Search results for: one side class algorithm
7128 Fast and Robust Long-term Tracking with Effective Searching Model
Authors: Thang V. Kieu, Long P. Nguyen
Abstract:
Kernelized Correlation Filter (KCF) based trackers have gained a lot of attention recently because of their accuracy and fast calculation speed. However, this algorithm is not robust in cases where the object is lost by a sudden change of direction, being obscured or going out of view. In order to improve KCF performance in long-term tracking, this paper proposes an anomaly detection method for target loss warning by analyzing the response map of each frame, and a classification algorithm for reliable target re-locating mechanism by using Random fern. Being tested with Visual Tracker Benchmark and Visual Object Tracking datasets, the experimental results indicated that the precision and success rate of the proposed algorithm were 2.92 and 2.61 times higher than that of the original KCF algorithm, respectively. Moreover, the proposed tracker handles occlusion better than many state-of-the-art long-term tracking methods while running at 60 frames per second.Keywords: correlation filter, long-term tracking, random fern, real-time tracking
Procedia PDF Downloads 1417127 Effect of Size and Soil Characteristic on Contribution of Side and Tip Resistance of the Drilled Shafts Axial Load Carrying Capacity
Authors: Mehrak Zargaryaeghoubi, Masood Hajali
Abstract:
Drilled shafts are the most popular of deep foundations, because they have the capability that one single shaft can easily carry the entire load of a large column from a bridge or tall building. Drilled shaft may be an economical alternative to pile foundations because a pile cap is not needed, which not only reduces that expense, but also provides a rough surface in the border of soil and concrete to carry a more axial load. Due to the larger construction sizes of drilled shafts, they have an excellent axial load carrying capacity. Part of the axial load carrying capacity of the drilled shaft is resisted by the soil below the tip of the shaft which is tip resistance and the other part is resisted by the friction developed around the drilled shaft which is side resistance. The condition at the bottom of the excavation can affect the end bearing capacity of the drilled shaft. Also, type of the soil and size of the drilled shaft can affect the frictional resistance. The main loads applied on the drilled shafts are axial compressive loads. It is important to know how many percent of the maximum applied load will be shed inside friction and how much will be transferred to the base. The axial capacity of the drilled shaft foundation is influenced by the size of the drilled shaft, and soil characteristics. In this study, the effect of the size and soil characteristic will be investigated on the contribution of side resistance and end-bearing capacity. Also, the study presents a three-dimensional finite element modeling of a drilled shaft subjected to axial load using ANSYS. The top displacement and settlement of the drilled shaft are verified with analytical results. The soil profile is considered as Table 1 and for a drilled shaft with 7 ft diameter and 95 ft length the stresses in z-direction are calculated through the length of the shaft. From the stresses in z-direction through the length of the shaft the side resistance can be calculated and with the z-direction stress at the tip, the tip resistance can be calculated. The result of the side and tip resistance for this drilled shaft are compared with the analytical results.Keywords: Drilled Shaft Foundation, size and soil characteristic, axial load capacity, Finite Element
Procedia PDF Downloads 3847126 Promoting Class Cooperation-Competition (Coo-Petition) and Empowerment to Graduating Architecture Students through a Holistic Planning Approach in Their Thesis Proposals
Authors: Felicisimo Azagra Tejuco Jr.
Abstract:
Mentoring architecture thesis students is a very critical and exhausting task for both the adviser and advisee. It poses the challenges of resource and time management for the candidate while the best professional guidance from the mentor. The University of Santo Tomas (Manila, Philippines) is Asia's oldest university. Among its notable program is its Architecture curriculum. Presently, the five-year Architecture program requires ten semesters of academic coursework. The last three semesters are relevant to each Architecture graduating student's thesis proposal and defense. The thesis proposal is developed and submitted for approval in the subject Research Methods for Architecture (RMA). Data gathering and initial schemes are conducted in Architectural Design (AD), 9, and are finalized and defended in AD 10. In recent years, their graduating students have maintained an average of 300 candidates before the pandemic. They are encouraged to explore any topic of interest or relevance. Since 2019-2020, one thesis class has used a community planning approach in mentoring the class. Compared to other sections, the first meeting of RMA has been allocated for a visioning exercise and assessment of the class's strengths-weaknesses and opportunities-threats (SWOT). Here, the work activities of the group have been finetuned to address some identified concerns while still being aligned with the academic calendar. Occasional peer critics complement class lectures. The course will end with the approval of the student's proposal. The final year or last two semesters of the graduating class will be focused on the approved proposal. Compared to the other class, the 18 weeks of the first semester consist of regular consultations, complemented by lectures from the adviser or guest speakers. Through remote peer consultations, the mentor maximized each meeting in groups of three to five, encouraging constructive criticism among the class. At the end of the first semester, mock presentations to the external jury are conducted to check the design outputs for improvement. The final semester is spent more on the finalization of the plans. Feedback from the previous semester is expected to be integrated into the final outputs. Before the final deliberations, at least two technical rehearsals were conducted per group. Regardless of the outcome, an assessment of each student's performance is held as a class. Personal realizations and observations are encouraged. Through Online surveys, Interviews, and Focused Group Discussions with the former students, the effectiveness of the mentoring strategies was reviewed and evaluated. Initial feedback highlighted the relevance of setting a positive tone for the course, constructive criticisms from peers & experts, and consciousness of deadlines as essential elements for a practical semester.Keywords: cooperation, competition, student empowerment, class vision
Procedia PDF Downloads 817125 Designing Back-Stepping Sliding Mode Controller for a Class of 4Y Octorotor
Authors: I. Khabbazi, R. Ghasemi
Abstract:
This paper presents a combination of both robust nonlinear controller and nonlinear controller for a class of nonlinear 4Y Octorotor UAV using Back-stepping and sliding mode controller. The robustness against internal and external disturbance and decoupling control are the merits of the proposed paper. The proposed controller decouples the Octorotor dynamical system. The controller is then applied to a 4Y Octorotor UAV and its feature will be shown.Keywords: sliding mode, backstepping, decoupling, octorotor UAV
Procedia PDF Downloads 4427124 Imaging of Peritoneal Malignancies - A Pictorial Essay and Proposed Imaging Framework
Authors: T. Hennedige
Abstract:
Imaging plays a crucial role in the evaluation of the extent of peritoneal disease, which in turn determines prognosis and treatment choice. Despite advances in imaging technology, assessment of the peritoneum remains relatively challenging secondary to its large surface area, complex anatomy, and variety of imaging modalities available. This poster will review the mechanisms of spread, namely intraperitoneal dissemination, directly along peritoneal pathways, haematogeneous dissemination, and lymphatic spread. This will be followed by a side-by-side pictorial comparison of the detection of peritoneal deposits using CT, MRI, and PET/CT, depicting the advantages and shortcomings of each modality. An imaging selection framework will then be presented, which may aid the clinician in selecting the appropriate imaging modality for the malignancy in question.Keywords: imaging, CT, malignancy, MRI, peritoneum, PET
Procedia PDF Downloads 1527123 Checklist for Autism Spectrum Disorder as an In-Class Observation Tool for Teachers
Authors: Werona Król-Gierat
Abstract:
The majority of Special Educational Needs checklists are intended for preliminary screening in the special education disability process. The aim of the present paper is to present their potential usefulness as in-class observation tools for teachers working with students who have already been diagnosed with a disorder. A checklist may complement and organize information about a given child, which is indispensable to improve his or her condition. The case of a Polish boy with autism will serve as an example. Last but not the least, alternative uses of checklists are suggested in the article.Keywords: autism spectrum disorders, case study, checklist, observation tool
Procedia PDF Downloads 3677122 An Algorithm Based on the Nonlinear Filter Generator for Speech Encryption
Authors: A. Belmeguenai, K. Mansouri, R. Djemili
Abstract:
This work present a new algorithm based on the nonlinear filter generator for speech encryption and decryption. The proposed algorithm consists on the use a linear feedback shift register (LFSR) whose polynomial is primitive and nonlinear Boolean function. The purpose of this system is to construct Keystream with good statistical properties, but also easily computable on a machine with limited capacity calculated. This proposed speech encryption scheme is very simple, highly efficient, and fast to implement the speech encryption and decryption. We conclude the paper by showing that this system can resist certain known attacks.Keywords: nonlinear filter generator, stream ciphers, speech encryption, security analysis
Procedia PDF Downloads 2997121 Feature Based Unsupervised Intrusion Detection
Authors: Deeman Yousif Mahmood, Mohammed Abdullah Hussein
Abstract:
The goal of a network-based intrusion detection system is to classify activities of network traffics into two major categories: normal and attack (intrusive) activities. Nowadays, data mining and machine learning plays an important role in many sciences; including intrusion detection system (IDS) using both supervised and unsupervised techniques. However, one of the essential steps of data mining is feature selection that helps in improving the efficiency, performance and prediction rate of proposed approach. This paper applies unsupervised K-means clustering algorithm with information gain (IG) for feature selection and reduction to build a network intrusion detection system. For our experimental analysis, we have used the new NSL-KDD dataset, which is a modified dataset for KDDCup 1999 intrusion detection benchmark dataset. With a split of 60.0% for the training set and the remainder for the testing set, a 2 class classifications have been implemented (Normal, Attack). Weka framework which is a java based open source software consists of a collection of machine learning algorithms for data mining tasks has been used in the testing process. The experimental results show that the proposed approach is very accurate with low false positive rate and high true positive rate and it takes less learning time in comparison with using the full features of the dataset with the same algorithm.Keywords: information gain (IG), intrusion detection system (IDS), k-means clustering, Weka
Procedia PDF Downloads 2997120 Optimizing Network Latency with Fast Path Assignment for Incoming Flows
Abstract:
Various flows in the network require to go through different types of middlebox. The improper placement of network middlebox and path assignment for flows could greatly increase the network latency and also decrease the performance of network. Minimizing the total end to end latency of all the ows requires to assign path for the incoming flows. In this paper, the flow path assignment problem in regard to the placement of various kinds of middlebox is studied. The flow path assignment problem is formulated to a linear programming problem, which is very time consuming. On the other hand, a naive greedy algorithm is studied. Which is very fast but causes much more latency than the linear programming algorithm. At last, the paper presents a heuristic algorithm named FPA, which takes bottleneck link information and estimated bandwidth occupancy into consideration, and achieves near optimal latency in much less time. Evaluation results validate the effectiveness of the proposed algorithm.Keywords: flow path, latency, middlebox, network
Procedia PDF Downloads 2107119 Clustering-Based Computational Workload Minimization in Ontology Matching
Authors: Mansir Abubakar, Hazlina Hamdan, Norwati Mustapha, Teh Noranis Mohd Aris
Abstract:
In order to build a matching pattern for each class correspondences of ontology, it is required to specify a set of attribute correspondences across two corresponding classes by clustering. Clustering reduces the size of potential attribute correspondences considered in the matching activity, which will significantly reduce the computation workload; otherwise, all attributes of a class should be compared with all attributes of the corresponding class. Most existing ontology matching approaches lack scalable attributes discovery methods, such as cluster-based attribute searching. This problem makes ontology matching activity computationally expensive. It is therefore vital in ontology matching to design a scalable element or attribute correspondence discovery method that would reduce the size of potential elements correspondences during mapping thereby reduce the computational workload in a matching process as a whole. The objective of this work is 1) to design a clustering method for discovering similar attributes correspondences and relationships between ontologies, 2) to discover element correspondences by classifying elements of each class based on element’s value features using K-medoids clustering technique. Discovering attribute correspondence is highly required for comparing instances when matching two ontologies. During the matching process, any two instances across two different data sets should be compared to their attribute values, so that they can be regarded to be the same or not. Intuitively, any two instances that come from classes across which there is a class correspondence are likely to be identical to each other. Besides, any two instances that hold more similar attribute values are more likely to be matched than the ones with less similar attribute values. Most of the time, similar attribute values exist in the two instances across which there is an attribute correspondence. This work will present how to classify attributes of each class with K-medoids clustering, then, clustered groups to be mapped by their statistical value features. We will also show how to map attributes of a clustered group to attributes of the mapped clustered group, generating a set of potential attribute correspondences that would be applied to generate a matching pattern. The K-medoids clustering phase would largely reduce the number of attribute pairs that are not corresponding for comparing instances as only the coverage probability of attributes pairs that reaches 100% and attributes above the specified threshold can be considered as potential attributes for a matching. Using clustering will reduce the size of potential elements correspondences to be considered during mapping activity, which will in turn reduce the computational workload significantly. Otherwise, all element of the class in source ontology have to be compared with all elements of the corresponding classes in target ontology. K-medoids can ably cluster attributes of each class, so that a proportion of attribute pairs that are not corresponding would not be considered when constructing the matching pattern.Keywords: attribute correspondence, clustering, computational workload, k-medoids clustering, ontology matching
Procedia PDF Downloads 2507118 Discriminant Analysis as a Function of Predictive Learning to Select Evolutionary Algorithms in Intelligent Transportation System
Authors: Jorge A. Ruiz-Vanoye, Ocotlán Díaz-Parra, Alejandro Fuentes-Penna, Daniel Vélez-Díaz, Edith Olaco García
Abstract:
In this paper, we present the use of the discriminant analysis to select evolutionary algorithms that better solve instances of the vehicle routing problem with time windows. We use indicators as independent variables to obtain the classification criteria, and the best algorithm from the generic genetic algorithm (GA), random search (RS), steady-state genetic algorithm (SSGA), and sexual genetic algorithm (SXGA) as the dependent variable for the classification. The discriminant classification was trained with classic instances of the vehicle routing problem with time windows obtained from the Solomon benchmark. We obtained a classification of the discriminant analysis of 66.7%.Keywords: Intelligent Transportation Systems, data-mining techniques, evolutionary algorithms, discriminant analysis, machine learning
Procedia PDF Downloads 4767117 Descriptive Study of Tropical Tree Species in Commercial Interest Biosphere Reserve Luki in the Democratic Republic of Congo (DRC)
Authors: Armand Okende, Joëlle De Weerdt, Esther Fichtler, Maaike De Ridder, Hans Beeckman
Abstract:
The rainforest plays a crucial role in regulating the climate balance. The biodiversity of tropical rainforests is undeniable, but many aspects remain poorly known, which directly influences its management. Despite the efforts of sustainable forest management, human pressure in terms of exploitation and smuggling of timber forms a problem compared to exploited species whose status is considered "vulnerable" on the IUCN red list compiled by. Commercial species in Class III of the Democratic Republic of Congo are the least known in the market operating, and their biology is unknown or non-existent. Identification of wood in terms of descriptions and anatomical measurements of the wood is in great demand for various stakeholders such as scientists, customs, IUCN, etc. The objective of this study is the qualitative and quantitative description of the anatomical characteristics of commercial species in Class III of DR Congo. The site of the Luki Biosphere Reserve was chosen because of its high tree species richness. This study focuses on the wood anatomy of 14 commercial species of Class III of DR Congo. Thirty-four wooden discs were collected for these species. The following parameters were measured in the field: Diameter at breast height (DBH), total height and geographic coordinates. Microtomy, identification of vessel parameters (diameter, density and grouping) and photograph of the microscopic sections and determining age were performed in this study. The results obtained are detailed anatomical descriptions of species in Class III of the Democratic Republic of Congo.Keywords: sustainable management of forest, rainforest, commercial species of class iii, vessel diameter, vessel density, grouping vessel
Procedia PDF Downloads 2187116 Handling Missing Data by Using Expectation-Maximization and Expectation-Maximization with Bootstrapping for Linear Functional Relationship Model
Authors: Adilah Abdul Ghapor, Yong Zulina Zubairi, A. H. M. R. Imon
Abstract:
Missing value problem is common in statistics and has been of interest for years. This article considers two modern techniques in handling missing data for linear functional relationship model (LFRM) namely the Expectation-Maximization (EM) algorithm and Expectation-Maximization with Bootstrapping (EMB) algorithm using three performance indicators; namely the mean absolute error (MAE), root mean square error (RMSE) and estimated biased (EB). In this study, we applied the methods of imputing missing values in two types of LFRM namely the full model of LFRM and in LFRM when the slope is estimated using a nonparametric method. Results of the simulation study suggest that EMB algorithm performs much better than EM algorithm in both models. We also illustrate the applicability of the approach in a real data set.Keywords: expectation-maximization, expectation-maximization with bootstrapping, linear functional relationship model, performance indicators
Procedia PDF Downloads 4567115 An Introduction to E-Content Producing Algorithm for Screen-Recorded Videos
Authors: Jamileh Darsareh, Mohammad Nikafrooz
Abstract:
Some teachers and e-content producers, based on their experiences, try to produce educational videos using screen recording software. There are many challenges that they may encounter while producing screen-recorded videos. These are in the domains of technical and pedagogical challenges like designing the roadmap, preparing the screen, setting the recording software and recording the screen, editing, etc. This study is a descriptive study and tries to present some procedures for producing acceptable and well-made videos. These procedures are presented in the form of an algorithm for producing screen-recorded video. This algorithm presents the main producing phases, including design, pre-production, production, post-production, and distribution. These phases consist of some steps which are supported by several technical and pedagogical considerations. Following these phases and steps according to the suggested order helps the producers to produce their intended and desired video by saving time and also facing fewer technical problems. It is expected that by using this algorithm, e-content producers and teachers gain better performance in producing educational videos.Keywords: e-content producing algorithm, screen-recorded videos, screen recording software, technical and pedagogical considerations
Procedia PDF Downloads 2007114 Performance Comparison of Prim’s and Ant Colony Optimization Algorithm to Select Shortest Path in Case of Link Failure
Authors: Rimmy Yadav, Avtar Singh
Abstract:
—Ant Colony Optimization (ACO) is a promising modern approach to the unused combinatorial optimization. Here ACO is applied to finding the shortest during communication link failure. In this paper, the performances of the prim’s and ACO algorithm are made. By comparing the time complexity and program execution time as set of parameters, we demonstrate the pleasant performance of ACO in finding excellent solution to finding shortest path during communication link failure.Keywords: ant colony optimization, link failure, prim’s algorithm, shortest path
Procedia PDF Downloads 4027113 3D Reconstruction of Human Body Based on Gender Classification
Authors: Jiahe Liu, Hongyang Yu, Feng Qian, Miao Luo
Abstract:
SMPL-X was a powerful parametric human body model that included male, neutral, and female models, with significant gender differences between these three models. During the process of 3D human body reconstruction, the correct selection of standard templates was crucial for obtaining accurate results. To address this issue, we developed an efficient gender classification algorithm to automatically select the appropriate template for 3D human body reconstruction. The key to this gender classification algorithm was the precise analysis of human body features. By using the SMPL-X model, the algorithm could detect and identify gender features of the human body, thereby determining which standard template should be used. The accuracy of this algorithm made the 3D reconstruction process more accurate and reliable, as it could adjust model parameters based on individual gender differences. SMPL-X and the related gender classification algorithm have brought important advancements to the field of 3D human body reconstruction. By accurately selecting standard templates, they have improved the accuracy of reconstruction and have broad potential in various application fields. These technologies continue to drive the development of the 3D reconstruction field, providing us with more realistic and accurate human body models.Keywords: gender classification, joint detection, SMPL-X, 3D reconstruction
Procedia PDF Downloads 727112 Analyzing Test Data Generation Techniques Using Evolutionary Algorithms
Authors: Arslan Ellahi, Syed Amjad Hussain
Abstract:
Software Testing is a vital process in software development life cycle. We can attain the quality of software after passing it through software testing phase. We have tried to find out automatic test data generation techniques that are a key research area of software testing to achieve test automation that can eventually decrease testing time. In this paper, we review some of the approaches presented in the literature which use evolutionary search based algorithms like Genetic Algorithm, Particle Swarm Optimization (PSO), etc. to validate the test data generation process. We also look into the quality of test data generation which increases or decreases the efficiency of testing. We have proposed test data generation techniques for model-based testing. We have worked on tuning and fitness function of PSO algorithm.Keywords: search based, evolutionary algorithm, particle swarm optimization, genetic algorithm, test data generation
Procedia PDF Downloads 1957111 Comparative Performance of Artificial Bee Colony Based Algorithms for Wind-Thermal Unit Commitment
Authors: P. K. Singhal, R. Naresh, V. Sharma
Abstract:
This paper presents the three optimization models, namely New Binary Artificial Bee Colony (NBABC) algorithm, NBABC with Local Search (NBABC-LS), and NBABC with Genetic Crossover (NBABC-GC) for solving the Wind-Thermal Unit Commitment (WTUC) problem. The uncertain nature of the wind power is incorporated using the Weibull probability density function, which is used to calculate the overestimation and underestimation costs associated with the wind power fluctuation. The NBABC algorithm utilizes a mechanism based on the dissimilarity measure between binary strings for generating the binary solutions in WTUC problem. In NBABC algorithm, an intelligent scout bee phase is proposed that replaces the abandoned solution with the global best solution. The local search operator exploits the neighboring region of the current solutions, whereas the integration of genetic crossover with the NBABC algorithm increases the diversity in the search space and thus avoids the problem of local trappings encountered with the NBABC algorithm. These models are then used to decide the units on/off status, whereas the lambda iteration method is used to dispatch the hourly load demand among the committed units. The effectiveness of the proposed models is validated on an IEEE 10-unit thermal system combined with a wind farm over the planning period of 24 hours.Keywords: artificial bee colony algorithm, economic dispatch, unit commitment, wind power
Procedia PDF Downloads 3797110 Cooperative Spectrum Sensing Using Hybrid IWO/PSO Algorithm in Cognitive Radio Networks
Authors: Deepa Das, Susmita Das
Abstract:
Cognitive Radio (CR) is an emerging technology to combat the spectrum scarcity issues. This is achieved by consistently sensing the spectrum, and detecting the under-utilized frequency bands without causing undue interference to the primary user (PU). In soft decision fusion (SDF) based cooperative spectrum sensing, various evolutionary algorithms have been discussed, which optimize the weight coefficient vector for maximizing the detection performance. In this paper, we propose the hybrid invasive weed optimization and particle swarm optimization (IWO/PSO) algorithm as a fast and global optimization method, which improves the detection probability with a lesser sensing time. Then, the efficiency of this algorithm is compared with the standard invasive weed optimization (IWO), particle swarm optimization (PSO), genetic algorithm (GA) and other conventional SDF based methods on the basis of convergence and detection probability.Keywords: cognitive radio, spectrum sensing, soft decision fusion, GA, PSO, IWO, hybrid IWO/PSO
Procedia PDF Downloads 4727109 The Effect of Stress on Job Performance of Frontline Employees of Hotels: Reference to Star Class Hotels in North Central Province, Sri Lanka
Authors: W. M. M. Weerasooriya, K. T. N. P. Abeywickrama
Abstract:
There has been some research on stress in the hotel industry in Sri Lanka and elsewhere. Still, the amount is not proportionate to the severity of the issue. This paper examined the effect of stress on job performance of frontline employees of Sri Lankan hotel context. Duly completed 70 self-administered questionnaires filled by frontline employees of star class hotels in North Central Province in Sri Lanka were used for the purpose with a response rate of 70%. The researcher employed empirical analysis using statistical tools such as regression analysis of Pearson’s correlation of coefficient. It was found that there is a high level of workload and role ambiguity existing among the frontline employees of hotels located in North Central Province and existing role ambiguity significantly reduce the job performance of the frontline employees of star class hotels while the existing low level of physical work environment also leads to a low level of job performance.Keywords: hotel front line employees, job stress, job performance, Sri Lanka
Procedia PDF Downloads 1317108 An Analysis of Gamification in the Post-Secondary Classroom
Authors: F. Saccucci
Abstract:
Gamification has now started to take root in the post-secondary classroom. Educators have learned much about gamification to date but there is still a great deal to learn. One definition of gamification is the ability to engage post-secondary students with games that are fun and correlate to class room curriculum. There is no shortage of literature illustrating the advantages of gamification in the class room. This study is an extension of similar thought as well as an extension of a previous study where in class testing proved with the used of paired T-test that gamification did significantly improve the students’ understanding of subject material. Gamification itself in the class room can range from high end computer simulated software to paper based games of which both have advantages and disadvantages. This analysis used a paper based game to highlight certain qualitative advantages of gamification. The paper based game in this analysis was inexpensive, required low preparation time for the faculty member and consumed approximately 20 minutes of class room time. Data for the study was collected through in class student feedback surveys and narrative from the faculty member moderating the game. Students were randomly selected into groups of four. Qualitative advantages identified in this analysis included: 1. Students had a chance to meet, connect and know other students. 2. Students enjoyed the gamification process given there was a sense of fun and competition. 3. The post assessment that followed the simulation game was not part of their grade calculation therefore it was an opportunity to participate in a low risk activity whereby students could subsequently self-assess their understanding of the subject material. 4. In the view of the student, content knowledge did increase after the gamification process. These qualitative advantages identified in this analysis contribute to the argument that there should be an attempt to use gamification in today’s post-secondary class room. The analysis also highlighted that eighty (80) percent of the respondents believe twenty minutes devoted to the gamification process was appropriate, however twenty (20) percentage of respondents believed that rather than scheduling a gamification process and its post quiz in the last week, a review for the final exam may have been more useful. An additional study to this hopes to determine if the scheduling of the gamification had any correlation to a percentage of the students not wanting to be engaged in the process. As well, the additional study hopes to determine at what incremental level of time invested in class room gamification produce no material incremental benefits to the student as well as determine if any correlation exist between respondents preferring not to have it at the end of the semester to students not believing the gamification process added to the increase of their curricular knowledge.Keywords: gamification, inexpensive, non-quantitative advantages, post-secondary
Procedia PDF Downloads 2147107 3D Human Body Reconstruction Based on Multiple Viewpoints
Authors: Jiahe Liu, HongyangYu, Feng Qian, Miao Luo
Abstract:
The aim of this study was to improve the effects of human body 3D reconstruction. The MvP algorithm was adopted to obtain key point information from multiple perspectives. This algorithm allowed the capture of human posture and joint positions from multiple angles, providing more comprehensive and accurate data. The study also incorporated the SMPL-X model, which has been widely used for human body modeling, to achieve more accurate 3D reconstruction results. The use of the MvP algorithm made it possible to observe the reconstructed object from multiple angles, thus reducing the problems of blind spots and missing information. This algorithm was able to effectively capture key point information, including the position and rotation angle of limbs, providing key data for subsequent 3D reconstruction. Compared with traditional single-view methods, the method of multi-view fusion significantly improved the accuracy and stability of reconstruction. By combining the MvP algorithm with the SMPL-X model, we successfully achieved better human body 3D reconstruction effects. The SMPL-X model is highly scalable and can generate highly realistic 3D human body models, thus providing more detail and shape information.Keywords: 3D human reconstruction, multi-view, joint point, SMPL-X
Procedia PDF Downloads 737106 Parallel Particle Swarm Optimization Optimized LDI Controller with Lyapunov Stability Criterion for Nonlinear Structural Systems
Authors: P. W. Tsai, W. L. Hong, C. W. Chen, C. Y. Chen
Abstract:
In this paper, we present a neural network (NN) based approach represent a nonlinear Tagagi-Sugeno (T-S) system. A linear differential inclusion (LDI) state-space representation is utilized to deal with the NN models. Taking advantage of the LDI representation, the stability conditions and controller design are derived for a class of nonlinear structural systems. Moreover, the concept of utilizing the Parallel Particle Swarm Optimization (PPSO) algorithm to solve the common P matrix under the stability criteria is given in this paper.Keywords: Lyapunov stability, parallel particle swarm optimization, linear differential inclusion, artificial intelligence
Procedia PDF Downloads 6617105 Generalized Dirac oscillators Associated to Non-Hermitian Quantum Mechanical Systems
Authors: Debjit Dutta, P. Roy, O. Panella
Abstract:
In recent years, non Hermitian interaction in non relativistic as well as relativistic quantum mechanics have been examined from various aspect. We can observe interesting fact that for such systems a class of potentials, namely the PT symmetric and η-pseudo Hermitian admit real eigenvalues despite being non Hermitian and analogues of those system have been experimentally verified. Point to be noted that relativistic non Hermitian (PT symmetric) interactions can be realized in optical structures and also there exists photonic realization of the (1 + 1) dimensional Dirac oscillator. We have thoroughly studied generalized Dirac oscillators with non Hermitian interactions in (1 + 1) dimensions. To be more specific, we have examined η pseudo Hermitian interactions within the framework of generalized Dirac oscillator in (1 + 1) dimensions. In particular, we have obtained a class of interactions which are η-pseudo Hermitian and the metric operator η could have been also found explicitly. It is possible to have exact solutions of the generalized Dirac oscillator for some choices of the interactions. Subsequently we have employed the mapping between the generalized Dirac oscillator and the Jaynes Cummings (JC) model by spin flip to obtain a class of exactly solvable non Hermitian JC as well as anti Jaynes Cummings (AJC) type models.Keywords: Dirac oscillator, non-Hermitian quantum system, Hermitian, relativistic
Procedia PDF Downloads 4637104 Fuzzy Population-Based Meta-Heuristic Approaches for Attribute Reduction in Rough Set Theory
Authors: Mafarja Majdi, Salwani Abdullah, Najmeh S. Jaddi
Abstract:
One of the global combinatorial optimization problems in machine learning is feature selection. It concerned with removing the irrelevant, noisy, and redundant data, along with keeping the original meaning of the original data. Attribute reduction in rough set theory is an important feature selection method. Since attribute reduction is an NP-hard problem, it is necessary to investigate fast and effective approximate algorithms. In this paper, we proposed two feature selection mechanisms based on memetic algorithms (MAs) which combine the genetic algorithm with a fuzzy record to record travel algorithm and a fuzzy controlled great deluge algorithm to identify a good balance between local search and genetic search. In order to verify the proposed approaches, numerical experiments are carried out on thirteen datasets. The results show that the MAs approaches are efficient in solving attribute reduction problems when compared with other meta-heuristic approaches.Keywords: rough set theory, attribute reduction, fuzzy logic, memetic algorithms, record to record algorithm, great deluge algorithm
Procedia PDF Downloads 4577103 A Hybrid Genetic Algorithm for Assembly Line Balancing In Automotive Sector
Authors: Qazi Salman Khalid, Muhammad Khalid, Shahid Maqsood
Abstract:
This paper presents a solution for optimizing the cycle time in an assembly line with human-robot collaboration and diverse operators. A genetic algorithm with tailored parameters is used to address the assembly line balancing problem in the automobile sector. A mathematical model is developed, depicting the problem. Currently, the firm runs on the largest candidate rule; however, it causes a lag in orders, which ultimately gets penalized. The results of the study show that the proposed GA is effective in providing efficient solutions and that the cycle time has significantly impacted productivity.Keywords: line balancing, cycle time, genetic algorithm, productivity
Procedia PDF Downloads 1417102 Exploring a Teaching Method for Elementary Students to Promote Cross-Cultural Understanding: Utilizing an American Film
Authors: Mikako Nobuhara
Abstract:
This study explores the effective methods of nurturing elementary students’ cross-cultural understanding. The delivery lecture was conducted in a private elementary school class for understanding cross-cultural differences through the film E.T. (1982). Interviews of care supporters and students were conducted, as well as student discussions were held after the class. The results were carefully observed and analyzed. Suitable findings were obtained, for instance, students’ listening skills improved; further, they deeply thought about the main character’s feelings after watching the movie. Moreover, their interest in studying English as a foreign language increased. In conclusion, more classes where students can express their opinions in front of the class need to be offered; this would enable the students to nurture their critical thinking abilities and build a sense of accomplishment when they are in elementary school. Utilizing films is one of the best ways to provide students good opportunities to engage in discussions on a specific theme. This is particularly true for elementary school students.Keywords: cross-cultural understanding, English education, elementary schools, films
Procedia PDF Downloads 1687101 Engaging Students with Special Education Needs through Technology-Enhanced Interactive Activities in Class
Authors: Pauli P.Y. Lai
Abstract:
Students with Special Education Needs (SEN) face many challenges in learning. Various challenges include difficulty in handwriting, slow understanding and assimilation, difficulty in paying attention during class, and lack of communication skills. To engage students with Special Education Needs in class with general students, Blackboard Collaborate is used as a teaching and learning tool to deliver a lecture with interactive activities. Blackboard Collaborate provides a good platform to create and enhance active, collaborative and interactive learning experience whereby the SEN students can easily interact with their general peers and the instructor by using the features of drawing on a virtual whiteboard, file sharing, classroom chatter, breakout room, hand-raising feature, polling, etc. By integrating a blended learning approach with Blackboard Collaborate, the students with Special Education Needs could engage in interactive activities with ease in class. Our research aims at exploring and discovering the use of Blackboard Collaborate for inclusive education based on a qualitative design with in-depth interviews. Being served in a general education environment, three university students with different kinds of learning disabilities have participated in our study. All participants agreed that functions provided by Blackboard Collaborate have enhanced their learning experiences and helped them learn better. Their academic performances also showed that SEN students could perform well with the help of technology. This research studies different aspects of using Blackboard Collaborate to create an inclusive learning environment for SEN students.Keywords: blackboard collaborate, enhanced learning experience, inclusive education, special education needs
Procedia PDF Downloads 1407100 Real-Time Detection of Space Manipulator Self-Collision
Authors: Zhang Xiaodong, Tang Zixin, Liu Xin
Abstract:
In order to avoid self-collision of space manipulators during operation process, a real-time detection method is proposed in this paper. The manipulator is fitted into a cylinder enveloping surface, and then the detection algorithm of collision between cylinders is analyzed. The collision model of space manipulator self-links can be detected by using this algorithm in real-time detection during the operation process. To ensure security of the operation, a safety threshold is designed. The simulation and experiment results verify the effectiveness of the proposed algorithm for a 7-DOF space manipulator.Keywords: space manipulator, collision detection, self-collision, the real-time collision detection
Procedia PDF Downloads 4747099 Examining the Performance of Three Multiobjective Evolutionary Algorithms Based on Benchmarking Problems
Authors: Konstantinos Metaxiotis, Konstantinos Liagkouras
Abstract:
The objective of this study is to examine the performance of three well-known multiobjective evolutionary algorithms for solving optimization problems. The first algorithm is the Non-dominated Sorting Genetic Algorithm-II (NSGA-II), the second one is the Strength Pareto Evolutionary Algorithm 2 (SPEA-2), and the third one is the Multiobjective Evolutionary Algorithms based on decomposition (MOEA/D). The examined multiobjective algorithms are analyzed and tested on the ZDT set of test functions by three performance metrics. The results indicate that the NSGA-II performs better than the other two algorithms based on three performance metrics.Keywords: MOEAs, multiobjective optimization, ZDT test functions, evolutionary algorithms
Procedia PDF Downloads 473