%) had recurrence PSVT. Five independent factors were predictive of recurrence PSVT. There was age>65 years, heart rate (after adenosine) > 100 per min, structural heart disease, and dose of adenosine. The clinical risk score to predict recurrence PSVT is developed accuracy 74.41%. The score of >6 had the likelihood ratio of recurrence PSVT by 5.71 times Conclusion: The clinical predictive score of > 6 was associated with recurrence PSVT in ED.

Keywords: clinical prediction score, SVT, recurrence, emergency department

Procedia PDF Downloads 155
6659 Existence and Concentration of Solutions for a Class of Elliptic Partial Differential Equations Involving p-Biharmonic Operator

Authors: Debajyoti Choudhuri, Ratan Kumar Giri, Shesadev Pradhan

Abstract:

The perturbed nonlinear Schrodinger equation involving the p-biharmonic and the p-Laplacian operators involving a real valued parameter and a continuous real valued potential function defined over the N- dimensional Euclidean space has been considered. By the variational technique, an existence result pertaining to a nontrivial solution to this non-linear partial differential equation has been proposed. Further, by the Concentration lemma, the concentration of solutions to the same problem defined on the set consisting of those elements where the potential function vanishes as the real parameter approaches to infinity has been addressed.

Keywords: p-Laplacian, p-biharmonic, elliptic PDEs, Concentration lemma, Sobolev space

Procedia PDF Downloads 234
6658 An Experimental Study on Service Life Prediction of Self: Compacting Concrete Using Sorptivity as a Durability Index

Authors: S. Girish, N. Ajay

Abstract:

Permeation properties have been widely used to quantify durability characteristics of concrete for assessing long term performance and sustainability. The processes of deterioration in concrete are mediated largely by water. There is a strong interest in finding a better way of assessing the material properties of concrete in terms of durability. Water sorptivity is a useful single material property which can be one of the measures of durability useful in service life planning and prediction, especially in severe environmental conditions. This paper presents the results of the comparative study of sorptivity of Self-Compacting Concrete (SCC) with conventionally vibrated concrete. SCC is a new, special type of concrete mixture, characterized by high resistance to segregation that can flow through intricate geometrical configuration in the presence of reinforcement, under its own mass, without vibration and compaction. SCC mixes were developed for the paste contents of 0.38, 0.41 and 0.43 with fly ash as the filler for different cement contents ranging from 300 to 450 kg/m3. The study shows better performance by SCC in terms of capillary absorption. The sorptivity value decreased as the volume of paste increased. The use of higher paste content in SCC can make the concrete robust with better densification of the micro-structure, improving the durability and making the concrete more sustainable with improved long term performance. The sorptivity based on secondary absorption can be effectively used as a durability index to predict the time duration required for the ingress of water to penetrate the concrete, which has practical significance.

Keywords: self-compacting concrete, service life prediction, sorptivity, volume of paste

Procedia PDF Downloads 321
6657 Even When the Passive Resistance Is Obligatory: Civil Intellectuals’ Solidarity Activism in Tea Workers Movement

Authors: Moshreka Aditi Huq

Abstract:

This study shows how a progressive portion of civil intellectuals in Bangladesh contributed as the solidarity activist entities in a movement of tea workers that became the symbol of their unique moral struggle. Their passive yet sharp way of resistance, with the integration of mass tea workers of a tea estate, got demonstrated against certain private companies and government officials who approached to establish a special economic zone inside the tea garden without offering any compensation and rehabilitation for poor tea workers. Due to massive protests and rebellion, the authorized entrepreneurs had to step back and called off the project immediately. The extraordinary features of this movement generated itself from the deep core social need of indigenous tea workers who are still imprisoned in the colonial cage. Following an anthropological and ethnographic perspective, this study adopted the main three techniques of intensive interview, focus group discussion, and laborious observation, to extract empirical data. The intensive interviews were undertaken informally using a mostly conversational approach. Focus group discussions were piloted among various representative groups where observations prevailed as part of the regular documentation process. These were conducted among civil intellectual entities, tea workers, tea estate authorities, civil service authorities, and business officials to obtain a holistic view of the situation. The fieldwork was executed in capital Dhaka city, along with northern areas like Chandpur-Begumkhan Tea Estate of Chunarughat Upazilla and Habiganj city of Habiganj District of Bangladesh. Correspondingly, secondary data were accessed through books, scholarly papers, archives, newspapers, reports, leaflets, posters, writing blog, and electronic pages of social media. The study results find that: (1) civil intellectuals opposed state-sponsored business impositions by producing counter-discourse and struggled against state hegemony through the phases of the movement; (2) instead of having the active physical resistance, civil intellectuals’ strength was preferably in passive form which was portrayed through their intellectual labor; (3) the combined movement of tea workers and civil intellectuals reflected on social security of ethnic worker communities that contrasts state’s pseudo-development motives which ultimately supports offensive and oppressive neoliberal growths of economy; (4) civil intellectuals are revealed as having certain functional limitations in the process of movement organization as well as resource mobilization; (5) in specific contexts, the genuine need of protest by indigenous subaltern can overshadow intellectual elitism and helps to raise the voices of ‘subjugated knowledge’. This study is quite likely to represent two sets of apparent protagonist entities in the discussion of social injustice and oppressive development intervention. On the one, hand it may help us to find the basic functional characteristics of civil intellectuals in Bangladesh when they are in a passive mode of resistance in social movement issues. On the other hand, it represents the community ownership and inherent protest tendencies of indigenous workers when they feel threatened and insecure. The study seems to have the potential to understand the conditions of ‘subjugated knowledge’ of subalterns. Furthermore, being the memory and narratives, these ‘activism mechanisms’ of social entities broadens the path to understand ‘power’ and ‘resistance’ in more fascinating ways.

Keywords: civil intellectuals, resistance, subjugated knowledge, indigenous

Procedia PDF Downloads 125
6656 Evaluation of Automated Analyzers of Polycyclic Aromatic Hydrocarbons and Black Carbon in a Coke Oven Plant by Comparison with Analytical Methods

Authors: L. Angiuli, L. Trizio, R. Giua, A. Digilio, M. Tutino, P. Dambruoso, F. Mazzone, C. M. Placentino

Abstract:

In the winter of 2014 a series of measurements were performed to evaluate the behavior of real-time PAHs and black carbon analyzers in a coke oven plant located in Taranto, a city of Southern Italy. Data were collected both insides than outside the plant, at air quality monitoring sites. Contemporary measures of PM2.5 and PM1 were performed. Particle-bound PAHs were measured by two methods: (1) aerosol photoionization using an Ecochem PAS 2000 analyzer, (2) PM2.5 and PM1 quartz filter collection and analysis by gas chromatography/mass spectrometry (GC/MS). Black carbon was determined both in real-time by Magee Aethalometer AE22 analyzer than by semi-continuous Sunset Lab EC/OC instrument. Detected PM2.5 and PM1 levels were higher inside than outside the plant while PAHs real-time values were higher outside than inside. As regards PAHs, inside the plant Ecochem PAS 2000 revealed concentrations not significantly different from those determined on the filter during low polluted days, but at increasing concentrations the automated instrument underestimated PAHs levels. At the external site, Ecochem PAS 2000 real-time concentrations were steadily higher than those on the filter. In the same way, real-time black carbon values were constantly lower than EC concentrations obtained by Sunset EC/OC in the inner site, while outside the plant real-time values were comparable to Sunset EC values. Results showed that in a coke plant real-time analyzers of PAHs and black carbon in the factory configuration provide qualitative information, with no accuracy and leading to the underestimation of the concentration. A site specific calibration is needed for these instruments before their installation in high polluted sites.

Keywords: black carbon, coke oven plant, PAH, PAS, aethalometer

Procedia PDF Downloads 344
6655 Development of a Catalogs System for Augmented Reality Applications

Authors: J. Ierache, N. A. Mangiarua, S. A. Bevacqua, N. N. Verdicchio, M. E. Becerra, D. R. Sanz, M. E. Sena, F. M. Ortiz, N. D. Duarte, S. Igarza

Abstract:

Augmented Reality is a technology that involves the overlay of virtual content, which is context or environment sensitive, on images of the physical world in real time. This paper presents the development of a catalog system that facilitates and allows the creation, publishing, management and exploitation of augmented multimedia contents and Augmented Reality applications, creating an own space for anyone that wants to provide information to real objects in order to edit and share it then online with others. These spaces would be built for different domains without the initial need of expert users. Its operation focuses on the context of Web 2.0 or Social Web, with its various applications, developing contents to enrich the real context in which human beings act permitting the evolution of catalog’s contents in an emerging way.

Keywords: augmented reality, catalog system, computer graphics, mobile application

Procedia PDF Downloads 352
6654 Learning to Recommend with Negative Ratings Based on Factorization Machine

Authors: Caihong Sun, Xizi Zhang

Abstract:

Rating prediction is an important problem for recommender systems. The task is to predict the rating for an item that a user would give. Most of the existing algorithms for the task ignore the effect of negative ratings rated by users on items, but the negative ratings have a significant impact on users’ purchasing decisions in practice. In this paper, we present a rating prediction algorithm based on factorization machines that consider the effect of negative ratings inspired by Loss Aversion theory. The aim of this paper is to develop a concave and a convex negative disgust function to evaluate the negative ratings respectively. Experiments are conducted on MovieLens dataset. The experimental results demonstrate the effectiveness of the proposed methods by comparing with other four the state-of-the-art approaches. The negative ratings showed much importance in the accuracy of ratings predictions.

Keywords: factorization machines, feature engineering, negative ratings, recommendation systems

Procedia PDF Downloads 242
6653 Prediction of Cutting Tool Life in Drilling of Reinforced Aluminum Alloy Composite Using a Fuzzy Method

Authors: Mohammed T. Hayajneh

Abstract:

Machining of Metal Matrix Composites (MMCs) is very significant process and has been a main problem that draws many researchers to investigate the characteristics of MMCs during different machining process. The poor machining properties of hard particles reinforced MMCs make drilling process a rather interesting task. Unlike drilling of conventional materials, many problems can be seriously encountered during drilling of MMCs, such as tool wear and cutting forces. Cutting tool wear is a very significant concern in industries. Cutting tool wear not only influences the quality of the drilled hole, but also affects the cutting tool life. Prediction the cutting tool life during drilling is essential for optimizing the cutting conditions. However, the relationship between tool life and cutting conditions, tool geometrical factors and workpiece material properties has not yet been established by any machining theory. In this research work, fuzzy subtractive clustering system has been used to model the cutting tool life in drilling of Al2O3 particle reinforced aluminum alloy composite to investigate of the effect of cutting conditions on cutting tool life. This investigation can help in controlling and optimizing of cutting conditions when the process parameters are adjusted. The built model for prediction the tool life is identified by using drill diameter, cutting speed, and cutting feed rate as input data. The validity of the model was confirmed by the examinations under various cutting conditions. Experimental results have shown the efficiency of the model to predict cutting tool life.

Keywords: composite, fuzzy, tool life, wear

Procedia PDF Downloads 295
6652 Performance Analysis of Artificial Neural Network with Decision Tree in Prediction of Diabetes Mellitus

Authors: J. K. Alhassan, B. Attah, S. Misra

Abstract:

Human beings have the ability to make logical decisions. Although human decision - making is often optimal, it is insufficient when huge amount of data is to be classified. medical dataset is a vital ingredient used in predicting patients health condition. In other to have the best prediction, there calls for most suitable machine learning algorithms. This work compared the performance of Artificial Neural Network (ANN) and Decision Tree Algorithms (DTA) as regards to some performance metrics using diabetes data. The evaluations was done using weka software and found out that DTA performed better than ANN. Multilayer Perceptron (MLP) and Radial Basis Function (RBF) were the two algorithms used for ANN, while RegTree and LADTree algorithms were the DTA models used. The Root Mean Squared Error (RMSE) of MLP is 0.3913,that of RBF is 0.3625, that of RepTree is 0.3174 and that of LADTree is 0.3206 respectively.

Keywords: artificial neural network, classification, decision tree algorithms, diabetes mellitus

Procedia PDF Downloads 408
6651 Comparison of Machine Learning Models for the Prediction of System Marginal Price of Greek Energy Market

Authors: Ioannis P. Panapakidis, Marios N. Moschakis

Abstract:

The Greek Energy Market is structured as a mandatory pool where the producers make their bid offers in day-ahead basis. The System Operator solves an optimization routine aiming at the minimization of the cost of produced electricity. The solution of the optimization problem leads to the calculation of the System Marginal Price (SMP). Accurate forecasts of the SMP can lead to increased profits and more efficient portfolio management from the producer`s perspective. Aim of this study is to provide a comparative analysis of various machine learning models such as artificial neural networks and neuro-fuzzy models for the prediction of the SMP of the Greek market. Machine learning algorithms are favored in predictions problems since they can capture and simulate the volatilities of complex time series.

Keywords: deregulated energy market, forecasting, machine learning, system marginal price

Procedia PDF Downloads 215
6650 Optimization of the Co-Precipitation of Industrial Waste Metals in a Continuous Reactor System

Authors: Thomas S. Abia II, Citlali Garcia-Saucedo

Abstract:

A continuous copper precipitation treatment (CCPT) system was conceived at Intel Chandler Site to serve as a first-of-kind (FOK) facility-scale waste copper (Cu), nickel (Ni), and manganese (Mn) co-precipitation facility. The process was designed to treat highly variable wastewater discharged from a substrate packaging research factory. The paper discusses metals co-precipitation induced by internal changes for manufacturing facilities that lack the capacity for hardware expansion due to real estate restrictions, aggressive schedules, or budgetary constraints. Herein, operating parameters such as pH and oxidation reduction potential (ORP) were examined to analyze the ability of the CCPT System to immobilize various waste metals. Additionally, influential factors such as influent concentrations and retention times were investigated to quantify the environmental variability against system performance. A total of 2,027 samples were analyzed and statistically evaluated to measure the performance of CCPT that was internally retrofitted for Mn abatement to meet environmental regulations. In order to enhance the consistency of the influent, a separate holding tank was cannibalized from another system to collect and slow-feed the segregated Mn wastewater from the factory into CCPT. As a result, the baseline influent Mn decreased from 17.2+18.7 mg1L-1 at pre-pilot to 5.15+8.11 mg1L-1 post-pilot (70.1% reduction). Likewise, the pre-trial and post-trial average influent Cu values to CCPT were 52.0+54.6 mg1L-1 and 33.9+12.7 mg1L-1, respectively (34.8% reduction). However, the raw Ni content of 0.97+0.39 mg1L-1 at pre-pilot increased to 1.06+0.17 mg1L-1 at post-pilot. The average Mn output declined from 10.9+11.7 mg1L-1 at pre-pilot to 0.44+1.33 mg1L-1 at post-pilot (96.0% reduction) as a result of the pH and ORP operating setpoint changes. In similar fashion, the output Cu quality improved from 1.60+5.38 mg1L-1 to 0.55+1.02 mg1L-1 (65.6% reduction) while the Ni output sustained a 50% enhancement during the pilot study (0.22+0.19 mg1L-1 reduced to 0.11+0.06 mg1L-1). pH and ORP were shown to be significantly instrumental to the precipitative versatility of the CCPT System.

Keywords: copper, co-precipitation, industrial wastewater treatment, manganese, optimization, pilot study

Procedia PDF Downloads 269
6649 Dynamical Models for Enviromental Effect Depuration for Structural Health Monitoring of Bridges

Authors: Francesco Morgan Bono, Simone Cinquemani

Abstract:

This research aims to enhance bridge monitoring by employing innovative techniques that incorporate exogenous factors into the modeling of sensor signals, thereby improving long-term predictability beyond traditional static methods. Using real datasets from two different bridges equipped with Linear Variable Displacement Transducer (LVDT) sensors, the study investigates the fundamental principles governing sensor behavior for more precise long-term forecasts. Additionally, the research evaluates performance on noisy and synthetically damaged data, proposing a residual-based alarm system to detect anomalies in the bridge. In summary, this novel approach combines advanced modeling, exogenous factors, and anomaly detection to extend prediction horizons and improve preemptive damage recognition, significantly advancing structural health monitoring practices.

Keywords: structural health monitoring, dynamic models, sindy, railway bridges

Procedia PDF Downloads 38
6648 Consumers Perception of Slogans/ Taglines: A Study of Higher Education Sector in India

Authors: Puja Mahesh

Abstract:

Purpose: A good slogan captures the essence of your brand's promised consumer benefit in one short phrase. A good slogan conjures up positive imagery about your business or your product. A good slogan has the element of immediacy. Immediacy does not necessarily mean that the slogan will inspire consumers to run right out and buy your product. It does mean, however, that your slogan has an immediate cognitive impact. It forces your audience to "stop-and-think" after exposure as a necessary first step toward remembering your slogan promise. A good slogan is memorable and durability. When your slogan promise is occupying prime real estate in the consumer's subconscious, it aids in recall and activates preference for your brand when you want it -when consumers are ready to buy. The objective of current study is to understand the consumer perception of slogans/taglines of higher education sector in India. Design/Methodology/Approach: Survey of 500 consumers (largely comprising of youth) will be done using questionnaire. Universities and institutes will be chosen on the basis of various streams and Credible Rankings. The perception will be taken from the respondents on the basis of scale. Findings: Catchy phrases, rhymes, music, jingles, avatars (visual representations) and unique imagery are just a few of the mnemonic clutter-busting tactics commonly used in slogans to stand apart from the competition and to aid in memory recall. The study will reveal whether it is true that catchy phrases, rhymes, music, jingles, avatars (visual representations) and unique imagery across disciplines and universities help in building stronger brands. It will also be found whether consumers pay more attention to reputation of University/ College or brand identity. Originality/Value: Researcher has not come across any study of Consumer Perception of Slogans/Taglines of Higher Education Brands in India. Also, it would be interesting to understand Consumer Perception of various colleges/streams particularly Management colleges who invest a lot of time in branding exercise.

Keywords: consumer perception, higher education, slogans, taglines

Procedia PDF Downloads 424
6647 Developing an AI-Driven Application for Real-Time Emotion Recognition from Human Vocal Patterns

Authors: Sayor Ajfar Aaron, Mushfiqur Rahman, Sajjat Hossain Abir, Ashif Newaz

Abstract:

This study delves into the development of an artificial intelligence application designed for real-time emotion recognition from human vocal patterns. Utilizing advanced machine learning algorithms, including deep learning and neural networks, the paper highlights both the technical challenges and potential opportunities in accurately interpreting emotional cues from speech. Key findings demonstrate the critical role of diverse training datasets and the impact of ambient noise on recognition accuracy, offering insights into future directions for improving robustness and applicability in real-world scenarios.

Keywords: artificial intelligence, convolutional neural network, emotion recognition, vocal patterns

Procedia PDF Downloads 52
6646 Self-Organization-Based Approach for Embedded Real-Time System Design

Authors: S. S. Bendib, L. W. Mouss, S. Kalla

Abstract:

This paper proposes a self-organization-based approach for real-time systems design. The addressed issue is the mapping of an application onto an architecture of heterogeneous processors while optimizing both makespan and reliability. Since this problem is NP-hard, a heuristic algorithm is used to obtain efficiently approximate solutions. The proposed approach takes into consideration the quality as well as the diversity of solutions. Indeed, an alternate treatment of the two objectives allows to produce solutions of good quality while a self-organization approach based on the neighborhood structure is used to reorganize solutions and consequently to enhance their diversity. Produced solutions make different compromises between the makespan and the reliability giving the user the possibility to select the solution suited to his (her) needs.

Keywords: embedded real-time systems design, makespan, reliability, self-organization, compromises

Procedia PDF Downloads 134
6645 Assessing the Efficiency of Pre-Hospital Scoring System with Conventional Coagulation Tests Based Definition of Acute Traumatic Coagulopathy

Authors: Venencia Albert, Arulselvi Subramanian, Hara Prasad Pati, Asok K. Mukhophadhyay

Abstract:

Acute traumatic coagulopathy in an endogenous dysregulation of the intrinsic coagulation system in response to the injury, associated with three-fold risk of poor outcome, and is more amenable to corrective interventions, subsequent to early identification and management. Multiple definitions for stratification of the patients' risk for early acute coagulopathy have been proposed, with considerable variations in the defining criteria, including several trauma-scoring systems based on prehospital data. We aimed to develop a clinically relevant definition for acute coagulopathy of trauma based on conventional coagulation assays and to assess its efficacy in comparison to recently established prehospital prediction models. Methodology: Retrospective data of all trauma patients (n = 490) presented to our level I trauma center, in 2014, was extracted. Receiver operating characteristic curve analysis was done to establish cut-offs for conventional coagulation assays for identification of patients with acute traumatic coagulopathy was done. Prospectively data of (n = 100) adult trauma patients was collected and cohort was stratified by the established definition and classified as "coagulopathic" or "non-coagulopathic" and correlated with the Prediction of acute coagulopathy of trauma score and Trauma-Induced Coagulopathy Clinical Score for identifying trauma coagulopathy and subsequent risk for mortality. Results: Data of 490 trauma patients (average age 31.85±9.04; 86.7% males) was extracted. 53.3% had head injury, 26.6% had fractures, 7.5% had chest and abdominal injury. Acute traumatic coagulopathy was defined as international normalized ratio ≥ 1.19; prothrombin time ≥ 15.5 s; activated partial thromboplastin time ≥ 29 s. Of the 100 adult trauma patients (average age 36.5±14.2; 94% males), 63% had early coagulopathy based on our conventional coagulation assay definition. Overall prediction of acute coagulopathy of trauma score was 118.7±58.5 and trauma-induced coagulopathy clinical score was 3(0-8). Both the scores were higher in coagulopathic than non-coagulopathic patients (prediction of acute coagulopathy of trauma score 123.2±8.3 vs. 110.9±6.8, p-value = 0.31; trauma-induced coagulopathy clinical score 4(3-8) vs. 3(0-8), p-value = 0.89), but not statistically significant. Overall mortality was 41%. Mortality rate was significantly higher in coagulopathic than non-coagulopathic patients (75.5% vs. 54.2%, p-value = 0.04). High prediction of acute coagulopathy of trauma score also significantly associated with mortality (134.2±9.95 vs. 107.8±6.82, p-value = 0.02), whereas trauma-induced coagulopathy clinical score did not vary be survivors and non-survivors. Conclusion: Early coagulopathy was seen in 63% of trauma patients, which was significantly associated with mortality. Acute traumatic coagulopathy defined by conventional coagulation assays (international normalized ratio ≥ 1.19; prothrombin time ≥ 15.5 s; activated partial thromboplastin time ≥ 29 s) demonstrated good ability to identify coagulopathy and subsequent mortality, in comparison to the prehospital parameter-based scoring systems. Prediction of acute coagulopathy of trauma score may be more suited for predicting mortality rather than early coagulopathy. In emergency trauma situations, where immediate corrective measures need to be taken, complex multivariable scoring algorithms may cause delay, whereas coagulation parameters and conventional coagulation tests will give highly specific results.

Keywords: trauma, coagulopathy, prediction, model

Procedia PDF Downloads 176
6644 Improve Student Performance Prediction Using Majority Vote Ensemble Model for Higher Education

Authors: Wade Ghribi, Abdelmoty M. Ahmed, Ahmed Said Badawy, Belgacem Bouallegue

Abstract:

In higher education institutions, the most pressing priority is to improve student performance and retention. Large volumes of student data are used in Educational Data Mining techniques to find new hidden information from students' learning behavior, particularly to uncover the early symptom of at-risk pupils. On the other hand, data with noise, outliers, and irrelevant information may provide incorrect conclusions. By identifying features of students' data that have the potential to improve performance prediction results, comparing and identifying the most appropriate ensemble learning technique after preprocessing the data, and optimizing the hyperparameters, this paper aims to develop a reliable students' performance prediction model for Higher Education Institutions. Data was gathered from two different systems: a student information system and an e-learning system for undergraduate students in the College of Computer Science of a Saudi Arabian State University. The cases of 4413 students were used in this article. The process includes data collection, data integration, data preprocessing (such as cleaning, normalization, and transformation), feature selection, pattern extraction, and, finally, model optimization and assessment. Random Forest, Bagging, Stacking, Majority Vote, and two types of Boosting techniques, AdaBoost and XGBoost, are ensemble learning approaches, whereas Decision Tree, Support Vector Machine, and Artificial Neural Network are supervised learning techniques. Hyperparameters for ensemble learning systems will be fine-tuned to provide enhanced performance and optimal output. The findings imply that combining features of students' behavior from e-learning and students' information systems using Majority Vote produced better outcomes than the other ensemble techniques.

Keywords: educational data mining, student performance prediction, e-learning, classification, ensemble learning, higher education

Procedia PDF Downloads 107
6643 Efficient Deep Neural Networks for Real-Time Strawberry Freshness Monitoring: A Transfer Learning Approach

Authors: Mst. Tuhin Akter, Sharun Akter Khushbu, S. M. Shaqib

Abstract:

A real-time system architecture is highly effective for monitoring and detecting various damaged products or fruits that may deteriorate over time or become infected with diseases. Deep learning models have proven to be effective in building such architectures. However, building a deep learning model from scratch is a time-consuming and costly process. A more efficient solution is to utilize deep neural network (DNN) based transfer learning models in the real-time monitoring architecture. This study focuses on using a novel strawberry dataset to develop effective transfer learning models for the proposed real-time monitoring system architecture, specifically for evaluating and detecting strawberry freshness. Several state-of-the-art transfer learning models were employed, and the best performing model was found to be Xception, demonstrating higher performance across evaluation metrics such as accuracy, recall, precision, and F1-score.

Keywords: strawberry freshness evaluation, deep neural network, transfer learning, image augmentation

Procedia PDF Downloads 90
6642 Development of a Real Time Axial Force Measurement System and IoT-Based Monitoring for Smart Bearing

Authors: Hassam Ahmed, Yuanzhi Liu, Yassine Selami, Wei Tao, Hui Zhao

Abstract:

The purpose of this research is to develop a real time axial force measurement system for a smart bearing through the use of strain-gauges, whereby the data acquisition is performed by an Arduino microcontroller due to its easy manipulation and low-cost. The measured signal is acquired and then discretized using a Wheatstone Bridge and an Analog-Digital Converter (ADC) respectively. For bearing monitoring, a real time monitoring system based on Internet of things (IoT) and Bluetooth were developed. Experimental tests were performed on a bearing within a force range up to 600 kN. The experimental results show that there is a proportional linear relationship between the applied force and the output voltage, and the error R squared is within 0.9878 based on the regression analysis.

Keywords: bearing, force measurement, IoT, strain gauge

Procedia PDF Downloads 142
6641 A Web-Based Real Property Updating System for Efficient and Sustainable Urban Development: A Case Study in Ethiopia

Authors: Eyosiyas Aga

Abstract:

The development of information communication technology has transformed the paper-based mapping and land registration processes to a computerized and networked system. The computerization and networking of real property information system play a vital role in good governance and sustainable development of emerging countries through cost effective, easy and accessible service delivery for the customer. The efficient, transparent and sustainable real property system is becoming the basic infrastructure for the urban development thus improve the data management system and service delivery in the organizations. In Ethiopia, the real property administration is paper based as a result, it confronted problems of data management, illegal transactions, corruptions, and poor service delivery. In order to solve this problem and to facilitate real property market, the implementation of web-based real property updating system is crucial. A web-based real property updating is one of the automation (computerizations) methods to facilitate data sharing, reduce time and cost of the service delivery in real property administration system. In additions, it is useful for the integration of data onto different information systems and organizations. This system is designed by combining open source software which supported by open Geo-spatial consortium. The web-based system is mainly designed by using open source software with the help of open Geo-spatial Consortium. The Open Geo-spatial Consortium standards such as the Web Feature Service and Web Map Services are the most widely used standards to support and improves web-based real property updating. These features allow the integration of data from different sources, and it can be used to maintain consistency of data throughout transactions. The PostgreSQL and Geoserver are used to manage and connect a real property data to the flex viewer and user interface. The system is designed for both internal updating system (municipality); which is mainly updating of spatial and textual information, and the external system (customer) which focus on providing and interacting with the customer. This research assessed the potential of open source web applications and adopted this technology for real property updating system in Ethiopia through simple, cost effective and secured way. The system is designed by combining and customizing open source software to enhance the efficiency of the system in cost effective way. The existing workflow for real property updating is analyzed to identify the bottlenecks, and the new workflow is designed for the system. The requirement is identified through questionnaire and literature review, and the system is prototype for the study area. The research mainly aimed to integrate human resource with technology in designing of the system to reduce data inconsistency and security problems. In additions, the research reflects on the current situation of real property administration and contributions of effective data management system for efficient, transparent and sustainable urban development in Ethiopia.

Keywords: cadaster, real property, sustainable, transparency, web feature service, web map service

Procedia PDF Downloads 266
6640 Applying Artificial Neural Networks to Predict Speed Skater Impact Concussion Risk

Authors: Yilin Liao, Hewen Li, Paula McConvey

Abstract:

Speed skaters often face a risk of concussion when they fall on the ice floor and impact crash mats during practices and competitive races. Several variables, including those related to the skater, the crash mat, and the impact position (body side/head/feet impact), are believed to influence the severity of the skater's concussion. While computer simulation modeling can be employed to analyze these accidents, the simulation process is time-consuming and does not provide rapid information for coaches and teams to assess the skater's injury risk in competitive events. This research paper promotes the exploration of the feasibility of using AI techniques for evaluating skater’s potential concussion severity, and to develop a fast concussion prediction tool using artificial neural networks to reduce the risk of treatment delays for injured skaters. The primary data is collected through virtual tests and physical experiments designed to simulate skater-mat impact. It is then analyzed to identify patterns and correlations; finally, it is used to train and fine-tune the artificial neural networks for accurate prediction. The development of the prediction tool by employing machine learning strategies contributes to the application of AI methods in sports science and has theoretical involvements for using AI techniques in predicting and preventing sports-related injuries.

Keywords: artificial neural networks, concussion, machine learning, impact, speed skater

Procedia PDF Downloads 109
6639 Available Transmission Transfer Efficiency (ATTE) as an Index Measurement for Power Transmission Grid Performance

Authors: Ahmad Abubakar Sadiq, Nwohu Ndubuka Mark, Jacob Tsado, Ahmad Adam Asharaf, Agbachi E. Okenna, Enesi E. Yahaya, Ambafi James Garba

Abstract:

Transmission system performance analysis is vital to proper planning and operations of power systems in the presence of deregulation. Key performance indicators (KPIs) are often used as measure of degree of performance. This paper gives a novel method to determine the transmission efficiency by evaluating the ratio of real power losses incurred from a specified transfer direction. Available Transmission Transfer Efficiency (ATTE) expresses the percentage of real power received resulting from inter-area available power transfer. The Tie line (Rated system path) performance is seen to differ from system wide (Network response) performance and ATTE values obtained are transfer direction specific. The required sending end quantities with specified receiving end ATC and the receiving end power circle diagram are obtained for the tie line analysis. The amount of real power loss load relative to the available transfer capability gives a measure of the transmission grid efficiency.

Keywords: performance, transmission system, real power efficiency, available transfer capability

Procedia PDF Downloads 649