Search results for: plant classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5609

Search results for: plant classification

5009 Effect of Poultry Manure and Nitrogen, Phosphorus, and Potassium (15:15:15) Soil Amendment on Growth and Yield of Carrot (Daucus carota)

Authors: Benjamin Osae Agyei, Hypolite Bayor

Abstract:

This present experiment was carried out during the 2012 cropping season, at the Farming for the Future Experimental Field of the University for Development Studies, Nyankpala Campus in the Northern Region of Ghana. The objective of the experiment was to determine the carrot growth and yield responses to poultry manure and N.P.K (15:15:15). Six treatments (Control (no amendment), 20 t/ha poultry manure (PM), 40 t/ha PM, 70 t/ha PM, 35 t/ha PM + 0.11t/ha N.P.K and 0.23 t/ha N.P.K) with three replications for each were laid in a Randomized Complete Block Design (RCBD). Data were collected on plant height, number of leaves per plant, canopy spread, root diameter, root weight, and root length. Microsoft Excel and Genstat Statistical Package (9th edition) were used for the data analysis. The treatment means were compared by using Least Significant Difference at 10%. Generally, the results showed that there were no significant differences (P>0.1) among the treatments with respect to number of leaves per plant, root diameter, root weight, and root length. However, significant differences occurred among plant heights and canopy spreads. Plant height treated with 40 t/ha PM at the fourth week after planting and canopy spread at eight weeks after planting and ten weeks after planting by 70 t/ha PM and 20 t/ha PM respectively showed significant difference (P<0.1). The study recommended that any of the amended treatments can be applied at their recommended rates to plots for carrot production, since there were no significant differences among the treatments.

Keywords: poultry manure, N.P.K., soil amendment, growth, yield, carrot

Procedia PDF Downloads 471
5008 Multi-Criteria Evaluation for the Selection Process of a Wind Power Plant's Location Using Choquet Integral

Authors: Serhat Tüzün, Tufan Demirel

Abstract:

The objective of the present study is to select the most suitable location for a wind power plant station through Choquet integral method. The problem of selecting the location for a wind power station was considered as a multi-criteria decision-making problem. The essential and sub-criteria were specified and location selection was expressed in a hierarchic structure. Among the main criteria taken into account in this paper are wind potential, technical factors, social factors, transportation, and costs. The problem was solved by using different approaches of Choquet integral and the best location for a wind power station was determined. Then, the priority weights obtained from different Choquet integral approaches are compared and commented on.

Keywords: multi-criteria decision making, choquet integral, fuzzy sets, location of a wind power plant

Procedia PDF Downloads 412
5007 Toxicological Analysis of Some Plant Combinations Used for the Treatment of Hypertension by Lay People in Northern Kwazulu-Natal, South Africa

Authors: Mmbulaheni Ramulondi, Sandy Van Vuuren, Helene De Wet

Abstract:

The use of plant combinations to treat various medical conditions is not a new concept, and it is known that traditional people do not only rely on a single plant extract for efficacy but often combine various plant species for treatment. The knowledge of plant combinations is transferred from one generation to the other in the belief that combination therapy may enhance efficacy, reduce toxicity, decreases adverse effects, increase bioavailability and result in lower dosages. However, combination therapy may also be harmful when the interaction is antagonistic, since it may result in increasing toxicity. Although a fair amount of research has been done on the toxicity of medicinal plants, there is very little done on the toxicity of medicinal plants in combination. The aim of the study was to assess the toxicity potential of 19 plant combinations which have been documented as treatments of hypertension in northern KwaZulu-Natal by lay people. The aqueous extracts were assessed using two assays; the Brine shrimp assay (Artemia franciscana) and the Ames test (Mutagenicity). Only one plant combination (Aloe marlothii with Hypoxis hemerocallidea) in the current study has been previously assessed for toxicity. With the Brine shrimp assay, the plant combinations were tested in two concentrations (2 and 4 mg/ml), while for mutagenicity tests, they were tested at 5 mg/ml. The results showed that in the Brine shrimp assay, six combinations were toxic at 4 mg/ml. The combinations were Albertisia delagoensis with Senecio serratuloides (57%), Aloe marlothii with Catharanthus roseus (98%), Catharanthus roseus with Hypoxis hemerocallidea (66%), Catharanthus roseus with Musa acuminata (89%), Catharanthus roseus with Momordica balsamina (99%) and Aloe marlothii with Trichilia emetica and Hyphaene coriacea (50%). However when the concentration was reduced to 2 mg/ml, only three combinations were toxic which were Aloe marlothii with Catharanthus roseus (76%), Catharanthus roseus with Musa acuminata (66%) and Catharanthus roseus with Momordica balsamina (73%). For the mutagenicity assay, only the combinations between Catharanthus roseus with Hypoxis hemerocallidea and Catharanthus roseus with Momordica balsamina were mutagenic towards the Salmonella typhimurium strains TA98 and TA100. Most of the combinations which were toxic involve C. roseus which was also toxic when tested singularly. It is worth noting that C. roseus was one of the most frequently used plant species both to treat hypertension singularly and in combination and some of the individuals have been using this for the last 20 years. The mortality percentage of the Brine shrimp showed a significant correlation between dosage and toxicity thus toxicity was dosage dependant. A combination which is worth noting is the combination between A. delagoensis and S. serratuloides. Singularly these plants were non-toxic towards Brine shrimp, however their combination resulted in antagonism with the mortality rate of 57% at the total concentration of 4 mg/ml. Low toxicity was mostly observed, giving some validity to combined use, however the few combinations showing increased toxicity demonstrate the importance of analysing plant combinations.

Keywords: dosage, hypertension, plant combinations, toxicity

Procedia PDF Downloads 353
5006 Clinical Feature Analysis and Prediction on Recurrence in Cervical Cancer

Authors: Ravinder Bahl, Jamini Sharma

Abstract:

The paper demonstrates analysis of the cervical cancer based on a probabilistic model. It involves technique for classification and prediction by recognizing typical and diagnostically most important test features relating to cervical cancer. The main contributions of the research include predicting the probability of recurrences in no recurrence (first time detection) cases. The combination of the conventional statistical and machine learning tools is applied for the analysis. Experimental study with real data demonstrates the feasibility and potential of the proposed approach for the said cause.

Keywords: cervical cancer, recurrence, no recurrence, probabilistic, classification, prediction, machine learning

Procedia PDF Downloads 360
5005 In Vitro Micropropagation of Rosa damascena Mill

Authors: Asghar Ebrahimzadeh, Sattar Malekian, Mohammad Ali Aazami, Mohammad Bagher Hassanpouraghdam

Abstract:

Roses are of main ornamental flowers worldwide. Rosa damascena Mill., besides being an ornamental plant, has major pharmaceutical, cosmetic and fragrance applications. Traditional propagation methods of the plant are using suckers, cutting and grafting. In the present experiment, we used the different explants (leaf section, petioles and nodal cutting) for the optimization of this high-valued ornamental from a native clonal plant. Diverse explants were acquired from mature plants during the growing season and were planted on MS medium supplemented with different hormonal combinations. 70% alcohol and sodium hypochloride were utilized for the surface sterilization. For proliferation, BAP and BA (1-5 mg L-1) and NAA (1-2 mg L-1) were tested. The highest proliferation rate was afforded from MS medium supplemented with 1.5 mg L-1 BA and 5 mg L-1 BAP. Callogenesis from leaf samples and petioles was the best with 1/2 MS medium enriched with 1mg L-1 BAP and 4 mg L-1 2,4-D. Rooting was occurred with the highest frequency in a medium containing 0.1 mg L-1 IBA.

Keywords: Rosa damascene, micropropagation, petiole, IBA, BAP

Procedia PDF Downloads 582
5004 Influence of Vesicular Arbuscular Mycorrhiza on Growth of Cucumis myriocarpus Indigenous Leafy Vegetable

Authors: Pontsho E. Tseke, Phatu W. Mashela

Abstract:

Climate-smart agriculture dictates that underusilised indigenous plant, which served as food for local marginalized communities, be assessed for introduction into mainstream agriculture. Most of the underutilised indigenous plants had survived adverse conditions in the wild; with limited information on how the interact with most abiotic and biotic factors. Cucumis myriocarpus leafy vegetable has nutritional, pharmacological and industrial applications, with limited information on how it interacts with effective microorganisms. The objective of this study was to determine the effects vesicular arbuscular mycorrhiza (VAM) on the growth of C. myriocarpus indigenous leafy vegetable under greenhouse conditions. Four-weeks-old seedlings of C. myriocarpus were transplanted into 20-cm-diameter plastic pots. Two weeks after transplanting, VAM was applied at 0, 10, 20, 30, 40, 50, 60 and 70 g Biocult-VAM plant. At 56 days after treatments, plant growth variables of C. myriocarpus with increase Biocult-VAM levels exhibited positive quadratic relations. Plant variables and increasing concentrations of salinity exhibited positive quadric relations, with 95 to 99% associations. Inclusion, Biocult-VAM can be used in sustainable production of C. myriocarpus for functional food security.

Keywords: abiotic, biotic, rhizasphere, sustainable agriculture

Procedia PDF Downloads 279
5003 Potential of Lead Tolerant and Mobilizing Fungus for Plant Growth Promotion through Plant Growth Promoting Activity; A Promising Approach for Enhance Phytoremediation

Authors: Maria Manzoor, Iram Gul, Muhammad Arshad, Jean Kallerhoff

Abstract:

The potential of fungal isolates to be used in phytoremediation of widespread lead contaminated soil has been evaluated in this study. Five different fungal isolates (Trichoderma harzianum, Penicillium simplicissimum, Aspergillus flavus, Aspergillus niger and Mucor spp.) were obtained and tested for their tolerance to increasing concentration of lead (Pb) i.e. 100, 200, 300, 400 and 500 mgL-1 on PDA and PDB culture experiment. All strains were tolerant up to 500 mgL-1 following sequence; A. flavus > A. niger > Mucor spp. > P. simplicissimum > T. harzianum. Further the isolates were then monitored for possible effect on Pb solubility/mobility through soil incubation experiments and characterized for essays including pathogenicity, germination and root elongation and plant growth promoting activities including IAA (indole acetic acid), phosphorus solubilization and gibberellic acid (GA3) production. Results revealed that fungal isolates have positive effect on Pb mobility in soil and plant biomass production. Pb solubility was significantly (P> 0.05) increased in soil upon application of Mucor spp. P. simplicissimum and T. harzianum. when compared to control. Among different strains three isolates (Mucor spp., P. simplicissimum and T. harzianum) were nonpathogenic because no inhibitory effect of fungus was observed to plant growth when exposed to these strains in root shoot elongation essay. Particularly T. harzianum and P. simplicissimum showed great ability to increase root length by 1.1 and 1.3 folds and shoot length by 1.47 and 1.5 folds respectively under Pb stress (500 mgL-1). Significantly high production of IAA was observed in A. niger (26.7 μg/ml), Phosphorus solubilization was observed in T. harzianum (9.15 μg/ml) and GA3 production was observed in P. simplicissimum (11.02 μg/ml). From results it is concluded that Mucor spp., P. simplicissimum and T. harzianum have potential to increase Pb mobility and improving plant growth under highy Pb contamination, therefore can be used in microbially assisted phytoremediation of Pb contaminated soil.

Keywords: Pb tolerant fungus, Pb mobility, plant growth promoting activities, indole acetic acid (IAA)

Procedia PDF Downloads 269
5002 Evaluation of the Gas Exchange Characteristics of Selected Plant Species of Universiti Tun Hussein Onn Malaysia, UTHM

Authors: Yunusa Audu, Alona Cuevas Linatoc, Aisha Idris

Abstract:

The maximum carboxylation rate of Rubisco (Vcmax) and the maximum electron transport rate (Jmax), light compensation point (LCP), light saturation point (LSP), maximum photosynthesis (Amax), and apparent quantum yield (Aqy) are gas exchange characteristics that are derived from the carbon dioxide (CO2) and light response curves. This characteristics can be affected by the level of CO2 and light received by the plant. Moreover, the characteristics determines the photosynthetic capacity of the plant. The objective of the study is to evaluate the gas exchange characteristics of selected plant species of UTHM. Photosynthetic carbon dioxide (A\Ci) and light (A/Q) response curves were measured using portable photosynthesis system (LICOR). The results shows that both A/Ci and A/Q curves increases as CO2 and light increases, but reach to a certain point where the curves will become saturated. Spathodea campanulata was having the highest Vcmax (52.14±0.005 µmolCO2 m-2s-1), Jmax (104.461±0.011 µmolCO2 m-2s-1) and Aqy (0.072±0.001 mol CO2 mol-1 photons). The highest LCP was observed in Rhaphis excelsa (69.60±0.067 µmol photons m-2s-1) while the highest LSP was recorded for Costus spicatus (1576.69±0.173 µmol photons m-2s-1). It was concluded that the plants need high light intensity and CO2 for their maximum assimilation rate.

Keywords: Gas, Co2, Exchange, Plants

Procedia PDF Downloads 14
5001 Use of Different Plant Extracts in Fungal Disease Management of Onion (Allium cepa. L)

Authors: Shobha U. Jadhav

Abstract:

Onion is most important vegetable crop grown throughout the world. Onion suffers from pest and fungal diseases but these fungicides cause pollution and disturb microbial balance of soil. Under integrated fungal disease management programme cost effective and eco- friendly component like plant extract are used to control plant pathogens. Alternaria porri, Fusarium oxysporium, Stemphylium vesicarium are soil-borne pathogens of onion. Effect of three different plant extracts (Ocimum sanctum L., Xanthium strumarium B. and H. Withania somnifera Dunal)at five different concentration Viz, 10, 25, 50, 75, and 100 percentage on these pathogens was studied by food poisoning technique. Ocimum sanctum gave 84.21% growth of Alternaria porri at 10% extract concentration and 10.52% growth in 100% extract concentration. As compared to Fusarium oxysporium and Stemphylium vesicarium, Alternaria porri give good inhibitory response. In Xanthium strumarium B. and H. at 10% extract concentration 46.42% growth and at 100% extract concentration 28.57% growth of Fusarium oxysporum was observed. Fusarium oxysporum give good inhibitory response as compared to Alternaria porri and Stemphylium vesicarium. In Withania somnifera Dunal in 10% extract concentration 84.21% growth and in 100% extract concentration 21.05% growth of Stemphylium vesicarium was recorded. Stemphylium vesicarium give good inhibitory response as compared to Alternaria porri and Fusarium oxysporum.

Keywords: pathogen, onion, plant, extract

Procedia PDF Downloads 380
5000 Determination of Aflatoxins in Edible-Medicinal Plant Samples by HPLC with Fluorescence Detector and KOBRA-Cell

Authors: Isil Gazioglu, Abdulselam Ertas

Abstract:

Aflatoxins (AFs) are secondary toxic metabolites of Aspergillus flavus and A. parasiticus. AFs can be absorbed through the skin. Potent carcinogens like AFs should be completely absent from cosmetics, this can be achieved by careful quality control of the raw plant materials. Regulatory limits for aflatoxins have been established in many countries, and reliable testing methodology is needed to implement and enforce the regulatory limits. In this study, ten medicinal plant samples (Bundelia tournefortti, Capsella bursa-pastoris, Carduus tenuiflorus, Cardaria draba, Malva neglecta, Malvella sharardiana, Melissa officinalis, Sideritis libanotica, Stakys thirkei, Thymus nummularius) were investigated for aflatoxin (AF) contaminations by employing an HPLC assay for the determination of AFB1, B2, G1 and G2. The samples were extracted with 70% (v/v) methanol in water before further cleaned up with an immunoaffinity column and followed by the detection of AFs by using an electrochemically post-column derivatization with Kobra-Cell and fluorescence detector. The extraction procedure was optimized in order to obtain the best recovery. The method was successfully carried out with all medicinal plant samples. The results revealed that five (50%) of samples were contaminated with AFs. The association between particular samples and the AF contaminated could not be determined due to the low frequency of positive samples.

Keywords: aflatoxin B1, HPLC-FLD, KOBRA-Cell, mycotoxin

Procedia PDF Downloads 605
4999 Time-Frequency Feature Extraction Method Based on Micro-Doppler Signature of Ground Moving Targets

Authors: Ke Ren, Huiruo Shi, Linsen Li, Baoshuai Wang, Yu Zhou

Abstract:

Since some discriminative features are required for ground moving targets classification, we propose a new feature extraction method based on micro-Doppler signature. Firstly, the time-frequency analysis of measured data indicates that the time-frequency spectrograms of the three kinds of ground moving targets, i.e., single walking person, two people walking and a moving wheeled vehicle, are discriminative. Then, a three-dimensional time-frequency feature vector is extracted from the time-frequency spectrograms to depict these differences. At last, a Support Vector Machine (SVM) classifier is trained with the proposed three-dimensional feature vector. The classification accuracy to categorize ground moving targets into the three kinds of the measured data is found to be over 96%, which demonstrates the good discriminative ability of the proposed micro-Doppler feature.

Keywords: micro-doppler, time-frequency analysis, feature extraction, radar target classification

Procedia PDF Downloads 405
4998 Process Safety Evaluation of a Nuclear Power Plant through Virtual Process Hazard Analysis Using Hazard and Operability Technique

Authors: Elysa V. Largo, Lormaine Anne A. Branzuela, Julie Marisol D. Pagalilauan, Neil C. Concibido, Monet Concepcion M. Detras

Abstract:

The energy demand in the country is increasing; thus, nuclear energy is recently mandated to add to the energy mix. The Philippines has the Bataan Nuclear Power Plant (BNPP), which can be a source of nuclear energy; however, it has not been operated since the completion of its construction. Thus, evaluating the safety of BNPP is vital. This study explored the possible deviations that may occur in the operation of a nuclear power plant with a pressurized water reactor, which is similar to BNPP, through a virtual process hazard analysis (PHA) using the hazard and operability (HAZOP) technique. Temperature, pressure, and flow were used as parameters. A total of 86 causes of various deviations were identified, wherein the primary system and line from reactor coolant pump to reactor vessel are the most critical system and node, respectively. A total of 348 scenarios were determined. The critical events are radioactive leaks due to nuclear meltdown and sump overflow that could lead to multiple worker fatalities, one or more public fatalities, and environmental remediation. There were existing safeguards identified; however, further recommendations were provided to have additional and supplemental barriers to reduce the risk.

Keywords: PSM, PHA, HAZOP, nuclear power plant

Procedia PDF Downloads 154
4997 Clustering the Wheat Seeds Using SOM Artificial Neural Networks

Authors: Salah Ghamari

Abstract:

In this study, the ability of self organizing map artificial (SOM) neural networks in clustering the wheat seeds varieties according to morphological properties of them was considered. The SOM is one type of unsupervised competitive learning. Experimentally, five morphological features of 300 seeds (including three varieties: gaskozhen, Md and sardari) were obtained using image processing technique. The results show that the artificial neural network has a good performance (90.33% accuracy) in classification of the wheat varieties despite of high similarity in them. The highest classification accuracy (100%) was achieved for sardari.

Keywords: artificial neural networks, clustering, self organizing map, wheat variety

Procedia PDF Downloads 656
4996 Enhanced Degradation of Endosulfan in Soil Using Lycopersicon esculentum L. (Tomato) and Endosulfan Tolerant Bacterium Strains

Authors: Rupa Rani, Vipin Kumar

Abstract:

Endosulfan, an organochlorine pesticide is of environmental concern due to its apparent persistence and toxicity. It has been reported as contaminants in soil, air, and water and is bioaccumulated and magnified in ecosystems. The combined use of microorganisms and plants has great potential for remediating soil contaminated with organic compounds such as pesticides. The objective of this study was to evaluate whether the bacterial inoculation influences plant growth promotion, endosulfan degradation in soil and endosulfan accumulation in different plant parts. Lycopersicon esculentum L. (Tomato) was grown in endosulfan spiked soil and inoculated with endosulfan tolerant bacterial strains. Endosulfan residues from different parts of plants and soil were extracted and estimated by using gas chromatograph equipped with 63Ni electron capture detector (GC-ECD). The inoculation of bacterial strains into the soil with plants showed a beneficial effect on endosulfan degradation and plant biomass production. Maximum endosulfan (90%) degradation was observed after 120 days of bacterial inoculation in the soil. Furthermore, there was significantly less endosulfan accumulation in roots and shoots of bacterial strains inoculated plants as compared to uninoculated plants. The results show the effectiveness of inoculated endosulfan tolerant bacterial strains to increase the remediation of endosulfan contaminated soil.

Keywords: organochlorine pesticides, endosulfan, degradation, plant-bacteria partnerships

Procedia PDF Downloads 151
4995 SEM Image Classification Using CNN Architectures

Authors: Güzi̇n Ti̇rkeş, Özge Teki̇n, Kerem Kurtuluş, Y. Yekta Yurtseven, Murat Baran

Abstract:

A scanning electron microscope (SEM) is a type of electron microscope mainly used in nanoscience and nanotechnology areas. Automatic image recognition and classification are among the general areas of application concerning SEM. In line with these usages, the present paper proposes a deep learning algorithm that classifies SEM images into nine categories by means of an online application to simplify the process. The NFFA-EUROPE - 100% SEM data set, containing approximately 21,000 images, was used to train and test the algorithm at 80% and 20%, respectively. Validation was carried out using a separate data set obtained from the Middle East Technical University (METU) in Turkey. To increase the accuracy in the results, the Inception ResNet-V2 model was used in view of the Fine-Tuning approach. By using a confusion matrix, it was observed that the coated-surface category has a negative effect on the accuracy of the results since it contains other categories in the data set, thereby confusing the model when detecting category-specific patterns. For this reason, the coated-surface category was removed from the train data set, hence increasing accuracy by up to 96.5%.

Keywords: convolutional neural networks, deep learning, image classification, scanning electron microscope

Procedia PDF Downloads 125
4994 Merit Order of Indonesian Coal Mining Sources to Meet the Domestic Power Plants Demand

Authors: Victor Siahaan

Abstract:

Coal still become the most important energy source for electricity generation known for its contribution which take the biggest portion of energy mix that a country has, for example Indonesia. The low cost of electricity generation and quite a lot of resources make this energy still be the first choice to fill the portion of base load power. To realize its significance to produce electricity, it is necessary to know the amount of coal (volume) needed to ensure that all coal power plants (CPP) in a country can operate properly. To secure the volume of coal, in this study, discussion was carried out regarding the identification of coal mining sources in Indonesia, classification of coal typical from each coal mining sources, and determination of the port of loading. By using data above, the sources of coal mining are then selected to feed certain CPP based on the compatibility of the coal typical and the lowest transport cost.

Keywords: merit order, Indonesian coal mine, electricity, power plant

Procedia PDF Downloads 153
4993 Impact of Organic Fertilizer, Inorganic Fertilizer and Soil Conditioner on Growth and Yield of Cowpea (Vigna unguiculata L. Walp) in Sudan Savannah, Nigeria

Authors: Mohammed Bello Sokoto, Adewumi Babatunde Adebayo, Ajit Singh

Abstract:

The field experiment was conducted at the dry land Teaching and Research Farm of Usmanu Danfodiyo University, Sokoto, during the 2023 rainy season to determine the effects of organic, inorganic, soil conditioner and integrated use of soil conditioners (Agzyme) with organic (super gro) and inorganic fertilizers on the growth and yield of cowpea varieties. The research consisted of two cowpea varieties (SAMPEA-20-T and ex-GidanYunfa) and six combinations of organic and inorganic fertilizers and soil conditioners factorially combined and laid out in a Randomized Complete Block Design (RCBD) replicated three times. Data were collected on plant height, leaf area index, number of pods per plant, number of seeds per pod, days to 50% flowering, grain yield, and 100 seed weight. Results indicated that the 100% inorganic fertilizer had a significantly increased growth parameter such as plant height and number of leaves, while combined application of the organic fertilizer and soil conditioner resulted in a significant increase in yield parameters such as number of pods per plant, number of seeds per pod, 100 seed weight and grain yield. The study observed that the use of soil conditioner in combination with fertilizers supports sustainable cowpea production. Application of 50% recommended inorganic + 50% soil conditioner or 50% liquid organic + 50% soil conditioner was better in increasing the number of pods/plant, seeds/pod, 100 seed weight and grain yield. The ex-Gidan Yunfa cowpea variety generally performed better in most parameters measured, such as plant height, days to 50% flowering, number of pods per plant, number of seeds per pod, 100 seed weight and grain yield. Therefore, the combined application of 50% recommended inorganic + 50% soil conditioner or 50% liquid organic + 50% soil conditioner is effective for the sustainable production of cowpeas.

Keywords: integrated, fertilizers, growth, yield, cowpea, Sudan Savannah

Procedia PDF Downloads 46
4992 Mixed Integer Programming-Based One-Class Classification Method for Process Monitoring

Authors: Younghoon Kim, Seoung Bum Kim

Abstract:

One-class classification plays an important role in detecting outlier and abnormality from normal observations. In the previous research, several attempts were made to extend the scope of application of the one-class classification techniques to statistical process control problems. For most previous approaches, such as support vector data description (SVDD) control chart, the design of the control limits is commonly based on the assumption that the proportion of abnormal observations is approximately equal to an expected Type I error rate in Phase I process. Because of the limitation of the one-class classification techniques based on convex optimization, we cannot make the proportion of abnormal observations exactly equal to expected Type I error rate: controlling Type I error rate requires to optimize constraints with integer decision variables, but convex optimization cannot satisfy the requirement. This limitation would be undesirable in theoretical and practical perspective to construct effective control charts. In this work, to address the limitation of previous approaches, we propose the one-class classification algorithm based on the mixed integer programming technique, which can solve problems formulated with continuous and integer decision variables. The proposed method minimizes the radius of a spherically shaped boundary subject to the number of normal data to be equal to a constant value specified by users. By modifying this constant value, users can exactly control the proportion of normal data described by the spherically shaped boundary. Thus, the proportion of abnormal observations can be made theoretically equal to an expected Type I error rate in Phase I process. Moreover, analogous to SVDD, the boundary can be made to describe complex structures by using some kernel functions. New multivariate control chart applying the effectiveness of the algorithm is proposed. This chart uses a monitoring statistic to characterize the degree of being an abnormal point as obtained through the proposed one-class classification. The control limit of the proposed chart is established by the radius of the boundary. The usefulness of the proposed method was demonstrated through experiments with simulated and real process data from a thin film transistor-liquid crystal display.

Keywords: control chart, mixed integer programming, one-class classification, support vector data description

Procedia PDF Downloads 174
4991 Tea (Camellia sinensis (L.) O. Kuntze) Typology in Kenya: A Review

Authors: Joseph Kimutai Langat

Abstract:

Tea typology is the science of classifying tea. This study was carried out between November 2023 and July 2024, whose main objective was to investigate the typological classification nomenclature of processed tea in the world, narrowing down to Kenya. Centres of origin, historical background, tea growing region, scientific naming system, market, fermentation levels, processing/ oxidation levels and cultural reasons are used to classify tea at present. Of these, the most common typology is by oxidation, and more specifically, by the production methods within the oxidation categories. While the Asian tea producing countries categorises tea products based on the decreasing oxidation levels during the manufacturing process: black tea, green tea, oolong tea and instant tea, Kenya’s tea typology system is based on the degree of fermentation process, i.e. black tea, purple tea, green tea and white tea. Tea is also classified into five categories: black tea, green tea, white tea, oolong tea, and dark tea. Black tea is the main tea processed and exported in Kenya, manufactured mainly by withering, rolling, or by use of cutting-tearing-curling (CTC) method that ensures efficient conversion of leaf herbage to made tea, oxidizing, and drying before being sorted into different grades. It is from these varied typological methods that this review paper concludes that different regions of the world use different classification nomenclature. Therefore, since tea typology is not standardized, it is recommended that a global tea regulator dealing in tea classification be created to standardize tea typology, with domestic in-country regulatory bodies in tea growing countries accredited to implement the global-wide typological agreements and resolutions.

Keywords: classification, fermentation, oxidation, tea, typology

Procedia PDF Downloads 40
4990 Documentation of Traditional Knowledge on Wild Medicinal Plants of Egypt

Authors: Nahla S. Abdel-Azim, Khaled A. Shams, Elsayed A. Omer, Mahmoud M. Sakr

Abstract:

Medicinal plants play a significant role in the health care system in Egypt. Knowledge developed over the years by people is mostly unrecorded and orally passes on from one generation to the next. This knowledge is facing the danger of becoming extinct. Therefore there is an urgent need to document the medicinal and aromatic plants associated with traditional knowledge. The Egyptian Encyclopedia of wild medicinal plants (EEWMP) is the first attempt to collect most of the basic elements of the medicinal plant resources of Egypt and their traditional uses. It includes scientific data on about 500 medicinal plants in the form of monographs. Each monograph contains all available information and scientific data on the selected species including the following: names, description, distribution, parts used, habitat, conservational status, active or major chemical constituents, folk medicinal uses and heritage resources, pharmacological and biological activities, authentication, pharmaceutical products, and cultivation. The DNA bar-coding is also included (when available). A brief Arabic summary is given for every monograph. This work revealed the diversity in plant parts used in the treatment of different ailments. In addition, the traditional knowledge gathered can be considered a good starting point for effective in situ and ex-situ conservation of endangered plant species.

Keywords: encyclopedia, medicinal plant, traditional medicine, wild flora

Procedia PDF Downloads 214
4989 Study on Mitigation Measures of Gumti Hydro Power Plant Using Analytic Hierarchy Process and Concordance Analysis Techniques

Authors: K. Majumdar, S. Datta

Abstract:

Electricity is recognized as fundamental to industrialization and improving the quality of life of the people. Harnessing the immense untapped hydropower potential in Tripura region opens avenues for growth and provides an opportunity to improve the well-being of the people of the region, while making substantial contribution to the national economy. Gumti hydro power plant generates power to mitigate the crisis of power in Tripura, India. The first unit of hydro power plant (5 MW) was commissioned in June 1976 & another two units of 5 MW was commissioned simultaneously. But out of 15 MW capacity at present only 8-9 MW power is produced from Gumti hydro power plant during rainy season. But during lean season the production reduces to 0.5 MW due to shortage of water. Now, it is essential to implement some mitigation measures so that the further atrocities can be prevented and originality will be possible to restore. The decision making ability of the Analytic Hierarchy Process (AHP) and Concordance Analysis Techniques (CAT) are utilized to identify the better decision or solution to the present problem. Some related attributes are identified by the method of surveying within the experts and the available reports and literatures. Similar criteria are removed and ultimately seven relevant ones are identified. All the attributes are compared with each other and rated accordingly to their importance over the other with the help of Pair wise Comparison Matrix. In the present investigation different mitigation measures are identified and compared to find the best suitable alternative which can solve the present uncertainties involving the existence of the Gumti Hydro Power Plant.

Keywords: concordance analysis techniques, analytic hierarchy process, hydro power

Procedia PDF Downloads 354
4988 A Proposed Optimized and Efficient Intrusion Detection System for Wireless Sensor Network

Authors: Abdulaziz Alsadhan, Naveed Khan

Abstract:

In recent years intrusions on computer network are the major security threat. Hence, it is important to impede such intrusions. The hindrance of such intrusions entirely relies on its detection, which is primary concern of any security tool like Intrusion Detection System (IDS). Therefore, it is imperative to accurately detect network attack. Numerous intrusion detection techniques are available but the main issue is their performance. The performance of IDS can be improved by increasing the accurate detection rate and reducing false positive. The existing intrusion detection techniques have the limitation of usage of raw data set for classification. The classifier may get jumble due to redundancy, which results incorrect classification. To minimize this problem, Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Local Binary Pattern (LBP) can be applied to transform raw features into principle features space and select the features based on their sensitivity. Eigen values can be used to determine the sensitivity. To further classify, the selected features greedy search, back elimination, and Particle Swarm Optimization (PSO) can be used to obtain a subset of features with optimal sensitivity and highest discriminatory power. These optimal feature subset used to perform classification. For classification purpose, Support Vector Machine (SVM) and Multilayer Perceptron (MLP) used due to its proven ability in classification. The Knowledge Discovery and Data mining (KDD’99) cup dataset was considered as a benchmark for evaluating security detection mechanisms. The proposed approach can provide an optimal intrusion detection mechanism that outperforms the existing approaches and has the capability to minimize the number of features and maximize the detection rates.

Keywords: Particle Swarm Optimization (PSO), Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), Local Binary Pattern (LBP), Support Vector Machine (SVM), Multilayer Perceptron (MLP)

Procedia PDF Downloads 367
4987 Molecular Interactions between Vicia Faba L. Cultivars and Plant Growth Promoting Rhizobacteria (PGPR), Utilized as Yield Enhancing 'Plant Probiotics'

Authors: Eleni Stefanidou, Nikolaos Katsenios, Ioanna Karamichali, Aspasia Efthimiadou, Panagiotis Madesis

Abstract:

The excessive use of pesticides and fertilizers has significant environmental and human health-related negative effects. In the frame of the development of sustainable agriculture practices, especially in the context of extreme environmental changes (climate change), it is important to develop alternative practices to increase productivity and biotic and abiotic stress tolerance. Beneficial bacteria, such as symbiotic bacteria in legumes (rhizobia) and symbiotic or free-living Plant Growth Promoting Rhizobacteria (PGPR), which could act as "plant probiotics", can promote plant growth and significantly increase the resistance of crops under adverse environmental conditions. In this study, we explored the symbiotic relationships between Faba bean (Vicia faba L.) cultivars with different PGPR bacteria, aiming to identify the possible influence on yield and biotic-abiotic phytoprotection benefits. Transcriptomic analysis of root and whole plant samples was executed for two Vicia faba L. cultivars (Polikarpi and Solon) treated with selected PGPR bacteria (6 treatments: B. subtilis + Rhizobium-mixture, A. chroococcum + Rhizobium-mixture, B. subtilis, A. chroococcum and Rhizobium-mixture). Preliminary results indicate a significant yield (Seed weight and Total number of pods) increase in both varieties, ranging around 25%, in comparison to the control, especially for the Solon cultivar. The increase was observed for all treatments, with the B. subtilis + Rhizobium-mixture treatment being the highest performing. The correlation of the physiological and morphological data with the transcriptome analysis revealed molecular mechanisms and molecular targets underlying the observed yield increase, opening perspectives for the use of nitrogen-fixing bacteria as a natural, more ecological enhancer of legume crop productivity.

Keywords: plant probiotics, PGPR, legumes, sustainable agriculture

Procedia PDF Downloads 80
4986 Classification of Germinatable Mung Bean by Near Infrared Hyperspectral Imaging

Authors: Kaewkarn Phuangsombat, Arthit Phuangsombat, Anupun Terdwongworakul

Abstract:

Hard seeds will not grow and can cause mold in sprouting process. Thus, the hard seeds need to be separated from the normal seeds. Near infrared hyperspectral imaging in a range of 900 to 1700 nm was implemented to develop a model by partial least squares discriminant analysis to discriminate the hard seeds from the normal seeds. The orientation of the seeds was also studied to compare the performance of the models. The model based on hilum-up orientation achieved the best result giving the coefficient of determination of 0.98, and root mean square error of prediction of 0.07 with classification accuracy was equal to 100%.

Keywords: mung bean, near infrared, germinatability, hard seed

Procedia PDF Downloads 305
4985 Performance Study of Classification Algorithms for Consumer Online Shopping Attitudes and Behavior Using Data Mining

Authors: Rana Alaa El-Deen Ahmed, M. Elemam Shehab, Shereen Morsy, Nermeen Mekawie

Abstract:

With the growing popularity and acceptance of e-commerce platforms, users face an ever increasing burden in actually choosing the right product from the large number of online offers. Thus, techniques for personalization and shopping guides are needed by users. For a pleasant and successful shopping experience, users need to know easily which products to buy with high confidence. Since selling a wide variety of products has become easier due to the popularity of online stores, online retailers are able to sell more products than a physical store. The disadvantage is that the customers might not find products they need. In this research the customer will be able to find the products he is searching for, because recommender systems are used in some ecommerce web sites. Recommender system learns from the information about customers and products and provides appropriate personalized recommendations to customers to find the needed product. In this paper eleven classification algorithms are comparatively tested to find the best classifier fit for consumer online shopping attitudes and behavior in the experimented dataset. The WEKA knowledge analysis tool, which is an open source data mining workbench software used in comparing conventional classifiers to get the best classifier was used in this research. In this research by using the data mining tool (WEKA) with the experimented classifiers the results show that decision table and filtered classifier gives the highest accuracy and the lowest accuracy classification via clustering and simple cart.

Keywords: classification, data mining, machine learning, online shopping, WEKA

Procedia PDF Downloads 350
4984 Unprecedented Bioactive Naturally-occurring Compounds from the Rare and Endangered Plants Endemic to China

Authors: Jin-Feng Hu

Abstract:

Over the past decades, the global biodiversity has continued to decline. The threats to the terrestrial plant species have increased under anthropogenic activities and other massive ecological change impacts. The situation is much more serious in China, the third richest countries regarding plant biodiversity in the world. It was not until 1992 that the first volume of the China Plant Red Data Book was published. Nowadays, a significant number of Chinese endemic plants have been threatened (The IUCN Red List). Nevertheless, plant-originated natural products (NPs) have continued to play a crucial role in the drug discovery and development process. The opportunity for identifying new chemical entities for emerging and malignant diseases depends on a diversity of drug-producing species. Several statistical surveys unveiled that the rare and endangered plants (REPs) have proven to be better sources for drug discovery than other botanic sources. The identification of bioactive NPs from REPs reveals the importance of conservation efforts in preventing species diversity loss and addressing human diseases at the same time. Thus, there is an urgent need to investigate these fragile REPs. Since 2013, our group has initially launched a special program to systematically identify bioactive/novel NPs from REPs native to China. The selected plant species were generally collected from the remote Mountain areas, and have never been chemically or pharmacologically investigated. Due to the difficult collection of the mass-limited samples of REPs, studies on the secondary metabolites of REPs-associated endophytes would provide a promising alternative potential solution. This presentation details the achievements that related to a series of “Phytochemical and biological studies on rare and endangered plants endemic to China”.

Keywords: bioactive naturally-occrring compounds, rare and endengered plants (REPs), plant endophytes, drug discovery

Procedia PDF Downloads 33
4983 Comparative Study Using WEKA for Red Blood Cells Classification

Authors: Jameela Ali, Hamid A. Jalab, Loay E. George, Abdul Rahim Ahmad, Azizah Suliman, Karim Al-Jashamy

Abstract:

Red blood cells (RBC) are the most common types of blood cells and are the most intensively studied in cell biology. The lack of RBCs is a condition in which the amount of hemoglobin level is lower than normal and is referred to as “anemia”. Abnormalities in RBCs will affect the exchange of oxygen. This paper presents a comparative study for various techniques for classifying the RBCs as normal, or abnormal (anemic) using WEKA. WEKA is an open source consists of different machine learning algorithms for data mining applications. The algorithm tested are Radial Basis Function neural network, Support vector machine, and K-Nearest Neighbors algorithm. Two sets of combined features were utilized for classification of blood cells images. The first set, exclusively consist of geometrical features, was used to identify whether the tested blood cell has a spherical shape or non-spherical cells. While the second set, consist mainly of textural features was used to recognize the types of the spherical cells. We have provided an evaluation based on applying these classification methods to our RBCs image dataset which were obtained from Serdang Hospital-alaysia, and measuring the accuracy of test results. The best achieved classification rates are 97%, 98%, and 79% for Support vector machines, Radial Basis Function neural network, and K-Nearest Neighbors algorithm respectively.

Keywords: K-nearest neighbors algorithm, radial basis function neural network, red blood cells, support vector machine

Procedia PDF Downloads 409
4982 Climate Change and the Invasive Alien Species of Western Himalayan State of India

Authors: Yashasvi Thakur, Vikas K. Sharma

Abstract:

The fragile Himalayan ecosystems are sensitive to environmental stresses, including direct and indirect impacts of climate stresses. A total of 297 naturalized alien plant species belonging to 65 families in the IHR have already been reported. Of the total 297 naturalized alien plant species in IHR, the maximum species occur in Himachal Pradesh (232; 78.1%), followed by Jammu & Kashmir (192; 64.6%) and Uttarakhand (181; 60.90%). The present study reports the spread of some invasive and existing weed species like Ageratum conyzoides, Bidens pilosa, Chromolaena odorata, Lantana camara, Brossnetia papyrifera, Oxalis corniculata, Galinsoga parviflora, Panicum maximum at an extent that they are not only invading the agricultural fields but are also replacing the native plant species and degrading the existing grassland quality. Moreover, the degradation of grassland has led to the dry fodder shortage for livestock in the lower Shivalik ranges of the state of Himachal Pradesh and has also encouraged the use of herbicides at an extensive scale. This article provides a mapping of the current spread of some of these species at the block level to allow the development of appropriate management strategies and policy planning for addressing issues pertaining to plant invasion, agricultural fields, and grasslands across the IHR states.

Keywords: climate change, invasive alien species, agriculture, grassland, IHR

Procedia PDF Downloads 74
4981 Tritium Activities in Romania, Potential Support for Development of ITER Project

Authors: Gheorghe Ionita, Sebastian Brad, Ioan Stefanescu

Abstract:

In any fusion device, tritium plays a key role both as a fuel component and, due to its radioactivity and easy incorporation, as tritiated water (HTO). As for the ITER project, to reduce the constant potential of tritium emission, there will be implemented a Water Detritiation System (WDS) and an Isotopic Separation System (ISS). In the same time, during operation of fission CANDU reactors, the tritium content increases in the heavy water used as moderator and cooling agent (due to neutron activation) and it has to be reduced, too. In Romania, at the National Institute for Cryogenics and Isotopic Technologies (ICIT Rm-Valcea), there is an Experimental Pilot Plant for Tritium Removal (Exp. TRF), with the aim of providing technical data on the design and operation of an industrial plant for heavy water depreciation of CANDU reactors from Cernavoda NPP. The selected technology is based on the catalyzed isotopic exchange process between deuterium and liquid water (LPCE) combined with the cryogenic distillation process (CD). This paper presents an updated review of activities in the field carried out in Romania after the year 2000 and in particular those related to the development and operation of Tritium Removal Experimental Pilot Plant. It is also presented a comparison between the experimental pilot plant and industrial plant to be implemented at Cernavoda NPP. The similarities between the experimental pilot plant from ICIT Rm-Valcea and water depreciation and isotopic separation systems from ITER are also presented and discussed. Many aspects or 'opened issues' relating to WDS and ISS could be checked and clarified by a special research program, developed within ExpTRF. By these achievements and results, ICIT Rm - Valcea has proved its expertise and capability concerning tritium management therefore its competence may be used within ITER project.

Keywords: ITER project, heavy water detritiation, tritium removal, isotopic exchange

Procedia PDF Downloads 413
4980 Use of Chlorophyll Meters to Assess In-Season Wheat Nitrogen Fertilizer Requirements in the Southern San Joaquin Valley

Authors: Brian Marsh

Abstract:

Nitrogen fertilizer is the most used and often the most mismanaged nutrient input. Nitrogen management has tremendous implications on crop productivity, quality and environmental stewardship. Sufficient nitrogen is needed to optimum yield and quality. Soil and in-season plant tissue testing for nitrogen status are a time consuming and expensive process. Real time sensing of plant nitrogen status can be a useful tool in managing nitrogen inputs. The objectives of this project were to assess the reliability of remotely sensed non-destructive plant nitrogen measurements compared to wet chemistry data from sampled plant tissue, develop in-season nitrogen recommendations based on remotely sensed data for improved nitrogen use efficiency and assess the potential for determining yield and quality from remotely sensed data. Very good correlations were observed between early-season remotely sensed crop nitrogen status and plant nitrogen concentrations and subsequent in-season fertilizer recommendations. The transmittance/absorbance type meters gave the most accurate readings. Early in-season fertilizer recommendation would be to apply 40 kg nitrogen per hectare plus 16 kg nitrogen per hectare for each unit difference measured with the SPAD meter between the crop and reference area or 25 kg plus 13 kg per hectare for each unit difference measured with the CCM 200. Once the crop was sufficiently fertilized meter readings became inconclusive and were of no benefit for determining nitrogen status, silage yield and quality and grain yield and protein.

Keywords: wheat, nitrogen fertilization, chlorophyll meter

Procedia PDF Downloads 393