Search results for: mobile data patterns
27153 Exploring Pisa Monuments Using Mobile Augmented Reality
Authors: Mihai Duguleana, Florin Girbacia, Cristian Postelnicu, Raffaello Brodi, Marcello Carrozzino
Abstract:
Augmented Reality (AR) has taken a big leap with the introduction of mobile applications which co-locate bi-dimensional (e.g. photo, video, text) and tridimensional information with the location of the user enriching his/her experience. This study presents the advantages of using Mobile Augmented Reality (MAR) technologies in traveling applications, improving cultural heritage exploration. We propose a location-based AR application which combines co-location with the augmented visual information about Pisa monuments to establish a friendly navigation in this historic city. AR was used to render contextual visual information in the outdoor environment. The developed Android-based application offers two different options: it provides the ability to identify the monuments positioned close to the user’s position and it offers location information for getting near the key touristic objectives. We present the process of creating the monuments’ 3D map database and the navigation algorithm.Keywords: augmented reality, electronic compass, GPS, location-based service
Procedia PDF Downloads 28527152 An Analysis on Clustering Based Gene Selection and Classification for Gene Expression Data
Authors: K. Sathishkumar, V. Thiagarasu
Abstract:
Due to recent advances in DNA microarray technology, it is now feasible to obtain gene expression profiles of tissue samples at relatively low costs. Many scientists around the world use the advantage of this gene profiling to characterize complex biological circumstances and diseases. Microarray techniques that are used in genome-wide gene expression and genome mutation analysis help scientists and physicians in understanding of the pathophysiological mechanisms, in diagnoses and prognoses, and choosing treatment plans. DNA microarray technology has now made it possible to simultaneously monitor the expression levels of thousands of genes during important biological processes and across collections of related samples. Elucidating the patterns hidden in gene expression data offers a tremendous opportunity for an enhanced understanding of functional genomics. However, the large number of genes and the complexity of biological networks greatly increase the challenges of comprehending and interpreting the resulting mass of data, which often consists of millions of measurements. A first step toward addressing this challenge is the use of clustering techniques, which is essential in the data mining process to reveal natural structures and identify interesting patterns in the underlying data. This work presents an analysis of several clustering algorithms proposed to deals with the gene expression data effectively. The existing clustering algorithms like Support Vector Machine (SVM), K-means algorithm and evolutionary algorithm etc. are analyzed thoroughly to identify the advantages and limitations. The performance evaluation of the existing algorithms is carried out to determine the best approach. In order to improve the classification performance of the best approach in terms of Accuracy, Convergence Behavior and processing time, a hybrid clustering based optimization approach has been proposed.Keywords: microarray technology, gene expression data, clustering, gene Selection
Procedia PDF Downloads 32327151 Big Data for Local Decision-Making: Indicators Identified at International Conference on Urban Health 2017
Authors: Dana R. Thomson, Catherine Linard, Sabine Vanhuysse, Jessica E. Steele, Michal Shimoni, Jose Siri, Waleska Caiaffa, Megumi Rosenberg, Eleonore Wolff, Tais Grippa, Stefanos Georganos, Helen Elsey
Abstract:
The Sustainable Development Goals (SDGs) and Urban Health Equity Assessment and Response Tool (Urban HEART) identify dozens of key indicators to help local decision-makers prioritize and track inequalities in health outcomes. However, presentations and discussions at the International Conference on Urban Health (ICUH) 2017 suggested that additional indicators are needed to make decisions and policies. A local decision-maker may realize that malaria or road accidents are a top priority. However, s/he needs additional health determinant indicators, for example about standing water or traffic, to address the priority and reduce inequalities. Health determinants reflect the physical and social environments that influence health outcomes often at community- and societal-levels and include such indicators as access to quality health facilities, access to safe parks, traffic density, location of slum areas, air pollution, social exclusion, and social networks. Indicator identification and disaggregation are necessarily constrained by available datasets – typically collected about households and individuals in surveys, censuses, and administrative records. Continued advancements in earth observation, data storage, computing and mobile technologies mean that new sources of health determinants indicators derived from 'big data' are becoming available at fine geographic scale. Big data includes high-resolution satellite imagery and aggregated, anonymized mobile phone data. While big data are themselves not representative of the population (e.g., satellite images depict the physical environment), they can provide information about population density, wealth, mobility, and social environments with tremendous detail and accuracy when combined with population-representative survey, census, administrative and health system data. The aim of this paper is to (1) flag to data scientists important indicators needed by health decision-makers at the city and sub-city scale - ideally free and publicly available, and (2) summarize for local decision-makers new datasets that can be generated from big data, with layperson descriptions of difficulties in generating them. We include SDGs and Urban HEART indicators, as well as indicators mentioned by decision-makers attending ICUH 2017.Keywords: health determinant, health outcome, mobile phone, remote sensing, satellite imagery, SDG, urban HEART
Procedia PDF Downloads 20927150 Simplified Mobile AR Platform Design for Augmented Tourism
Authors: Eric Hawkinson, Edgaras Artemciukas
Abstract:
This study outlines iterations of designing mobile augmented reality (MAR) applications for tourism specific contexts. Using a design based research model, several cycles of development to implementation were analyzed and refined upon with the goal of building a MAR platform that would facilitate the creation of augmented tours and environments by non-technical users. The project took on several stages, and through the process, a simple framework was begun to be established that can inform the design and use of MAR applications for tourism contexts. As a result of these iterations of development, a platform was developed that can allow novice computer users to create augmented tourism environments. This system was able to connect existing tools in widespread use such as Google Forms and connect them to computer vision algorithms needed for more advanced augmented tourism environments. The study concludes with a discussion of this MAR platform and reveals design elements that have implications for tourism contexts. The study also points to future case uses and design approaches for augmented tourism.Keywords: augmented tourism, augmented reality, user experience, mobile design, e-tourism
Procedia PDF Downloads 21627149 Patterns and Effects of International Trade in Technology: Firm-Level Evidence
Authors: Heeyong Noh, Seongryong Kang, Sungjoo Lee
Abstract:
As the world becomes increasingly interconnected, firms have tried to explore market opportunities not only in the domestic market but also abroad. In particular, transactions of intangible assets in the global market now take on great importance. Accordingly, technology transfer activities such as patent licensing, copyright transfer, or workforce trainings which are considered significant to leverage an organization’s internal capabilities, are occurring more frequently and briskly across the world than ever before. Though a number of studies have addressed the issues regarding technology transfer, most of them have focused on university-industry technology transfer. Of course, some have investigated international technology transfer phenomenon but used patent citations data as a proxy. In order to understand the phenomena more clearly, it would be necessary to collect and analyze data that can measure technology transfer activities between firms more directly. Therefore, this study aims to examine the patterns of international trade in technology by employing data about international technology in-licensing activities in Korean firms. We also investigate the effect of international technology in-licensing strategy on a firm’s innovation performance. The research findings are expected to help R&D managers understand how firms have absorbed technological knowledge from foreign firms in the form of licensing and further develop effective international collaboration strategies. In addition, significant implications can be offered for political decision-making regarding technology trade within increasing international interconnections.Keywords: international technology trade, technology trade effect, technology transfer, R&D managers
Procedia PDF Downloads 37827148 Indexing and Incremental Approach Using Map Reduce Bipartite Graph (MRBG) for Mining Evolving Big Data
Authors: Adarsh Shroff
Abstract:
Big data is a collection of dataset so large and complex that it becomes difficult to process using data base management tools. To perform operations like search, analysis, visualization on big data by using data mining; which is the process of extraction of patterns or knowledge from large data set. In recent years, the data mining applications become stale and obsolete over time. Incremental processing is a promising approach to refreshing mining results. It utilizes previously saved states to avoid the expense of re-computation from scratch. This project uses i2MapReduce, an incremental processing extension to Map Reduce, the most widely used framework for mining big data. I2MapReduce performs key-value pair level incremental processing rather than task level re-computation, supports not only one-step computation but also more sophisticated iterative computation, which is widely used in data mining applications, and incorporates a set of novel techniques to reduce I/O overhead for accessing preserved fine-grain computation states. To optimize the mining results, evaluate i2MapReduce using a one-step algorithm and three iterative algorithms with diverse computation characteristics for efficient mining.Keywords: big data, map reduce, incremental processing, iterative computation
Procedia PDF Downloads 35027147 Mobile Phone Text Reminders and Voice Call Follow-ups Improve Attendance for Community Retail Pharmacy Refills; Learnings from Lango Sub-region in Northern Uganda
Authors: Jonathan Ogwal, Louis H. Kamulegeya, John M. Bwanika, Davis Musinguzi
Abstract:
Introduction: Community retail Pharmacy drug distribution points (CRPDDP) were implemented in the Lango sub-region as part of the Ministry of Health’s response to improving access and adherence to antiretroviral treatment (ART). Clients received their ART refills from nearby local pharmacies; as such, the need for continuous engagement through mobile phone appointment reminders and health messages. We share learnings from the implementation of mobile text reminders and voice call follow-ups among ART clients attending the CRPDDP program in northern Uganda. Methods: A retrospective data review of electronic medical records from four pharmacies allocated for CRPDDP in the Lira and Apac districts of the Lango sub-region in Northern Uganda was done from February to August 2022. The process involved collecting phone contacts of eligible clients from the health facility appointment register and uploading them onto a messaging platform customized by Rapid-pro, an open-source software. Client information, including code name, phone number, next appointment date, and the allocated pharmacy for ART refill, was collected and kept confidential. Contacts received appointment reminder messages and other messages on positive living as an ART client. Routine voice call follow-ups were done to ascertain the picking of ART from the refill pharmacy. Findings: In total, 1,354 clients were reached from the four allocated pharmacies found in urban centers. 972 clients received short message service (SMS) appointment reminders, and 382 were followed up through voice calls. The majority (75%) of the clients returned for refills on the appointed date, 20% returned within four days after the appointment date, and the remaining 5% needed follow-up where they reported that they were not in the district by the appointment date due to other engagements. Conclusion: The use of mobile text reminders and voice call follow-ups improves the attendance of community retail pharmacy refills.Keywords: antiretroviral treatment, community retail drug distribution points, mobile text reminders, voice call follow-up
Procedia PDF Downloads 9927146 Females’ Usage Patterns of Information and Communication Technologies (ICTs) in the Vhembe District, South Africa
Authors: Fulufhelo Oscar Maphiri-Makananise
Abstract:
The main purpose of this paper is to explore and provide substantiated evidence based on the usage patterns of Information and Communication Technologies (ICTs) by females in the Vhembe District in Limpopo-Province, South Africa. The study presents a broader picture and understanding about the usage of ICTs from female’s perspective. The significance of this study stems from the need to discover the role, relevance and usage patterns of ICTs such as smartphones, computers, laptops, and iPods, internet and social networking sites among females following the trends of new media technologies in the society. The main objective of the study was to investigate the usability and accessibility of ICTs to empower the Vhembe District females in South Africa. The study used quantitative research method together with elements of qualitative research to determine the major ideas, perceptions and usage patterns of ICTs by females in the District. Data collection involved structured and self-administered questionnaire with both closed-ended and open-ended questions. Two groups of respondents participated in this study. Media Studies female students (n=50) at the University of Venda provided their ideas and perceptions about the usefulness and usage patterns of ICTs such as smartphones, internet and computers at the university level, while the second group were (n=50) Makhado comprehensive school learners who also provided their perceptions and ideas about the use of ICTs at the high school level. Also, the study provides a more balanced, accurate and rational results on the pertinent issues that concern the use of ICTs by females in the Vhembe District. The researcher also believes that the findings of the study are useful as a guideline and model for ICT intervention that work as an empowerment to women in South Africa. The study showed that the main purpose of using ICTs by females was to search information for writing assignments, conducting research, dating, exchanging ideas and networking with friends and relatives that are also members of social networking sites and maintaining existing friends in real life. The study further revealed that most females were using ICTs for social purposes and accessing the internet than entertaining themselves. The finding also indicated a high number of females that used ICTs for e-learning (62%) and social purposes (85%). Moreover, the study centred on providing strong insightful information on the females’ usage patterns and their perceptions of ICTs in the Vhembe district of Limpopo province.Keywords: female users, information and communication technologies, internet, usage patterns
Procedia PDF Downloads 21527145 Modeling Bessel Beams and Their Discrete Superpositions from the Generalized Lorenz-Mie Theory to Calculate Optical Forces over Spherical Dielectric Particles
Authors: Leonardo A. Ambrosio, Carlos. H. Silva Santos, Ivan E. L. Rodrigues, Ayumi K. de Campos, Leandro A. Machado
Abstract:
In this work, we propose an algorithm developed under Python language for the modeling of ordinary scalar Bessel beams and their discrete superpositions and subsequent calculation of optical forces exerted over dielectric spherical particles. The mathematical formalism, based on the generalized Lorenz-Mie theory, is implemented in Python for its large number of free mathematical (as SciPy and NumPy), data visualization (Matplotlib and PyJamas) and multiprocessing libraries. We also propose an approach, provided by a synchronized Software as Service (SaaS) in cloud computing, to develop a user interface embedded on a mobile application, thus providing users with the necessary means to easily introduce desired unknowns and parameters and see the graphical outcomes of the simulations right at their mobile devices. Initially proposed as a free Android-based application, such an App enables data post-processing in cloud-based architectures and visualization of results, figures and numerical tables.Keywords: Bessel Beams and Frozen Waves, Generalized Lorenz-Mie Theory, Numerical Methods, optical forces
Procedia PDF Downloads 38027144 Learning through Gaming with Mobile Devices
Authors: Luis Rodrigo Valencia Pérez, Juan Manuel Peña Aguilar, Adelina Morita Alexander, Alberto Lamadrid Alvarez, Héctor Fernando Valencia Pérez
Abstract:
Financial education is among the areas of opportunity in the Spanish-speaking from an early age to high school, through mobile devices such as cell phones and tablets using ludic and fun applications like interactive games, children can learn money management and investment through time, thereby fostering the habit of saving and/or sound management of cash and family business resources, having interaction with an uncontrolled environment such as the involvement of other players in the external decisions of the environment in which the game is play. The application proposed in Phase 1 (design and development) was designed in multi-user environments, under methodologies of hybrid programming for any platform on the market and designed under CMMI standards that allow for quality production over time, following up on these improvements counting with continuous user feedback and usage statistics.Keywords: mobile educational games, ludic games, children, multiuser, design and software development
Procedia PDF Downloads 38227143 Developing an AI-Driven Application for Real-Time Emotion Recognition from Human Vocal Patterns
Authors: Sayor Ajfar Aaron, Mushfiqur Rahman, Sajjat Hossain Abir, Ashif Newaz
Abstract:
This study delves into the development of an artificial intelligence application designed for real-time emotion recognition from human vocal patterns. Utilizing advanced machine learning algorithms, including deep learning and neural networks, the paper highlights both the technical challenges and potential opportunities in accurately interpreting emotional cues from speech. Key findings demonstrate the critical role of diverse training datasets and the impact of ambient noise on recognition accuracy, offering insights into future directions for improving robustness and applicability in real-world scenarios.Keywords: artificial intelligence, convolutional neural network, emotion recognition, vocal patterns
Procedia PDF Downloads 5227142 Speed Breaker/Pothole Detection Using Hidden Markov Models: A Deep Learning Approach
Authors: Surajit Chakrabarty, Piyush Chauhan, Subhasis Panda, Sujoy Bhattacharya
Abstract:
A large proportion of roads in India are not well maintained as per the laid down public safety guidelines leading to loss of direction control and fatal accidents. We propose a technique to detect speed breakers and potholes using mobile sensor data captured from multiple vehicles and provide a profile of the road. This would, in turn, help in monitoring roads and revolutionize digital maps. Incorporating randomness in the model formulation for detection of speed breakers and potholes is crucial due to substantial heterogeneity observed in data obtained using a mobile application from multiple vehicles driven by different drivers. This is accomplished with Hidden Markov Models, whose hidden state sequence is found for each time step given the observables sequence, and are then fed as input to LSTM network with peephole connections. A precision score of 0.96 and 0.63 is obtained for classifying bumps and potholes, respectively, a significant improvement from the machine learning based models. Further visualization of bumps/potholes is done by converting time series to images using Markov Transition Fields where a significant demarcation among bump/potholes is observed.Keywords: deep learning, hidden Markov model, pothole, speed breaker
Procedia PDF Downloads 14427141 Gaze Patterns of Skilled and Unskilled Sight Readers Focusing on the Cognitive Processes Involved in Reading Key and Time Signatures
Authors: J. F. Viljoen, Catherine Foxcroft
Abstract:
Expert sight readers rely on their ability to recognize patterns in scores, their inner hearing and prediction skills in order to perform complex sight reading exercises. They also have the ability to observe deviations from expected patterns in musical scores. This increases the “Eye-hand span” (reading ahead of the point of playing) in order to process the elements in the score. The study aims to investigate the gaze patterns of expert and non-expert sight readers focusing on key and time signatures. 20 musicians were tasked with playing 12 sight reading examples composed for one hand and five examples composed for two hands to be performed on a piano keyboard. These examples were composed in different keys and time signatures and included accidentals and changes of time signature to test this theory. Results showed that the experts fixate more and for longer on key and time signatures as well as deviations in examples for two hands than the non-expert group. The inverse was true for the examples for one hand, where expert sight readers showed fewer and shorter fixations on key and time signatures as well as deviations. This seems to suggest that experts focus more on the key and time signatures as well as deviations in complex scores to facilitate sight reading. The examples written for one appeared to be too easy for the expert sight readers, compromising gaze patterns.Keywords: cognition, eye tracking, musical notation, sight reading
Procedia PDF Downloads 13827140 The Museum of Museums: A Mobile Augmented Reality Application
Authors: Qian Jin
Abstract:
Museums have been using interactive technology to spark visitor interest and improve understanding. These technologies can play a crucial role in helping visitors understand more about an exhibition site by using multimedia to provide information. Google Arts and Culture and Smartify are two very successful digital heritage products. They used mobile augmented reality to visualise the museum's 3D models and heritage images but did not include 3D models of the collection and audio information. In this research, service-oriented mobile augmented reality application was developed for users to access collections from multiple museums(including V and A, the British Museum, and British Library). The third-party API (Application Programming Interface) is requested to collect metadata (including images, 3D models, videos, and text) of three museums' collections. The acquired content is then visualized in AR environments. This product will help users who cannot visit the museum offline due to various reasons (inconvenience of transportation, physical disability, time schedule).Keywords: digital heritage, argument reality, museum, flutter, ARcore
Procedia PDF Downloads 7827139 Distributional and Developmental Analysis of PM2.5 in Beijing, China
Authors: Alexander K. Guo
Abstract:
PM2.5 poses a large threat to people’s health and the environment and is an issue of large concern in Beijing, brought to the attention of the government by the media. In addition, both the United States Embassy in Beijing and the government of China have increased monitoring of PM2.5 in recent years, and have made real-time data available to the public. This report utilizes hourly historical data (2008-2016) from the U.S. Embassy in Beijing for the first time. The first objective was to attempt to fit probability distributions to the data to better predict a number of days exceeding the standard, and the second was to uncover any yearly, seasonal, monthly, daily, and hourly patterns and trends that may arise to better understand of air control policy. In these data, 66,650 hours and 2687 days provided valid data. Lognormal, gamma, and Weibull distributions were fit to the data through an estimation of parameters. The Chi-squared test was employed to compare the actual data with the fitted distributions. The data were used to uncover trends, patterns, and improvements in PM2.5 concentration over the period of time with valid data in addition to specific periods of time that received large amounts of media attention, analyzed to gain a better understanding of causes of air pollution. The data show a clear indication that Beijing’s air quality is unhealthy, with an average of 94.07µg/m3 across all 66,650 hours with valid data. It was found that no distribution fit the entire dataset of all 2687 days well, but each of the three above distribution types was optimal in at least one of the yearly data sets, with the lognormal distribution found to fit recent years better. An improvement in air quality beginning in 2014 was discovered, with the first five months of 2016 reporting an average PM2.5 concentration that is 23.8% lower than the average of the same period in all years, perhaps the result of various new pollution-control policies. It was also found that the winter and fall months contained more days in both good and extremely polluted categories, leading to a higher average but a comparable median in these months. Additionally, the evening hours, especially in the winter, reported much higher PM2.5 concentrations than the afternoon hours, possibly due to the prohibition of trucks in the city in the daytime and the increased use of coal for heating in the colder months when residents are home in the evening. Lastly, through analysis of special intervals that attracted media attention for either unnaturally good or bad air quality, the government’s temporary pollution control measures, such as more intensive road-space rationing and factory closures, are shown to be effective. In summary, air quality in Beijing is improving steadily and do follow standard probability distributions to an extent, but still needs improvement. Analysis will be updated when new data become available.Keywords: Beijing, distribution, patterns, pm2.5, trends
Procedia PDF Downloads 24527138 Enhancing Signal Reception in a Mobile Radio Network Using Adaptive Beamforming Antenna Arrays Technology
Authors: Ugwu O. C., Mamah R. O., Awudu W. S.
Abstract:
This work is aimed at enhancing signal reception on a mobile radio network and minimizing outage probability in a mobile radio network using adaptive beamforming antenna arrays. In this research work, an empirical real-time drive measurement was done in a cellular network of Globalcom Nigeria Limited located at Ikeja, the headquarters of Lagos State, Nigeria, with reference base station number KJA 004. The empirical measurement includes Received Signal Strength and Bit Error Rate which were recorded for exact prediction of the signal strength of the network as at the time of carrying out this research work. The Received Signal Strength and Bit Error Rate were measured with a spectrum monitoring Van with the help of a Ray Tracer at an interval of 100 meters up to 700 meters from the transmitting base station. The distance and angular location measurements from the reference network were done with the help Global Positioning System (GPS). The other equipment used were transmitting equipment measurements software (Temsoftware), Laptops and log files, which showed received signal strength with distance from the base station. Results obtained were about 11% from the real-time experiment, which showed that mobile radio networks are prone to signal failure and can be minimized using an Adaptive Beamforming Antenna Array in terms of a significant reduction in Bit Error Rate, which implies improved performance of the mobile radio network. In addition, this work did not only include experiments done through empirical measurement but also enhanced mathematical models that were developed and implemented as a reference model for accurate prediction. The proposed signal models were based on the analysis of continuous time and discrete space, and some other assumptions. These developed (proposed) enhanced models were validated using MATLAB (version 7.6.3.35) program and compared with the conventional antenna for accuracy. These outage models were used to manage the blocked call experience in the mobile radio network. 20% improvement was obtained when the adaptive beamforming antenna arrays were implemented on the wireless mobile radio network.Keywords: beamforming algorithm, adaptive beamforming, simulink, reception
Procedia PDF Downloads 4127137 Improving System Performance through User's Resource Access Patterns
Authors: K. C. Wong
Abstract:
This paper demonstrates a number of examples in the hope to shed some light on the possibility of designing future operating systems in a more adaptation-based manner. A modern operating system, we conceive, should possess the capability of 'learning' in such a way that it can dynamically adjust its services and behavior according to the current status of the environment in which it operates. In other words, a modern operating system should play a more proactive role during the session of providing system services to users. As such, a modern operating system is expected to create a computing environment, in which its users are provided with system services more matching their dynamically changing needs. The examples demonstrated in this paper show that user's resource access patterns 'learned' and determined during a session can be utilized to improve system performance and hence to provide users with a better and more effective computing environment. The paper also discusses how to use the frequency, the continuity, and the duration of resource accesses in a session to quantitatively measure and determine user's resource access patterns for the examples shown in the paper.Keywords: adaptation-based systems, operating systems, resource access patterns, system performance
Procedia PDF Downloads 14527136 Observation and Analysis of Urban Micro-Climate and Urban Morphology on Block Scale in Zhengzhou City
Authors: Linlin Guo, Baofeng Li
Abstract:
Zhengzhou is a typical plain city with a high population density and a permanent population of 10 million, located in central China. The scale of this city is constantly expanding, and the urban form has changed dramatically by the accelerating process of urbanization, which makes a great effect on the urban microclimate. In order to study the influence of block morphology on urban micro-climate, air temperature, humidity, wind velocity and so on in three typical types of blocks in the center of Zhengzhou were collected, which was chosen to perform the fixed and mobile observation. After data handling and analysis, a series of graphs and diagrams were obtained to reflect the differences in the influence of different types of block morphology on the urban microclimate. These can provide targeted strategies for urban design to improve and regulate urban micro-climate.Keywords: urban micro-climate, block morphology, fixed and mobile observation, urban design
Procedia PDF Downloads 24027135 Proposal for a Mobile Application with Augmented Reality to Improve School Interest
Authors: Mamani Acurio Alex, Aguilar Alonso Igor
Abstract:
The lack of interest and the lack of motivation are related. The lack of both in school generates serious problems such as school dropout or a low level of learning. Augmented reality has been very useful in different areas, and in this research, it was implemented in the area of education. Information necessary for the correct development of this mobile application with augmented reality was searched using six different research repositories. It was concluded that the application must be immersive, attractive, and fun for students, and the necessary technologies for its construction were defined.Keywords: augmented reality, Vuforia, school interest, learning
Procedia PDF Downloads 8727134 The Patterns Designation by the Inspiration from Flower at Suan Sunandha Palace
Authors: Nawaporn Srisarankullawong
Abstract:
This research is about the creating the design by the inspiration of the flowers, which were once planted in Suan Sunandha Palace. The researcher have conducted the research regarding the history of Suan Sunandha Palace and the flowers which have been planted in the palace’s garden, in order to use this research to create the new designs in the future. The objective are as follows; 1. To study the shape and the pattern of the flowers in Suan Sunandha Palace, in order to select a few of them as the model to create the new design. 2. In order to create the flower design from the flowers in Suan Sunandha Palace by using the current photograph of the flowers which were once used to be planted inside the palace and using adobe Illustrator and Adobe Photoshop programs to create the patterns and the model. The result of the research: From the research, the researcher had selected three types of flowers to crate the pattern model; they are Allamanda, Orchids and Flamingo Plant. The details of the flowers had been reduced in order to show the simplicity and create the pattern model to use them for models, so three flowers had created three pattern models and they had been developed into six patterns, using universal artist techniques, so the pattern created are modern and they can be used for further decoration.Keywords: patterns design, Suan Sunandha Palace, pattern of the flowers, visual arts and design
Procedia PDF Downloads 37427133 Dynamic Model of Heterogeneous Markets with Imperfect Information for the Optimization of Company's Long-Time Strategy
Authors: Oleg Oborin
Abstract:
This paper is dedicated to the development of the model, which can be used to evaluate the effectiveness of long-term corporate strategies and identify the best strategies. The theoretical model of the relatively homogenous product market (such as iron and steel industry, mobile services or road transport) has been developed. In the model, the market consists of a large number of companies with different internal characteristics and objectives. The companies can perform mergers and acquisitions in order to increase their market share. The model allows the simulation of long-time dynamics of the market (for a period longer than 20 years). Therefore, a large number of simulations on random input data was conducted in the framework of the model. After that, the results of the model were compared with the dynamics of real markets, such as the US steel industry from the beginning of the XX century to the present day, and the market of mobile services in Germany for the period between 1990 and 2015.Keywords: Economic Modelling, Long-Time Strategy, Mergers and Acquisitions, Simulation
Procedia PDF Downloads 36727132 Palestine Smart Tourism Augmented Reality Mobile Application
Authors: Murad Al-Rajab, Sherin Hazboun, Azhar Al-Hamamreh, Nirmeen Odeh, Siham Halaseh
Abstract:
Tourism is considered an important sector for most countries, while maintaining good tourism attractions can promote national economic development. The State of Palestine is historically considered a wealthy country full of many archaeological places. In the city of Bethlehem, for example, the Church of the Nativity is the most important touristic site, but it does not have enough technology development to attract tourists. In this paper, we propose a smart mobile application named “Pal-STAR” (Palestine Smart Tourist Augmented Reality) as an innovative solution which targets tourists and assists them to make a visit inside the Church of the Nativity. The application will use augmented reality and feature a virtual tourist guide showing views of the church while providing historical information in a smart, easy, effective and user-friendly way. The proposed application is compatible with multiple mobile platforms and is considered user friendly. The findings show that this application will improve the practice of the tourism sector in the Holy Land, it will also increase the number of tourists visiting the Church of the Nativity and it will facilitate access to historical data that have been difficult to obtain using traditional tourism guidance. The value that tourism adds to a country cannot be denied, and the more technological advances are incorporated in this sector, the better the country’s tourism sector can be served. Palestine’s economy is heavily dependent on tourism in many of its main cities, despite several limitations, and technological development is needed to enable this sector to flourish. The proposed mobile application would definitely have a good impact on the development of the tourism sector by creating an Augmented Reality environment for tourists inside the church, helping them to navigate and learn about holy places in a non-traditional way, using a virtual tourist guide.Keywords: smartphones, tourism, tourists guide, augmented reality, Palestine
Procedia PDF Downloads 17127131 Reaching a Mobile and Dynamic Nose after Rhinoplasty: A Pilot Study
Authors: Guncel Ozturk
Abstract:
Background: Rhinoplasty is the most commonly performed cosmetic operations in plastic surgery. Maneuvers used in rhinoplasty lead to a firm and stiff nasal tip in the early postoperative months. This unnatural stability of the nose may easily cause distortion in the reshaped nose after severe trauma. Moreover, a firm nasal tip may cause difficulties in performing activities such as touching, hugging, or kissing. Decreasing the stability and increasing the mobility of the nasal tip would help rhinoplasty patients to avoid these small but relatively important problems. Methods: We use delivery approach with closed rhinoplasty and changed positions of intranasal incisions to reach a dynamic and mobile nose. A total of 203 patients who had undergone primary closed rhinoplasty in private practice were inspected retrospectively. Posterior strut flap that was connected with connective tissues in the caudal of septum and the medial crurals were formed. Cartilage of the posterior strut graft was left 2 mm thick in the distal part of septum, it was cut vertically, and the connective tissue in the distal part was preserved. Results: The median patient age was 24 (range 17-42) years. The median follow-up period was15.2 (range12-26) months. Patient satisfaction was assessed with the 'Rhinoplasty Outcome Evaluation' (ROE) questionnaire. Twelve months after surgeries, 87.5% of patients reported excellent outcomes, according to ROE. Conclusion: The soft tissue connections between that segment and surrounding structures should be preserved to save the support of the tip while having a mobile tip at the same time with this method. These modifications would access to a mobile, non-stiff, and dynamic nasal tip in the early postoperative months. Further and prospective studies should be performed for supporting this method.Keywords: closed rhinoplasty, dynamic, mobile, tip
Procedia PDF Downloads 13327130 Dual-Network Memory Model for Temporal Sequences
Authors: Motonobu Hattori
Abstract:
In neural networks, when new patters are learned by a network, they radically interfere with previously stored patterns. This drawback is called catastrophic forgetting. We have already proposed a biologically inspired dual-network memory model which can much reduce this forgetting for static patterns. In this model, information is first stored in the hippocampal network, and thereafter, it is transferred to the neocortical network using pseudo patterns. Because, temporal sequence learning is more important than static pattern learning in the real world, in this study, we improve our conventional dual-network memory model so that it can deal with temporal sequences without catastrophic forgetting. The computer simulation results show the effectiveness of the proposed dual-network memory model.Keywords: catastrophic forgetting, dual-network, temporal sequences, hippocampal
Procedia PDF Downloads 26927129 Secure Texting Used in a Post-Acute Pediatric Skilled Nursing Inpatient Setting: A Multidisciplinary Care Team Driven Communication System with Alarm and Alert Notification Management
Authors: Bency Ann Massinello, Nancy Day, Janet Fellini
Abstract:
Background: The use of an appropriate mode of communication among the multidisciplinary care team members regarding coordination of care is an extremely complicated yet important patient safety initiative. Effective communication among the team members(nursing staff, medical staff, respiratory therapists, rehabilitation therapists, patient-family services team…) become essential to develop a culture of trust and collaboration to deliver the highest quality care to patients are their families. The inpatient post-acute pediatrics, where children and their caregivers come for continuity of care, is no exceptions to the increasing use of text messages as a means to communication among clinicians. One such platform is the Vocera Communications (Vocera Smart Mobile App called Vocera Edge) allows the teams to use the application and share sensitive patient information through an encrypted platform using IOS company provided shared and assigned mobile devices. Objective: This paper discusses the quality initiative of implementing the transition from Vocera Smartbage to Vocera Edge Mobile App, technology advantage, use case expansion, and lessons learned about a secure alternative modality that allows sending and receiving secure text messages in a pediatric post-acute setting using an IOS device. This implementation process included all direct care staff, ancillary teams, and administrative teams on the clinical units. Methods: Our institution launched this transition from voice prompted hands-free Vocera Smartbage to Vocera Edge mobile based app for secure care team texting using a big bang approach during the first PDSA cycle. The pre and post implementation data was gathered using a qualitative survey of about 500 multidisciplinary team members to determine the ease of use of the application and its efficiency in care coordination. The technology was further expanded in its use by implementing clinical alerts and alarms notification using middleware integration with patient monitoring (Masimo) and life safety (Nurse call) systems. Additional use of the smart mobile iPhone use include pushing out apps like Lexicomp and Up to Date to have it readily available for users for evident-based practice in medication and disease management. Results: Successful implementation of the communication system in a shared and assigned model with all of the multidisciplinary teams in our pediatric post-acute setting. In just a 3-monthperiod post implementation, we noticed a 14% increase from 7,993 messages in 6 days in December 2020 to 9,116messages in March 2021. This confirmed that all clinical and non-clinical teams were using this mode of communication for coordinating the care for their patients. System generated data analytics used in addition to the pre and post implementation staff survey for process evaluation. Conclusion: A secure texting option using a mobile device is a safe and efficient mode for care team communication and collaboration using technology in real time. This allows for the settings like post-acute pediatric care areas to be in line with the widespread use of mobile apps and technology in our mainstream healthcare.Keywords: nursing informatics, mobile secure texting, multidisciplinary communication, pediatrics post acute care
Procedia PDF Downloads 19627128 Applying Arima Data Mining Techniques to ERP to Generate Sales Demand Forecasting: A Case Study
Authors: Ghaleb Y. Abbasi, Israa Abu Rumman
Abstract:
This paper modeled sales history archived from 2012 to 2015 bulked in monthly bins for five products for a medical supply company in Jordan. The sales forecasts and extracted consistent patterns in the sales demand history from the Enterprise Resource Planning (ERP) system were used to predict future forecasting and generate sales demand forecasting using time series analysis statistical technique called Auto Regressive Integrated Moving Average (ARIMA). This was used to model and estimate realistic sales demand patterns and predict future forecasting to decide the best models for five products. Analysis revealed that the current replenishment system indicated inventory overstocking.Keywords: ARIMA models, sales demand forecasting, time series, R code
Procedia PDF Downloads 38527127 Pattern Recognition Using Feature Based Die-Map Clustering in the Semiconductor Manufacturing Process
Authors: Seung Hwan Park, Cheng-Sool Park, Jun Seok Kim, Youngji Yoo, Daewoong An, Jun-Geol Baek
Abstract:
Depending on the big data analysis becomes important, yield prediction using data from the semiconductor process is essential. In general, yield prediction and analysis of the causes of the failure are closely related. The purpose of this study is to analyze pattern affects the final test results using a die map based clustering. Many researches have been conducted using die data from the semiconductor test process. However, analysis has limitation as the test data is less directly related to the final test results. Therefore, this study proposes a framework for analysis through clustering using more detailed data than existing die data. This study consists of three phases. In the first phase, die map is created through fail bit data in each sub-area of die. In the second phase, clustering using map data is performed. And the third stage is to find patterns that affect final test result. Finally, the proposed three steps are applied to actual industrial data and experimental results showed the potential field application.Keywords: die-map clustering, feature extraction, pattern recognition, semiconductor manufacturing process
Procedia PDF Downloads 40227126 Smartphone Addiction and Reaction Time in Geriatric Population
Authors: Anjali N. Shete, G. D. Mahajan, Nanda Somwanshi
Abstract:
Context: Smartphones are the new generation of mobile phones; they have emerged over the last few years. Technology has developed so much that it has become part of our life and mobile phones are one of them. These smartphones are equipped with the capabilities to display photos, play games, watch videos and navigation, etc. The advances have a huge impact on many walks of life. The adoption of new technology has been challenging for the elderly. But, the elder population is also moving towards digitally connected lives. As age advances, there is a decline in the motor and cognitive functions of the brain, and hence the reaction time is affected. The study was undertaken to assess the usefulness of smartphones in improving cognitive functions. Aims and Objectives: The aim of the study was to observe the effects of smartphone addiction on reaction time in elderly population Material and Methods: This is an experimental study. 100 elderly subjects were enrolled in this study randomly from urban areas. They all were using smartphones for several hours a day. They were divided into two groups according to the scores of the mobile phone addiction scale (MPAS). Simple reaction time was estimated by the Ruler drop method. The reaction time was then calculated for each subject in both groups. The data were analyzed using mean, standard deviation, and Pearson correlation test. Results: The mean reaction time in Group A is 0.27+ 0.040 and in Group B is 0.20 + 0.032. The values show a statistically significant change in reaction time. Conclusion: Group A with a high MPAS score has a low reaction time compared to Group B with a low MPAS score. Hence, it can be concluded that the use of smartphones in the elderly is useful, delaying the neurological decline, and smarten the brain.Keywords: smartphones, MPAS, reaction time, elderly population
Procedia PDF Downloads 17727125 Chatbots vs. Websites: A Comparative Analysis Measuring User Experience and Emotions in Mobile Commerce
Authors: Stephan Boehm, Julia Engel, Judith Eisser
Abstract:
During the last decade communication in the Internet transformed from a broadcast to a conversational model by supporting more interactive features, enabling user generated content and introducing social media networks. Another important trend with a significant impact on electronic commerce is a massive usage shift from desktop to mobile devices. However, a presentation of product- or service-related information accumulated on websites, micro pages or portals often remains the pivot and focal point of a customer journey. A more recent change of user behavior –especially in younger user groups and in Asia– is going along with the increasing adoption of messaging applications supporting almost real-time but asynchronous communication on mobile devices. Mobile apps of this type cannot only provide an alternative for traditional one-to-one communication on mobile devices like voice calls or short messaging service. Moreover, they can be used in mobile commerce as a new marketing and sales channel, e.g., for product promotions and direct marketing activities. This requires a new way of customer interaction compared to traditional mobile commerce activities and functionalities provided based on mobile web-sites. One option better aligned to the customer interaction in mes-saging apps are so-called chatbots. Chatbots are conversational programs or dialog systems simulating a text or voice based human interaction. They can be introduced in mobile messaging and social media apps by using rule- or artificial intelligence-based imple-mentations. In this context, a comparative analysis is conducted to examine the impact of using traditional websites or chatbots for promoting a product in an impulse purchase situation. The aim of this study is to measure the impact on the customers’ user experi-ence and emotions. The study is based on a random sample of about 60 smartphone users in the group of 20 to 30-year-olds. Participants are randomly assigned into two groups and participate in a traditional website or innovative chatbot based mobile com-merce scenario. The chatbot-based scenario is implemented by using a Wizard-of-Oz experimental approach for reasons of sim-plicity and to allow for more flexibility when simulating simple rule-based and more advanced artificial intelligence-based chatbot setups. A specific set of metrics is defined to measure and com-pare the user experience in both scenarios. It can be assumed, that users get more emotionally involved when interacting with a system simulating human communication behavior instead of browsing a mobile commerce website. For this reason, innovative face-tracking and analysis technology is used to derive feedback on the emotional status of the study participants while interacting with the website or the chatbot. This study is a work in progress. The results will provide first insights on the effects of chatbot usage on user experiences and emotions in mobile commerce environments. Based on the study findings basic requirements for a user-centered design and implementation of chatbot solutions for mobile com-merce can be derived. Moreover, first indications on situations where chatbots might be favorable in comparison to the usage of traditional website based mobile commerce can be identified.Keywords: chatbots, emotions, mobile commerce, user experience, Wizard-of-Oz prototyping
Procedia PDF Downloads 45827124 Horizontal-Vertical and Enhanced-Unicast Interconnect Testing Techniques for Network-on-Chip
Authors: Mahdiar Hosseinghadiry, Razali Ismail, F. Fotovati
Abstract:
One of the most important and challenging tasks in testing network-on-chip based system-on-chips (NoC based SoCs) is to verify the communication entity. It is important because of its usage for transferring both data packets and test patterns for intellectual properties (IPs) during normal and test mode. Hence, ensuring of NoC reliability is required for reliable IPs functionality and testing. On the other hand, it is challenging due to the required time to test it and the way of transferring test patterns from the tester to the NoC components. In this paper, two testing techniques for mesh-based NoC interconnections are proposed. The first one is based on one-by-one testing and the second one divides NoC interconnects into three parts, horizontal links of switches in even columns, horizontal links of switches in odd columns and all vertical. A design for testability (DFT) architecture is represented to send test patterns directly to each switch under test and also support the proposed testing techniques by providing a loopback path in each switch. The simulation results shows the second proposed testing mechanism outperforms in terms of test time because this method test all the interconnects in only three phases, independent to the number of existed interconnects in the network, while test time of other methods are highly dependent to the number of switches and interconnects in the NoC.Keywords: on chip, interconnection testing, horizontal-vertical testing, enhanced unicast
Procedia PDF Downloads 553