Search results for: k-means clustering approach
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14299

Search results for: k-means clustering approach

13699 Verification & Validation of Map Reduce Program Model for Parallel K-Mediod Algorithm on Hadoop Cluster

Authors: Trapti Sharma, Devesh Kumar Srivastava

Abstract:

This paper is basically a analysis study of above MapReduce implementation and also to verify and validate the MapReduce solution model for Parallel K-Mediod algorithm on Hadoop Cluster. MapReduce is a programming model which authorize the managing of huge amounts of data in parallel, on a large number of devices. It is specially well suited to constant or moderate changing set of data since the implementation point of a position is usually high. MapReduce has slowly become the framework of choice for “big data”. The MapReduce model authorizes for systematic and instant organizing of large scale data with a cluster of evaluate nodes. One of the primary affect in Hadoop is how to minimize the completion length (i.e. makespan) of a set of MapReduce duty. In this paper, we have verified and validated various MapReduce applications like wordcount, grep, terasort and parallel K-Mediod clustering algorithm. We have found that as the amount of nodes increases the completion time decreases.

Keywords: hadoop, mapreduce, k-mediod, validation, verification

Procedia PDF Downloads 369
13698 A Study of the Performance Parameter for Recommendation Algorithm Evaluation

Authors: C. Rana, S. K. Jain

Abstract:

The enormous amount of Web data has challenged its usage in efficient manner in the past few years. As such, a range of techniques are applied to tackle this problem; prominent among them is personalization and recommender system. In fact, these are the tools that assist user in finding relevant information of web. Most of the e-commerce websites are applying such tools in one way or the other. In the past decade, a large number of recommendation algorithms have been proposed to tackle such problems. However, there have not been much research in the evaluation criteria for these algorithms. As such, the traditional accuracy and classification metrics are still used for the evaluation purpose that provides a static view. This paper studies how the evolution of user preference over a period of time can be mapped in a recommender system using a new evaluation methodology that explicitly using time dimension. We have also presented different types of experimental set up that are generally used for recommender system evaluation. Furthermore, an overview of major accuracy metrics and metrics that go beyond the scope of accuracy as researched in the past few years is also discussed in detail.

Keywords: collaborative filtering, data mining, evolutionary, clustering, algorithm, recommender systems

Procedia PDF Downloads 413
13697 A Pragmatic Study of Falnama Texts Based on Critical Discourse Analysis Approach

Authors: Raziyeh Mashhadi Moghadam

Abstract:

Persian writings in the form of stories, scientific articles, historiographies, biographies, and philosophical, religious, and poetic arguments have established their presence in the past and present. Any piece of text is composed in a unique style depending on its content and subject. In this paper, a manuscript called Falnama of the Prophet is reviewed. Only a few scattered pages of this version are extant, and the author, using the name of twenty-four prophets, seeks to explore the presence and future of the reader. This version is analyzed based on Norman Fairclough’s Critical Discourse Analysis (CDA) approach to unravel the underlying processes in this type of manuscript. The spelling of some words and sentences is different from that of the new written Persian version.

Keywords: application of Falnama texts, critical discourse analysis, Fairclough’s approach

Procedia PDF Downloads 109
13696 Ensuring Safe Operation by Providing an End-To-End Field Monitoring and Incident Management Approach for Autonomous Vehicle Based on ML/Dl SW Stack

Authors: Lucas Bublitz, Michael Herdrich

Abstract:

By achieving the first commercialization approval in San Francisco the Autonomous Driving (AD) industry proves the technology maturity of the SAE L4 AD systems and the corresponding software and hardware stack. This milestone reflects the upcoming phase in the industry, where the focus is now about scaling and supervising larger autonomous vehicle (AV) fleets in different operation areas. This requires an operation framework, which organizes and assigns responsibilities to the relevant AV technology and operation stakeholders from the AV system provider, the Remote Intervention Operator, the MaaS provider and regulatory & approval authority. This holistic operation framework consists of technological, processual, and organizational activities to ensure safe operation for fully automated vehicles. Regarding the supervision of large autonomous vehicle fleets, a major focus is on the continuous field monitoring. The field monitoring approach must reflect the safety and security criticality of incidents in the field during driving operation. This includes an automatic containment approach, with the overall goal to avoid safety critical incidents and reduce downtime by a malfunction of the AD software stack. An End-to-end (E2E) field monitoring approach detects critical faults in the field, uses a knowledge-based approach for evaluating the safety criticality and supports the automatic containment of these E/E faults. Applying such an approach will ensure the scalability of AV fleets, which is determined by the handling of incidents in the field and the continuous regulatory compliance of the technology after enhancing the Operational Design Domain (ODD) or the function scope by Functions on Demand (FoD) over the entire digital product lifecycle.

Keywords: field monitoring, incident management, multicompliance management for AI in AD, root cause analysis, database approach

Procedia PDF Downloads 75
13695 A Study of Shigeru Ban's Environmentally-Sensitive Design Approach

Authors: Duygu Merve Bulut, Fehime Yesim Gurani

Abstract:

The Japanese architect Shigeru Ban has succeeded in bringing a different understanding to the modern architectural design approach with both the material selection and the techniques he used while combining the material with the design. Ban, who reflects his respect to people and nature with his designs, has encouraged that design should be done with economic materials, easily accessible and understandable for everyone. Because of this, Ban has attracted attention and appreciated in the architectural world with his environmentally-sensitive design ideology and humanitarian projects. In order to understand Ban’s environmentally-sensitive design approach, with this article, Ban’s projects which have used natural materials; the projects of Ban’s Japenese Pavilion in Germany, Papertainer Museum in South Korea, Centre Pompidou-Metz in France and Cardboard Cathedral in New Zealand were examined and analyzed. In the following parts, 'paper tube' technology that creates awareness in architectural area, which developed and applied by Ban; has been examined in terms of building material and structure of sustainable space design. As a result of this review, Ban’s approach is evaluated in terms of its contribution to the understanding of sustainable design.

Keywords: ecological design, environmentally-sensitive design, paper tube, Shigeru Ban, sustainability

Procedia PDF Downloads 499
13694 Simulation of Lean Principles Impact in a Multi-Product Supply Chain

Authors: Matteo Rossini, Alberto Portioli Staudacher

Abstract:

The market competition is moving from the single firm to the whole supply chain one because of increasing competition and growing need for operational efficiencies and customer orientation. Supply chain management allows companies to look beyond their organizational boundaries to develop and leverage resources and capabilities of their supply chain partners. This leads to create competitive advantages in the marketplace and because of this SCM has acquired strategic importance. Lean Approach is a management strategy that focuses on reducing every type of waste present in an organization. This approach is becoming more and more popular among supply chain managers. The supply chain application of lean approach is low diffused. It is not well studied which are the impacts of lean approach principles in a supply chain context. In literature there are only few studies simulating the lean approach performance in single products supply chain. This research work studies the impacts of lean principles implementation along a supply chain. To achieve this, a simulation model of a three-echelon multiproduct product supply chain has been built. Kanban system (and several priority policies) and setup time reduction degrees are implemented in the lean-configured supply chain to apply pull and lot-sizing decrease principles respectively. To evaluate the benefits of lean approach, lean supply chain is compared with an EOQ-configured supply chain. The simulation results show that Kanban system and setup-time reduction improve inventory stock level. They also show that logistics efforts are affected to lean implementation degree. The paper concludes describing performances of lean supply chain in different contexts.

Keywords: inventory policy, Kanban, lean supply chain, simulation study, supply chain management, planning

Procedia PDF Downloads 357
13693 IT-Aided Business Process Enabling Real-Time Analysis of Candidates for Clinical Trials

Authors: Matthieu-P. Schapranow

Abstract:

Recruitment of participants for clinical trials requires the screening of a big number of potential candidates, i.e. the testing for trial-specific inclusion and exclusion criteria, which is a time-consuming and complex task. Today, a significant amount of time is spent on identification of adequate trial participants as their selection may affect the overall study results. We introduce a unique patient eligibility metric, which allows systematic ranking and classification of candidates based on trial-specific filter criteria. Our web application enables real-time analysis of patient data and assessment of candidates using freely definable inclusion and exclusion criteria. As a result, the overall time required for identifying eligible candidates is tremendously reduced whilst additional degrees of freedom for evaluating the relevance of individual candidates are introduced by our contribution.

Keywords: in-memory technology, clinical trials, screening, eligibility metric, data analysis, clustering

Procedia PDF Downloads 493
13692 HPTLC Metabolite Fingerprinting of Artocarpus champeden Stembark from Several Different Locations in Indonesia and Correlation with Antimalarial Activity

Authors: Imam Taufik, Hilkatul Ilmi, Puryani, Mochammad Yuwono, Aty Widyawaruyanti

Abstract:

Artocarpus champeden Spreng stembark (Moraceae) in Indonesia well known as ‘cempedak’ had been traditionally used for malarial remedies. The difference of growth locations could cause the difference of metabolite profiling. As a consequence, there were difference antimalarial activities in spite of the same plants. The aim of this research was to obtain the profile of metabolites that contained in A. champeden stembark from different locations in Indonesia for authentication and quality control purpose of this extract. The profiling had been performed by HPTLC-Densitometry technique and antimalarial activity had been also determined by HRP2-ELISA technique. The correlation between metabolite fingerprinting and antimalarial activity had been analyzed by Principle Component Analysis, Hierarchical Clustering Analysis and Partial Least Square. As a result, there is correlation between the difference metabolite fingerprinting and antimalarial activity from several different growth locations.

Keywords: antimalarial, artocarpus champeden spreng, metabolite fingerprinting, multivariate analysis

Procedia PDF Downloads 311
13691 Towards a Business Process Model Deriving from an Intentional Perspective

Authors: Omnia Saidani Neffati, Rim Samia Kaabi, Naoufel Kraiem

Abstract:

In this paper, we propose an approach aiming at (i) representing services at two levels: the intentional level and the organizational level, and (ii) establishing mechanisms allowing to make a transition from the first level to the second one in order to execute intentional services. An example is used to validate our approach.

Keywords: intentional service, business process, BPMN, MDE, intentional service execution

Procedia PDF Downloads 395
13690 A New Approach to Increase Consumer Understanding of Meal’s Quality – Food Focus Instead of Nutrient Focus

Authors: Elsa Lamy, Marília Prada, Ada Rocha, Cláudia Viegas

Abstract:

The traditional and widely used nutrition-focused approach to communicate with consumers is reductionist and makes it difficult for consumers to assess their food intake. Without sufficient nutrition knowledge and understanding, it would be difficult to choose a healthful diet based only on nutritional recommendations. This study aimed to evaluate the understanding of how food/nutritional information is presented in menus to Portuguese consumers, comparing the nutrient-focused approach (currently used Nutrition Declaration) and the new food-focused approach (the infographic). For data collection, a questionnaire was distributed online using social media channels. A main effect of format on ratings of meal balance and completeness (Fbalance(1,79) = 18.26, p < .001, ηp2 = .188; Fcompleteness(1,67) = 27.18, p < .001, ηp2 = .289). Overall, dishes paired with the nutritional information were rated as more balanced (Mbalance= 3.70, SE = .11; Mcompleteness = 4.00, SE = .14) than meals with the infographic representation (Mbalance = 3.14, SE = .11; Mcompleteness = 3.29, SE = .13). We also observed a main effect of the meal, F(3,237) = 48.90, p < .001, ηp2 = .382, such that M1 and M2 were perceived as less balanced than the M3 and M4, all p < .001. The use of a food-focused approach (infographic) helped participants identify the lack of balance in the less healthful meals (dishes M1 and M2), allowing for a better understanding of meals' compliance with recommendations contributing to better food choices and a healthier lifestyle.

Keywords: food labelling, food and nutritional recommendations, infographics, portions based information

Procedia PDF Downloads 79
13689 Community Based Participatory Research in Opioid Use: Design of an Informatics Solution

Authors: Sue S. Feldman, Bradley Tipper, Benjamin Schooley

Abstract:

Nearly every community in the US has been impacted by opioid related addictions/deaths; it is a national problem that is threatening our social and economic welfare. Most believe that tackling this problem from a prevention perspective advances can be made toward breaking the chain of addiction. One mechanism, community based participatory research, involves the community in the prevention approach. This project combines that approach with a design science approach to develop an integrated solution. Findings suggested accountable care communities, transpersonal psychology, and social exchange theory as product kernel theories. Evaluation was conducted on a prototype.

Keywords: substance use and abuse recovery, community resource centers, accountable care communities, community based participatory research

Procedia PDF Downloads 152
13688 A Review on Disaster Risk Reduction and Sustainable Development in Nigeria

Authors: Kudu Dangana

Abstract:

The occurrences of disaster often call for the support of both government and non-government organization. Consequently, disaster relief remains extremely important in disaster management. However, this approach alone does not proactively address the need to adduce the human and environment impacts of future disasters. Recent thinking in the area of disaster management is indicative of the need for a new paradigm that focuses on reducing the risk of disasters with the involvement and participation of communities. This paper reviews the need for communities to place more emphasis on a holistic approach to disaster risk reduction. This approach involves risk assessment, risk reduction, early warning and disaster preparedness in order to effectively address the reduction of social, economic, and environmental costs of disasters nationally and at the global level.

Keywords: disaster, early, management, warning, relief, risk vulnerability

Procedia PDF Downloads 647
13687 The Triple Nexus: Key Challenges in Shifting from Conceptualization to Operationalization of the Humanitarian-Development-Peacebuilding Nexus

Authors: Sarah M. Bolger

Abstract:

There is a clear recognition that humanitarian and development workers are operating more and more frequently in situations of protracted crises, with conflict and violence undermining long-term development efforts. First coined at the World Humanitarian Summit in 2016, the humanitarian-development-peacebuilding nexus – or 'Triple Nexus' - seeks to promote greater cooperation and policy and program coherence amongst organizations working within and across the nexus. However, despite the clear need for such an approach, the Triple Nexus has failed to gain much traction. This is largely due to the lack of conceptual clarity for actors on the ground and the disconnect between the theory of the Triple Nexus and what that means in practice. This paper seeks to identify the key challenges in shifting from the conceptual definition of the Triple Nexus and what that can look like, particularly for multi-mandated organizations, to the operationalization of the Triple Nexus approach. It adopts a case study approach, examining a selection of organizations and programs and their approaches to the Triple Nexus in order to extract key challenges and lessons learned. Finally, key recommendations are provided on how these challenges can be overcome, allowing for the operationalization of the Triple Nexus and ultimately for a more integrated and sustainable approach to humanitarian, development, and peacebuilding work.

Keywords: development, humanitarian, peacebuilding, triple nexus

Procedia PDF Downloads 144
13686 Performance and Emission Prediction in a Biodiesel Engine Fuelled with Honge Methyl Ester Using RBF Neural Networks

Authors: Shiva Kumar, G. S. Vijay, Srinivas Pai P., Shrinivasa Rao B. R.

Abstract:

In the present study RBF neural networks were used for predicting the performance and emission parameters of a biodiesel engine. Engine experiments were carried out in a 4 stroke diesel engine using blends of diesel and Honge methyl ester as the fuel. Performance parameters like BTE, BSEC, Tech and emissions from the engine were measured. These experimental results were used for ANN modeling. RBF center initialization was done by random selection and by using Clustered techniques. Network was trained by using fixed and varying widths for the RBF units. It was observed that RBF results were having a good agreement with the experimental results. Networks trained by using clustering technique gave better results than using random selection of centers in terms of reduced MRE and increased prediction accuracy. The average MRE for the performance parameters was 3.25% with the prediction accuracy of 98% and for emissions it was 10.4% with a prediction accuracy of 80%.

Keywords: radial basis function networks, emissions, performance parameters, fuzzy c means

Procedia PDF Downloads 558
13685 A Leadership Approach for the Sake of Organizations: Human-Oriented Leadership

Authors: Eser Bingül

Abstract:

The leadership and leaders, also having been a privileged subject of scientific researches in the last century, have become influential in shaping the destiny of the states since the first examples of the warfare history. The issue of leadership, finding a place in the management science, can also be defined as an integration of function within the aspect of leader. In this description, the relationship has come to the foreground which is established between the development of leadership theories and the elements of function which are leader, followers, and condition. While one reason of this analysis in leadership is to keep a lens to the historical background, the main reason has been a questioning the traits and education of leaders who have still affected the nation’s and organization’s fate. The links and analysis established in the definition of leadership have put forward the necessity of solving the unpredictable structure of human nature and behaviors in the focus of leadership approach. On the other hand becoming a model that meets the today’s needs of any system has given a clue that the leaders should turn towards the people. Being aware of this necessity, human-oriented leadership approach aims to gain both followers and their abilities to the system with giving them a deserved esteem and create the team spirit based on mutual trust. Ultimately this approach, with the determined leadership qualities consisting of charisma, ability of communication and trust, will be able to produce the solutions to the instant and long-term problems and uncertainties, derived from the variables of function, for the sake of systems.

Keywords: human nature, leadership, human-oriented approach, social sciences and humanities

Procedia PDF Downloads 319
13684 A Simple Approach for the Analysis of First Vibration Mode of Layered Soil Profiles

Authors: Haizhong Zhang, Yan-Gang Zhao

Abstract:

Fundamental period, mode shape, and participation factor are important basic information for the understanding of earthquake response of ground. In this study, a simple approach is presented to calculate these basic information of layered soil profiles. To develop this method, closed form equations are derived for analysis of free vibration of layered soil profiles firstly, based on equilibrium between inertia and elastic forces. Then, by further associating with the Madera procedure developed for estimation of fundamental period, a simple method that can directly determine the fundamental period, mode shape and participation factor is proposed. The proposed approach can be conveniently implemented in simple spreadsheets and easily used by practicing engineers. In addition, the accuracy of the proposed approach is investigated by analyzing first vibration mode of 67 representative layered soil profiles, it is found that results by the proposed method agree very well with accurate results.

Keywords: layered soil profile, natural vibration, fundamental period, fundamental mode shape

Procedia PDF Downloads 326
13683 Optimization of Solar Tracking Systems

Authors: A. Zaher, A. Traore, F. Thiéry, T. Talbert, B. Shaer

Abstract:

In this paper, an intelligent approach is proposed to optimize the orientation of continuous solar tracking systems on cloudy days. Considering the weather case, the direct sunlight is more important than the diffuse radiation in case of clear sky. Thus, the panel is always pointed towards the sun. In case of an overcast sky, the solar beam is close to zero, and the panel is placed horizontally to receive the maximum of diffuse radiation. Under partly covered conditions, the panel must be pointed towards the source that emits the maximum of solar energy and it may be anywhere in the sky dome. Thus, the idea of our approach is to analyze the images, captured by ground-based sky camera system, in order to detect the zone in the sky dome which is considered as the optimal source of energy under cloudy conditions. The proposed approach is implemented using experimental setup developed at PROMES-CNRS laboratory in Perpignan city (France). Under overcast conditions, the results were very satisfactory, and the intelligent approach has provided efficiency gains of up to 9% relative to conventional continuous sun tracking systems.

Keywords: clouds detection, fuzzy inference systems, images processing, sun trackers

Procedia PDF Downloads 192
13682 A Self-Adaptive Stimulus Artifacts Removal Approach for Electrical Stimulation Based Muscle Rehabilitation

Authors: Yinjun Tu, Qiang Fang, Glenn I. Matthews, Shuenn-Yuh Lee

Abstract:

This paper reports an efficient and rigorous self-adaptive stimulus artifacts removal approach for a mixed surface EMG (Electromyography) and stimulus signal during muscle stimulation. The recording of EMG and the stimulation of muscles were performing simultaneously. It is difficult to generate muscle fatigue feature from the mixed signal, which can be further used in closed loop system. A self-adaptive method is proposed in this paper, the stimulation frequency was calculated and verified firstly. Then, a mask was created based on this stimulation frequency to remove the undesired stimulus. 20 EMG signal recordings were analyzed, and the ANOVA (analysis of variance) approach illustrated that the decreasing trend of median power frequencies was successfully generated from the 'cleaned' EMG signal.

Keywords: EMG, FES, stimulus artefacts, self-adaptive

Procedia PDF Downloads 399
13681 Cognitive Approach at the Epicenter of Creative Accounting in Cameroonian Companies: The Relevance of the Psycho-Sociological Approach and the Theory of Cognitive Dissonance

Authors: Romuald Temomo Wamba, Robert Wanda

Abstract:

The issue of creative accounting in the psychological and sociological framework has been a mixed subject for over 60 years. The objective of this article is to ensure the existence of creative accounting in Cameroonian entities on the one hand and to understand the strategies used by audit agents to detect errors, omissions, irregularities, or inadequacies in the financial state; optimization techniques used by account preparers to strategically bypass texts on the other hand. To achieve this, we conducted an exploratory study using a cognitive approach, and the data analysis was performed by the software 'decision explorer'. The results obtained challenge the authors' cognition (manifest latent and deceptive behavior). The tax inspectors stress that the entities in Cameroon do not derogate from the rules of piloting in the financial statements. Likewise, they claim a change in current income and net income through depreciation, provisions, inventories, and the spreading of charges over long periods. This suggests the suspicion or intention of manipulating the financial statements. As for the techniques, the account preparers manage the accruals at the end of the year as the basis of the practice of creative accounting. Likewise, management accounts are more favorable to results management.

Keywords: creative accounting, sociocognitive approach, psychological and sociological approach, cognitive dissonance theory, cognitive mapping

Procedia PDF Downloads 193
13680 Detection Method of Federated Learning Backdoor Based on Weighted K-Medoids

Authors: Xun Li, Haojie Wang

Abstract:

Federated learning is a kind of distributed training and centralized training mode, which is of great value in the protection of user privacy. In order to solve the problem that the model is vulnerable to backdoor attacks in federated learning, a backdoor attack detection method based on a weighted k-medoids algorithm is proposed. First of all, this paper collates the update parameters of the client to construct a vector group, then uses the principal components analysis (PCA) algorithm to extract the corresponding feature information from the vector group, and finally uses the improved k-medoids clustering algorithm to identify the normal and backdoor update parameters. In this paper, the backdoor is implanted in the federation learning model through the model replacement attack method in the simulation experiment, and the update parameters from the attacker are effectively detected and removed by the defense method proposed in this paper.

Keywords: federated learning, backdoor attack, PCA, k-medoids, backdoor defense

Procedia PDF Downloads 114
13679 Development of Evolutionary Algorithm by Combining Optimization and Imitation Approach for Machine Learning in Gaming

Authors: Rohit Mittal, Bright Keswani, Amit Mithal

Abstract:

This paper provides a sense about the application of computational intelligence techniques used to develop computer games, especially car racing. For the deep sense and knowledge of artificial intelligence, this paper is divided into various sections that is optimization, imitation, innovation and combining approach of optimization and imitation. This paper is mainly concerned with combining approach which tells different aspects of using fitness measures and supervised learning techniques used to imitate aspects of behavior. The main achievement of this paper is based on modelling player behaviour and evolving new game content such as racing tracks as single car racing on single track.

Keywords: evolution algorithm, genetic, optimization, imitation, racing, innovation, gaming

Procedia PDF Downloads 646
13678 A Near-Optimal Domain Independent Approach for Detecting Approximate Duplicates

Authors: Abdelaziz Fellah, Allaoua Maamir

Abstract:

We propose a domain-independent merging-cluster filter approach complemented with a set of algorithms for identifying approximate duplicate entities efficiently and accurately within a single and across multiple data sources. The near-optimal merging-cluster filter (MCF) approach is based on the Monge-Elkan well-tuned algorithm and extended with an affine variant of the Smith-Waterman similarity measure. Then we present constant, variable, and function threshold algorithms that work conceptually in a divide-merge filtering fashion for detecting near duplicates as hierarchical clusters along with their corresponding representatives. The algorithms take recursive refinement approaches in the spirit of filtering, merging, and updating, cluster representatives to detect approximate duplicates at each level of the cluster tree. Experiments show a high effectiveness and accuracy of the MCF approach in detecting approximate duplicates by outperforming the seminal Monge-Elkan’s algorithm on several real-world benchmarks and generated datasets.

Keywords: data mining, data cleaning, approximate duplicates, near-duplicates detection, data mining applications and discovery

Procedia PDF Downloads 387
13677 Literature Review of Instructor Perceptions of the Blended Learning Approach

Authors: Syed Ahmed Hasnain

Abstract:

Instructors’ perception of blended learning plays an important role in the field of education. The literature review shows that there is a gap in research. Instructor perception of the blended learning approach has an impact on the motivation of the instructor to use technology in the classroom. The role of the student's perspective on the instructor’s perception is also important. Research also shows that instructor perceptions can be changed based on their past and present experiences with technology and blended learning. This paper draws the attention of the readers to the need for further research and contributions to studying instructor perceptions globally. Instructor perception affects the implementation of technology in the classroom, instructor-student relationship, and the class environment. Various publications, literature reviews, and articles are studied to show the importance of instructor perceptions. A lot of work has been published on student perceptions of the blended learning approach but there is a gap in research on instructor perceptions. The paper also makes recommendations for further research in the area of instructor perceptions of the blended learning approach. Institutions, administrators, senior management, and instructors can benefit from this paper.

Keywords: blended learning, education, literature review, instructor perceptions

Procedia PDF Downloads 104
13676 Combining a Continuum of Hidden Regimes and a Heteroskedastic Three-Factor Model in Option Pricing

Authors: Rachid Belhachemi, Pierre Rostan, Alexandra Rostan

Abstract:

This paper develops a discrete-time option pricing model for index options. The model consists of two key ingredients. First, daily stock return innovations are driven by a continuous hidden threshold mixed skew-normal (HTSN) distribution which generates conditional non-normality that is needed to fit daily index return. The most important feature of the HTSN is the inclusion of a latent state variable with a continuum of states, unlike the traditional mixture distributions where the state variable is discrete with little number of states. The HTSN distribution belongs to the class of univariate probability distributions where parameters of the distribution capture the dependence between the variable of interest and the continuous latent state variable (the regime). The distribution has an interpretation in terms of a mixture distribution with time-varying mixing probabilities. It has been shown empirically that this distribution outperforms its main competitor, the mixed normal (MN) distribution, in terms of capturing the stylized facts known for stock returns, namely, volatility clustering, leverage effect, skewness, kurtosis and regime dependence. Second, heteroscedasticity in the model is captured by a threeexogenous-factor GARCH model (GARCHX), where the factors are taken from the principal components analysis of various world indices and presents an application to option pricing. The factors of the GARCHX model are extracted from a matrix of world indices applying principal component analysis (PCA). The empirically determined factors are uncorrelated and represent truly different common components driving the returns. Both factors and the eight parameters inherent to the HTSN distribution aim at capturing the impact of the state of the economy on price levels since distribution parameters have economic interpretations in terms of conditional volatilities and correlations of the returns with the hidden continuous state. The PCA identifies statistically independent factors affecting the random evolution of a given pool of assets -in our paper a pool of international stock indices- and sorting them by order of relative importance. The PCA computes a historical cross asset covariance matrix and identifies principal components representing independent factors. In our paper, factors are used to calibrate the HTSN-GARCHX model and are ultimately responsible for the nature of the distribution of random variables being generated. We benchmark our model to the MN-GARCHX model following the same PCA methodology and the standard Black-Scholes model. We show that our model outperforms the benchmark in terms of RMSE in dollar losses for put and call options, which in turn outperforms the analytical Black-Scholes by capturing the stylized facts known for index returns, namely, volatility clustering, leverage effect, skewness, kurtosis and regime dependence.

Keywords: continuous hidden threshold, factor models, GARCHX models, option pricing, risk-premium

Procedia PDF Downloads 297
13675 Cotton Crops Vegetative Indices Based Assessment Using Multispectral Images

Authors: Muhammad Shahzad Shifa, Amna Shifa, Muhammad Omar, Aamir Shahzad, Rahmat Ali Khan

Abstract:

Many applications of remote sensing to vegetation and crop response depend on spectral properties of individual leaves and plants. Vegetation indices are usually determined to estimate crop biophysical parameters like crop canopies and crop leaf area indices with the help of remote sensing. Cotton crops assessment is performed with the help of vegetative indices. Remotely sensed images from an optical multispectral radiometer MSR5 are used in this study. The interpretation is based on the fact that different materials reflect and absorb light differently at different wavelengths. Non-normalized and normalized forms of these datasets are analyzed using two complementary data mining algorithms; K-means and K-nearest neighbor (KNN). Our analysis shows that the use of normalized reflectance data and vegetative indices are suitable for an automated assessment and decision making.

Keywords: cotton, condition assessment, KNN algorithm, clustering, MSR5, vegetation indices

Procedia PDF Downloads 333
13674 Modified Weibull Approach for Bridge Deterioration Modelling

Authors: Niroshan K. Walgama Wellalage, Tieling Zhang, Richard Dwight

Abstract:

State-based Markov deterioration models (SMDM) sometimes fail to find accurate transition probability matrix (TPM) values, and hence lead to invalid future condition prediction or incorrect average deterioration rates mainly due to drawbacks of existing nonlinear optimization-based algorithms and/or subjective function types used for regression analysis. Furthermore, a set of separate functions for each condition state with age cannot be directly derived by using Markov model for a given bridge element group, which however is of interest to industrial partners. This paper presents a new approach for generating Homogeneous SMDM model output, namely, the Modified Weibull approach, which consists of a set of appropriate functions to describe the percentage condition prediction of bridge elements in each state. These functions are combined with Bayesian approach and Metropolis Hasting Algorithm (MHA) based Markov Chain Monte Carlo (MCMC) simulation technique for quantifying the uncertainty in model parameter estimates. In this study, factors contributing to rail bridge deterioration were identified. The inspection data for 1,000 Australian railway bridges over 15 years were reviewed and filtered accordingly based on the real operational experience. Network level deterioration model for a typical bridge element group was developed using the proposed Modified Weibull approach. The condition state predictions obtained from this method were validated using statistical hypothesis tests with a test data set. Results show that the proposed model is able to not only predict the conditions in network-level accurately but also capture the model uncertainties with given confidence interval.

Keywords: bridge deterioration modelling, modified weibull approach, MCMC, metropolis-hasting algorithm, bayesian approach, Markov deterioration models

Procedia PDF Downloads 727
13673 Decision Tree Based Scheduling for Flexible Job Shops with Multiple Process Plans

Authors: H.-H. Doh, J.-M. Yu, Y.-J. Kwon, J.-H. Shin, H.-W. Kim, S.-H. Nam, D.-H. Lee

Abstract:

This paper suggests a decision tree based approach for flexible job shop scheduling with multiple process plans, i. e. each job can be processed through alternative operations, each of which can be processed on alternative machines. The main decision variables are: (a) selecting operation/machine pair; and (b) sequencing the jobs assigned to each machine. As an extension of the priority scheduling approach that selects the best priority rule combination after many simulation runs, this study suggests a decision tree based approach in which a decision tree is used to select a priority rule combination adequate for a specific system state and hence the burdens required for developing simulation models and carrying out simulation runs can be eliminated. The decision tree based scheduling approach consists of construction and scheduling modules. In the construction module, a decision tree is constructed using a four-stage algorithm, and in the scheduling module, a priority rule combination is selected using the decision tree. To show the performance of the decision tree based approach suggested in this study, a case study was done on a flexible job shop with reconfigurable manufacturing cells and a conventional job shop, and the results are reported by comparing it with individual priority rule combinations for the objectives of minimizing total flow time and total tardiness.

Keywords: flexible job shop scheduling, decision tree, priority rules, case study

Procedia PDF Downloads 357
13672 Evaluation of Robust Feature Descriptors for Texture Classification

Authors: Jia-Hong Lee, Mei-Yi Wu, Hsien-Tsung Kuo

Abstract:

Texture is an important characteristic in real and synthetic scenes. Texture analysis plays a critical role in inspecting surfaces and provides important techniques in a variety of applications. Although several descriptors have been presented to extract texture features, the development of object recognition is still a difficult task due to the complex aspects of texture. Recently, many robust and scaling-invariant image features such as SIFT, SURF and ORB have been successfully used in image retrieval and object recognition. In this paper, we have tried to compare the performance for texture classification using these feature descriptors with k-means clustering. Different classifiers including K-NN, Naive Bayes, Back Propagation Neural Network , Decision Tree and Kstar were applied in three texture image sets - UIUCTex, KTH-TIPS and Brodatz, respectively. Experimental results reveal SIFTS as the best average accuracy rate holder in UIUCTex, KTH-TIPS and SURF is advantaged in Brodatz texture set. BP neuro network works best in the test set classification among all used classifiers.

Keywords: texture classification, texture descriptor, SIFT, SURF, ORB

Procedia PDF Downloads 369
13671 Integrating Individual and Structural Health Risk: A Social Identity Perspective on the HIV/AIDS Pandemic in Sub-Saharan Africa

Authors: Orla Muldoon, Tamaryn Nicolson, Mike Quayle, Aisling O'Donnell

Abstract:

Psychology most often considers the role of experience and behaviour in shaping health at the individual level. On the other hand epidemiology has long considered risk at the wider group or structural level. Here we use the social identity approach to integrate group-level risk with individual level behaviour. Using a social identity approach we demonstrate that group or macro-level factors impact implicitly and profoundly in everyday ways at the level of individuals, via social identities. We illustrate how identities related to race, gender and inequality intersect to affect HIV/AIDS risk and AIDS treatment behaviours; how social identity processes drive stigmatising consequences of HIV and AIDS, and promote positive and effective interventions. We conclude by arguing that the social identity approach offers the field an explanatory framework that conceptualizes how social and political forces intersect with individual identity and agency to affect human health.

Keywords: social identity approach, HIV/AIDS, Africa, HIV risk, race, gender

Procedia PDF Downloads 529
13670 Performance Evaluation of Various Segmentation Techniques on MRI of Brain Tissue

Authors: U.V. Suryawanshi, S.S. Chowhan, U.V Kulkarni

Abstract:

Accuracy of segmentation methods is of great importance in brain image analysis. Tissue classification in Magnetic Resonance brain images (MRI) is an important issue in the analysis of several brain dementias. This paper portraits performance of segmentation techniques that are used on Brain MRI. A large variety of algorithms for segmentation of Brain MRI has been developed. The objective of this paper is to perform a segmentation process on MR images of the human brain, using Fuzzy c-means (FCM), Kernel based Fuzzy c-means clustering (KFCM), Spatial Fuzzy c-means (SFCM) and Improved Fuzzy c-means (IFCM). The review covers imaging modalities, MRI and methods for noise reduction and segmentation approaches. All methods are applied on MRI brain images which are degraded by salt-pepper noise demonstrate that the IFCM algorithm performs more robust to noise than the standard FCM algorithm. We conclude with a discussion on the trend of future research in brain segmentation and changing norms in IFCM for better results.

Keywords: image segmentation, preprocessing, MRI, FCM, KFCM, SFCM, IFCM

Procedia PDF Downloads 331