Search results for: housing energy efficiency
13155 Security Issues on Smart Grid and Blockchain-Based Secure Smart Energy Management Systems
Authors: Surah Aldakhl, Dafer Alali, Mohamed Zohdy
Abstract:
The next generation of electricity grid infrastructure, known as the "smart grid," integrates smart ICT (information and communication technology) into existing grids in order to alleviate the drawbacks of existing one-way grid systems. Future power systems' efficiency and dependability are anticipated to significantly increase thanks to the Smart Grid, especially given the desire for renewable energy sources. The security of the Smart Grid's cyber infrastructure is a growing concern, though, as a result of the interconnection of significant power plants through communication networks. Since cyber-attacks can destroy energy data, beginning with personal information leaking from grid members, they can result in serious incidents like huge outages and the destruction of power network infrastructure. We shall thus propose a secure smart energy management system based on the Blockchain as a remedy for this problem. The power transmission and distribution system may undergo a transformation as a result of the inclusion of optical fiber sensors and blockchain technology in smart grids. While optical fiber sensors allow real-time monitoring and management of electrical energy flow, Blockchain offers a secure platform to safeguard the smart grid against cyberattacks and unauthorized access. Additionally, this integration makes it possible to see how energy is produced, distributed, and used in real time, increasing transparency. This strategy has advantages in terms of improved security, efficiency, dependability, and flexibility in energy management. An in-depth analysis of the advantages and drawbacks of combining blockchain technology with optical fiber is provided in this paper.Keywords: smart grids, blockchain, fiber optic sensor, security
Procedia PDF Downloads 12013154 A Super-Efficiency Model for Evaluating Efficiency in the Presence of Time Lag Effect
Authors: Yanshuang Zhang, Byungho Jeong
Abstract:
In many cases, there is a time lag between the consumption of inputs and the production of outputs. This time lag effect should be considered in evaluating the performance of organizations. Recently, a couple of DEA models were developed for considering time lag effect in efficiency evaluation of research activities. Multi-periods input(MpI) and Multi-periods output(MpO) models are integrated models to calculate simple efficiency considering time lag effect. However, these models can’t discriminate efficient DMUs because of the nature of basic DEA model in which efficiency scores are limited to ‘1’. That is, efficient DMUs can’t be discriminated because their efficiency scores are same. Thus, this paper suggests a super-efficiency model for efficiency evaluation under the consideration of time lag effect based on the MpO model. A case example using a long-term research project is given to compare the suggested model with the MpO model.Keywords: DEA, super-efficiency, time lag, multi-periods input
Procedia PDF Downloads 47413153 Development of a Test Plant for Parabolic Trough Solar Collectors Characterization
Authors: Nelson Ponce Jr., Jonas R. Gazoli, Alessandro Sete, Roberto M. G. Velásquez, Valério L. Borges, Moacir A. S. de Andrade
Abstract:
The search for increased efficiency in generation systems has been of great importance in recent years to reduce the impact of greenhouse gas emissions and global warming. For clean energy sources, such as the generation systems that use concentrated solar power technology, this efficiency improvement impacts a lower investment per kW, improving the project’s viability. For the specific case of parabolic trough solar concentrators, their performance is strongly linked to their geometric precision of assembly and the individual efficiencies of their main components, such as parabolic mirrors and receiver tubes. Thus, for accurate efficiency analysis, it should be conducted empirically, looking for mounting and operating conditions like those observed in the field. The Brazilian power generation and distribution company Eletrobras Furnas, through the R&D program of the National Agency of Electrical Energy, has developed a plant for testing parabolic trough concentrators located in Aparecida de Goiânia, in the state of Goiás, Brazil. The main objective of this test plant is the characterization of the prototype concentrator that is being developed by the company itself in partnership with Eudora Energia, seeking to optimize it to obtain the same or better efficiency than the concentrators of this type already known commercially. This test plant is a closed pipe system where a pump circulates a heat transfer fluid, also calledHTF, in the concentrator that is being characterized. A flow meter and two temperature transmitters, installed at the inlet and outlet of the concentrator, record the parameters necessary to know the power absorbed by the system and then calculate its efficiency based on the direct solar irradiation available during the test period. After the HTF gains heat in the concentrator, it flows through heat exchangers that allow the acquired energy to be dissipated into the ambient. The goal is to keep the concentrator inlet temperature constant throughout the desired test period. The developed plant performs the tests in an autonomous way, where the operator must enter the HTF flow rate in the control system, the desired concentrator inlet temperature, and the test time. This paper presents the methodology employed for design and operation, as well as the instrumentation needed for the development of a parabolic trough test plant, being a guideline for standardization facilities.Keywords: parabolic trough, concentrated solar power, CSP, solar power, test plant, energy efficiency, performance characterization, renewable energy
Procedia PDF Downloads 11813152 Generation of Renewable Energy Through Photovoltaic Panels, Albania Photovoltaic Capacity
Authors: Dylber Qema
Abstract:
Driven by recent developments in technology and the growing concern about the sustainability and environmental impact of conventional fuel use, the possibility of producing clean and sustainable energy in significant quantities from renewable energy sources has sparked interest all over the world. Solar energy is one of the sources for the generation of electricity, with no emissions or environmental pollution. The electricity produced by photovoltaics can supply a home or business and can even be sold or exchanged with the grid operator. A very positive effect of using photovoltaic modules is that they do not produce greenhouse gases and do not produce chemical waste, unlike all other forms of energy production. Photovoltaics are becoming one of the largest investments in the field of renewable generating units. Improving the reliability of the electric power system is one of the most important impacts of the installation of photovoltaics (PV). Renewable energy sources are so large that they can meet the energy demands of the whole world, thus enabling sustainable supply as well as reducing local and global atmospheric emissions. Albania is rated by experts as one of the most favorable countries in Europe for the production of electricity from solar panels. But the country currently produces about 1% of its energy from the sun, while the rest of the needs are met by hydropower plants and imports. Albania has very good characteristics in terms of solar radiation (about 1300–1400 kW/m2). Solar energy has great potential and is a permanent source of energy with greater economic efficiency. Photovoltaic energy is also seen as an alternative, as long periods of drought in Albania have produced crises and high costs for securing energy in the foreign market.Keywords: capacity, ministry of tourism and environment, obstacles, photovoltaic energy, sustainable
Procedia PDF Downloads 5913151 Polymer Solar Cells Synthesized with Copper Oxide Nanoparticles
Authors: Nidal H. Abu-Zahra, Aruna P. Wanninayake
Abstract:
Copper Oxide (CuO) is a p-type semiconductor with a band gap energy of 1.5 eV, this is close to the ideal energy gap of 1.4 eV required for solar cells to allow good solar spectral absorption. The inherent electrical characteristics of CuO nano particles make them attractive candidates for improving the performance of polymer solar cells when incorporated into the active polymer layer. The UV-visible absorption spectra and external quantum efficiency of P3HT/PC70BM solar cells containing different weight percentages of CuO nano particles showed a clear enhancement in the photo absorption of the active layer, this increased the power conversion efficiency of the solar cells by 24% in comparison to the reference cell. The short circuit current of the reference cell was found to be 5.234 mA/cm2 and it seemed to increase to 6.484 mA/cm2 in cells containing 0.6 mg of CuO NPs; in addition the fill factor increased from 61.15% to 68.0%, showing an enhancement of 11.2%. These observations suggest that the optimum concentration of CuO nano particles was 0.6 mg in the active layer. These significant findings can be applied to design high-efficiency polymer solar cells containing inorganic nano particles.Keywords: copper oxide nanoparticle, UV-visible spectroscopy, polymer solar cells, P3HT/PCBM
Procedia PDF Downloads 42313150 Photovoltaic Water Pumping System Application
Authors: Sarah Abdourraziq
Abstract:
Photovoltaic (PV) water pumping system is one of the most used and important applications in the field of solar energy. However, the cost and the efficiency are still a concern, especially with continued change of solar radiation and temperature. Then, the improvement of the efficiency of the system components is a good solution to reducing the cost. The use of maximum power point tracking (MPPT) algorithms to track the output maximum power point (MPP) of the PV panel is very important to improve the efficiency of the whole system. In this paper, we will present a definition of the functioning of MPPT technique, and a detailed model of each component of PV pumping system with Matlab-Simulink, the results shows the influence of the changing of solar radiation and temperature in the output characteristics of PV panel, which influence in the efficiency of the system. Our system consists of a PV generator, a boost converter, a motor-pump set, and storage tank.Keywords: PV panel, boost converter, MPPT, MPP, PV pumping system
Procedia PDF Downloads 39813149 Strategies for Arctic Greenhouse Farming: An Energy and Technology Survey of Greenhouse Farming in the North of Sweden
Authors: William Sigvardsson, Christoffer Alenius, Jenny Lindblom, Andreas Johansson, Marcus Sandberg
Abstract:
This article covers a study focusing on a subarctic greenhouse located in Nikkala, Sweden. Through a visit and the creation of a CFD model, the study investigates the differences in energy demand with high pressure sodium (HPS) lights and light emitting diode (LED) lights in combination with an air-carried and water-carried heating system accordingly. Through an IDA ICE model, the impact of insulating the parts of the greenhouse without active cultivation was also investigated. This, with the purpose of comparing the current system in the greenhouse to state-of-the-art alternatives and evaluating if an investment in either a water-carried heating system in combination with LED lights and insulating the non-cultivating parts of the greenhouse could be considered profitable. Operating a greenhouse in the harsh subarctic climate found in the northern parts of Sweden is not an easy task and especially if the operation is year-round. With an average temperature of under -5 °C from November through January, efficient growing techniques are a must to ensure a profitable business. Today the most crucial parts of a greenhouse are the heating system, lighting system, dehumidifying measures, as well as thermal screen, and the impact of a poorly designed system in a sub-arctic could be devastating as the margins are slim. The greenhouse studied uses a pellet burner to power their air- carried heating system which is used. The simulations found the resulting savings amounted to just under 14 800 SEK monthly or 18 % of the total cost of energy by implementing the water-carrying heating system in combination with the LED lamps. Given this, a payback period of 3-9 years could be expected given different scenarios, including specific time periods, financial aids, and the resale price of the current system. The insulation of the non-cultivating parts of the greenhouse was found to have possible savings of 25 300 SEK annually or 46 % of the current heat demand resulting in a payback period of just over 1-2 years. Given the possible energy savings, a reduction in emitted CO2 equivalents of almost 1,9 tonnes could be achieved annually. It was concluded that relatively inexpensive investments in modern greenhouse equipment could make a significant contribution to reducing the energy consumption of the greenhouse resulting in a more competitive business environment for sub-arctic greenhouse owners. New parts of the greenhouse should be built with the water-carried heating system in combination with state-of-the-art LED lights, and all parts which are not housing active cultivation should be insulated. If the greenhouse in Nikkala is eligible for financial aid or finds a resale value in the current system, an investment should be made in a new water-carried heating system in combination with LED lights.Keywords: energy efficiency, sub-arctic greenhouses, energy measures, greenhouse climate control, greenhouse technology, CFD
Procedia PDF Downloads 7513148 Influence of Coatings on Energy Conservation in Construction Industry
Authors: Nancy Sakr, Mohamed Abou-Zeid
Abstract:
World energy consumption has increased rapidly in the past few years. Due to population growth, total energy consumption is increasing; a large amount of energy is wasted on the cooling and heating processes in buildings. However, using thermal heating management can minimize costs, heat consumption and create a management system for the heat insulation for buildings. This concept is being implemented through different approaches. Based on analysis and research, there is evidence in the energy consumption before and after testing and applying construction approaches for thermal heating management in building units. This investigation addresses the evaluation of the influence of external coatings on energy consumption. Coatings are considered one of the smart effective available approaches for energy efficiency. Unfortunately, this approach is not widely applied in the construction industry. It needs more data to prove effectiveness and credibility between people to use it as a smart thermal insulation approach. Two precedents have been analyzed in order to monitor buildings’ heat exposure, and how the buildings will be affected by thermal insulation materials. Data sheets from chemical companies which produce similar coatings are compared with the usual products and the protective thermal products.Keywords: energy consumption, building envelope, thermal insulation, protective coatings
Procedia PDF Downloads 14413147 Design of Semi-Autonomous Street Cleaning Vehicle
Authors: Khouloud Safa Azoud, Süleyman Baştürk
Abstract:
In the pursuit of cleaner and more sustainable urban environments, advanced technologies play a critical role in evolving sanitation systems. This paper presents two distinct advancements in automated cleaning machines designed to improve urban sanitation. The first advancement is a semi-automatic road surface cleaning machine that integrates human labor with solar energy to enhance environmental sustainability and adaptability, especially in regions with limited access to electricity. By reducing carbon emissions and increasing operational efficiency, this approach offers significant potential for urban sanitation enhancement. The second advancement is a multifunctional semi-automatic street cleaning machine equipped with a camera, Arduino programming, and GPS for an autonomous operation aimed at addressing cost barriers in developing countries. Prioritizing low energy consumption and cost-effectiveness, this machine provides versatile cleaning solutions adaptable to various environmental conditions. By integrating solar energy with autonomous operating systems and careful design, these developments represent substantial progress in sustainable urban sanitation, particularly in developing regions.Keywords: automated cleaning machines, solar energy integration, operational efficiency, urban sanitation systems
Procedia PDF Downloads 3413146 The Effect of the Hexagonal Ring Interior Angle on Energy Absorption Capability
Authors: Shada Bennbaia, Elsadig Mahdi
Abstract:
In this paper, the effect of changing the interior angle of a hexagonal passive energy absorber is investigated. Aluminum hexagonal structures have been tested under in-plane quasi-static compression tests. These hexagonal structures are designed to have varying interior angle values to study their crushing behavior and the relationship between the angle and the energy absorption capability. It was found that the structures with angles 40° and 45° showed an almost perfectly stable crushing mechanism with low initial peak force. Thus, hexagonal structures with these angels can be used in the vehicle's crumple zones to absorb energy during collisions. The larger angles required high initial peak force to start crushing, which indicates that these structures are best suited in applications where high load carrying capacity is needed.Keywords: energy absorption, crushing force efficiency, crushing mechanism, hexagonal angle, peak force
Procedia PDF Downloads 19413145 Highlighting of the Factors and Policies affecting CO2 Emissions level in Malaysian Transportation Sector
Authors: Siti Indati Mustapa, Hussain Ali Bekhet
Abstract:
Global CO2 emission and increasing fuel consumption to meet energy demand requirement has become a threat in recent decades. Effort to reduce the CO2 emission is now a matter of priority in most countries of the world including Malaysia. Transportation has been identified as the most intensive sector of carbon-based fuels and achievement of the voluntary target to meet 40% carbon intensity reduction set at the 15th Conference of the Parties (COP15) means that the emission from the transport sector must be reduced accordingly. This posed a great challenge to Malaysia and effort has to be made to embrace suitable and appropriate energy policy for sustainable energy and emission reduction of this sector. The focus of this paper is to analyse the trends of Malaysia’s energy consumption and emission of four different transport sub-sectors (road, rail, aviation and maritime). Underlying factors influencing the growth of energy consumption and emission trends are discussed. Besides, technology status towards energy efficiency in transportation sub-sectors is presented. By reviewing the existing policies and trends of energy used, the paper highlights prospective policy options towards achieving emission reduction in the transportation sector.Keywords: CO2 emissions, transportation sector, fuel consumption, energy policy, Malaysia
Procedia PDF Downloads 46813144 Teachers' Knowledge, Perceptions, and Attitudes towards Renewable Energy Policy in Malaysia
Authors: Kazi Enamul Hoque
Abstract:
Initiatives on sustainable development are currently aggressively pursued throughout the world. The Malaysian government has developed key policies and strategies for over 30 years to achieve the nation’s policy objectives which are designed to mitigate the issues of security, energy efficiency and environmental impact to meet the rising energy demand. Malaysia’s current focus is on developing effective policies on renewable energy (RE) in order to reduce dependency on fossil fuel and contribute towards mitigating the effects of climate change. In this light mass awareness should be considered as the highest priority to protect the environment and to escape disaster due to climate change. Schools can be the reliable and effective foundation to prepare students to get familiar with environmental issues such as renewable and non-renewable energy sources. Teachers can play a vital role to create awareness among students about the advantages and disadvantages of using different renewable and nonrenewable energy resources. Thus, this study aims to investigate teachers’ knowledge, perceptions and attitudes towards renewable energy through a survey aiming a sustainable energy future. Five hundred sets of questionnaires were distributed to the school teachers in Malaysia. Total 420 questionnaires were returned of which 410 were complete to analyze. Finding shows that teachers are very familiar with the renewable energy like solar, wind and also geothermal. Most teachers were not sure about the Photovoltaics and biodiesel. Furthermore, teachers are also aware that primary energy in Malaysia is imported fossil fuels. Most teachers heard about the renewable energy in Malaysia and only few claims that they did not hear of such things and the others said that they never heard of it. The outcomes of the study will assist the energy policy makers to use teachers to create mass awareness of energy usages for future planning.Keywords: Malaysia, non-renewable energy, renewable energy, school teacher
Procedia PDF Downloads 43813143 Study of Energy Efficient and Quality of Service Based Routing Protocols in Wireless Sensor Networking
Authors: Sachin Sharma
Abstract:
A wireless sensor network (WSN) consists of a large number of sensor nodes which are deployed over an area to perform local computations based on information gathered from the surroundings. With the increasing demand for real-time applications in WSN, real-time critical events anticipate an efficient quality-of-service (QoS) based routing for data delivery from the network infrastructure. Hence, maximizing the lifetime of the network through minimizing the energy is an important challenge in WSN; sensors cannot be easily replaced or recharged due to their ad-hoc deployment in a hazardous environment. Considerable research has been focused on developing robust energy efficient QoS based routing protocols. The main focus of this article is primarily on periodical cycling schemes which represent the most compatible technique for energy saving and we also focus on the data-driven approaches that can be used to improve the energy efficiency. Finally, we will make a review on some communication protocols proposed for sensor networks.Keywords: energy efficient, quality of service, wireless sensor networks, MAC
Procedia PDF Downloads 34813142 Colonialism and Modernism in Architecture, the Case of a Blank Page Opportunity in Casablanka
Authors: Nezha Alaoui
Abstract:
The early 1950s French colonial context in Morocco provided an opportunity for architects to question the modernist established order by building dwellings for the local population. The dwellings were originally designed to encourage Muslims to adopt an urban lifestyle based on local customs. However, the inhabitants transformed their dwelling into a hybrid habitation. This paper aims to prove the relevance of the design process in accordance with the local colonial context by analyzing the dwellers' appropriation process and the modification of their habitat.Keywords: colonial heritage, appropriation process, islamic spatial habit, housing experiment, modernist mass housing
Procedia PDF Downloads 12813141 A Simple Model for Solar Panel Efficiency
Authors: Stefano M. Spagocci
Abstract:
The efficiency of photovoltaic panels can be calculated with such software packages as RETScreen that allow design engineers to take financial as well as technical considerations into account. RETScreen is interfaced with meteorological databases, so that efficiency calculations can be realistically carried out. The author has recently contributed to the development of solar modules with accumulation capability and an embedded water purifier, aimed at off-grid users such as users in developing countries. The software packages examined do not allow to take ancillary equipment into account, hence the decision to implement a technical and financial model of the system. The author realized that, rather than re-implementing the quite sophisticated model of RETScreen - a mathematical description of which is anyway not publicly available - it was possible to drastically simplify it, including the meteorological factors which, in RETScreen, are presented in a numerical form. The day-by-day efficiency of a photovoltaic solar panel was parametrized by the product of factors expressing, respectively, daytime duration, solar right ascension motion, solar declination motion, cloudiness, temperature. For the sun-motion-dependent factors, positional astronomy formulae, simplified by the author, were employed. Meteorology-dependent factors were fitted by simple trigonometric functions, employing numerical data supplied by RETScreen. The accuracy of our model was tested by comparing it to the predictions of RETScreen; the accuracy obtained was 11%. In conclusion, our study resulted in a model that can be easily implemented in a spreadsheet - thus being easily manageable by non-specialist personnel - or in more sophisticated software packages. The model was used in a number of design exercises, concerning photovoltaic solar panels and ancillary equipment like the above-mentioned water purifier.Keywords: clean energy, energy engineering, mathematical modelling, photovoltaic panels, solar energy
Procedia PDF Downloads 6813140 Exploration into Bio Inspired Computing Based on Spintronic Energy Efficiency Principles and Neuromorphic Speed Pathways
Authors: Anirudh Lahiri
Abstract:
Neuromorphic computing, inspired by the intricate operations of biological neural networks, offers a revolutionary approach to overcoming the limitations of traditional computing architectures. This research proposes the integration of spintronics with neuromorphic systems, aiming to enhance computational performance, scalability, and energy efficiency. Traditional computing systems, based on the Von Neumann architecture, struggle with scalability and efficiency due to the segregation of memory and processing functions. In contrast, the human brain exemplifies high efficiency and adaptability, processing vast amounts of information with minimal energy consumption. This project explores the use of spintronics, which utilizes the electron's spin rather than its charge, to create more energy-efficient computing systems. Spintronic devices, such as magnetic tunnel junctions (MTJs) manipulated through spin-transfer torque (STT) and spin-orbit torque (SOT), offer a promising pathway to reducing power consumption and enhancing the speed of data processing. The integration of these devices within a neuromorphic framework aims to replicate the efficiency and adaptability of biological systems. The research is structured into three phases: an exhaustive literature review to build a theoretical foundation, laboratory experiments to test and optimize the theoretical models, and iterative refinements based on experimental results to finalize the system. The initial phase focuses on understanding the current state of neuromorphic and spintronic technologies. The second phase involves practical experimentation with spintronic devices and the development of neuromorphic systems that mimic synaptic plasticity and other biological processes. The final phase focuses on refining the systems based on feedback from the testing phase and preparing the findings for publication. The expected contributions of this research are twofold. Firstly, it aims to significantly reduce the energy consumption of computational systems while maintaining or increasing processing speed, addressing a critical need in the field of computing. Secondly, it seeks to enhance the learning capabilities of neuromorphic systems, allowing them to adapt more dynamically to changing environmental inputs, thus better mimicking the human brain's functionality. The integration of spintronics with neuromorphic computing could revolutionize how computational systems are designed, making them more efficient, faster, and more adaptable. This research aligns with the ongoing pursuit of energy-efficient and scalable computing solutions, marking a significant step forward in the field of computational technology.Keywords: material science, biological engineering, mechanical engineering, neuromorphic computing, spintronics, energy efficiency, computational scalability, synaptic plasticity.
Procedia PDF Downloads 4313139 Renewable Energy and Energy Security in Malaysia: A Quantitative Analysis
Authors: Endang Jati Mat Sahid, Hussain Ali Bekhet
Abstract:
Robust economic growth, increasing population, and personal consumption are the main drivers for the rapid increase of energy demand in Malaysia. Increasing demand has compounded the issue of national energy security due to over-dependence on fossil fuel, depleting indigenous domestic conventional energy resources which in turns has increased the country’s energy import dependence. In order to improve its energy security, Malaysia has seriously embarked on a renewable energy journey. Many initiatives on renewable energy have been introduced in the past decade. These strategies have resulted in the exploding growth of renewable energy deployment in Malaysia. Therefore, this study investigated the impact of renewable energy deployment on energy security. Secondary data was used to calculate the energy security indicators. The study also compared the results of applying different energy security indicators namely availability, applicability, affordability and acceptability dimension of energy resources. The evaluation shows that Malaysia will experience slight improvement in availability and acceptability dimension of energy security. This study suggests that energy security level could be further enhanced by efficient utilization of energy, reducing carbon content of energy and facilitating low-carbon industries.Keywords: energy policy, energy security, Malaysia, renewable energy
Procedia PDF Downloads 24413138 Importance of Road Infrastructure on the People Live in Afghanistan
Authors: Mursal Ibrahim Zada
Abstract:
Since 2001, the new Government of Afghanistan has put the improvement of transportation in rural area as one of the key issues for the development of the country. Since then, about 17,000 km of rural roads were planned to be constructed in the entire country. This thesis will assess the impact of rural road improvement on the development of rural communities and housing facilities. Specifically, this study aims to show that the improved road has leads to an improvement in the community, which in turn has a positive effect on the lives of rural people. To obtain this goal, a questionnaire survey was conducted in March 2015 to the residents of four different districts of Kabul province, Afghanistan, where the road projects were constructed in recent years. The collected data was analyzed using on a regression analysis considering different factors such as land price, waiting time at the station, travel time to the city, number of employed family members and so on. Three models are developed to demonstrate the relationship between different factors before and after the improvement of rural transportation. The results showed a significant change positively in the value of land price and housing facilities, travel time to the city, waiting time at the station, number of employed family members, fare per trip to the city, and number of trips to the city per month after the pavement of the road. The results indicated that the improvement of transportation has a significant impact on the improvement of the community in different parts, especially on the price of land and housing facility and travel time to the city.Keywords: accessibility, Afghanistan, housing facility, rural area, land price
Procedia PDF Downloads 26313137 Investigation of Spatial Changes in the Context of Cultural Sustainability
Authors: Aslı Taş, Şebnem Ertaş
Abstract:
Culture consists of material and spiritual values adopted by the emerging societies during the historical and social processes and continues to exist from past to present by being transferred through generations. Culture and cultural sustainability are interdependent concepts. Cultural sustainability exists when the requirements established cultural expression are added to the social life as lifestyle and habits. However, sustainability renders change inevitable. Changes that take place in the culture of a society also shows the impact in the daily life places. Functional changes occur in the spaces in order to adapt particularly to cultural change that appear in the aftermath of the user change, to modern technology and living standards. In this context, in this study, it was aimed to investigate the effect of the time-dependent functional changes that took place in the housing where non-Muslim population who was subject to population exchange and Muslim population lived after the population exchange in the vacated housing in Sille. Therefore, the changed and newly added venues in the house belonging to Ali Oğuz in Hacı Ali Ağa Street were investigated over the generated graphic in order to clearly perceive the cultural exchange on the housing and settlement and the functional changes were demonstrated.Keywords: culture, house, spatial changes, sustainability
Procedia PDF Downloads 38913136 Socio-Economic Determinants of House Developments in Nigeria
Authors: Odunjo Oluronke Omolola, Okanlawon Simon Ayorinde
Abstract:
This study examines the relationship between house characteristics and socio-economic characteristics of developers in Ibadan, southwest, Nigeria. The research is borne out of the fact that social housing has not done much as a result of finance and housing poverty is on the increase in the country. Multistage random sampling was used in selecting 2,646 respondents in the area. The questionnaire forms the basic instrument for data collection and was administered to heads of households to collect information on socio-economic and demographic characteristics as well as characteristics of development. Both descriptive and inferential statistical analyses were employed in the presentation of the findings; MANOVA was used to analyse the relationship between house characteristics measured by wall materials (Y1-Yn) and socio-economic characteristics of developers measured by gender (X1), religion (X2), educational background (X3) and employment status (X4).The study found out that the bulk of the respondents (65.7%) were male, while 51.7% practiced Christianity. Also, 35.9% had HND/1st/Postgraduate degree, while 43.9% were self employed; Most households however, had membership size of 5 (26.9%). The significant wall material in the area was sandcrete block (71.2%) as opposed to mud (19.1%) and brick (0.6%). Multiple Analysis of Variance shows that there is a significant relationship between sandcrete block and each of gender (X1) and employment status (X3). The factor adduced to this is accessibility to cooperative societies which serve as the gravitational force of attraction for housing finance. The study suggests among others that, there should be re-invigoration of existing cooperative societies, while more should be established for the provision of housing finance.Keywords: relationship, house development, developers, sandcrete block, cooperative societies
Procedia PDF Downloads 50413135 Simulation-Based Evaluation of Indoor Air Quality and Comfort Control in Non-Residential Buildings
Authors: Torsten Schwan, Rene Unger
Abstract:
Simulation of thermal and electrical building performance more and more becomes part of an integrative planning process. Increasing requirements on energy efficiency, the integration of volatile renewable energy, smart control and storage management often cause tremendous challenges for building engineers and architects. This mainly affects commercial or non-residential buildings. Their energy consumption characteristics significantly distinguish from residential ones. This work focuses on the many-objective optimization problem indoor air quality and comfort, especially in non-residential buildings. Based on a brief description of intermediate dependencies between different requirements on indoor air treatment it extends existing Modelica-based building physics models with additional system states to adequately represent indoor air conditions. Interfaces to corresponding HVAC (heating, ventilation, and air conditioning) system and control models enable closed-loop analyzes of occupants' requirements and energy efficiency as well as profitableness aspects. A complex application scenario of a nearly-zero-energy school building shows advantages of presented evaluation process for engineers and architects. This way, clear identification of air quality requirements in individual rooms together with realistic model-based description of occupants' behavior helps to optimize HVAC system already in early design stages. Building planning processes can be highly improved and accelerated by increasing integration of advanced simulation methods. Those methods mainly provide suitable answers on engineers' and architects' questions regarding more exuberant and complex variety of suitable energy supply solutions.Keywords: indoor air quality, dynamic simulation, energy efficient control, non-residential buildings
Procedia PDF Downloads 23213134 Energy Budgeting, Carbon and Water Footprints Under Conventional and Conservation Tillage Practices of Rice-Wheat Double Cropping System
Authors: Ahmad Latif Virk, Naeem Ahmad, Muhammad Ishaq Asif Rehmani
Abstract:
Amid the present environmental crises, developing environment-resilient and cost-effective conservation agriculture strategies to feed the world's ever-growing population is pertinent. Therefore, a field study was conducted to test the hypothesis that residue retention under no-till (NTR) would enhance energy productivity (EP) and energy use efficiency (EUE) while offsetting the carbon footprints (CF), water footprints (WF) and greenhouse gases emissions (GHGs) in rice (Oryza sativa L.)-wheat (Triticum aestivum L.) double cropping system. Two tillage systems viz., conventional tillage (CT) and conservation tillage (no-till; NT), with or without residue retention, were combined into four treatments as CT0 (puddled rice, conventional wheat - residue); CTR (puddled rice, conventional wheat + residue); NT0 (direct rice seeding, zero-tilled wheat - residue); NTR (direct rice seeding, zero-tilled wheat + residue) were evaluated. Overall, results showed that the NT system had 34.2% lower energy consumption, 1.2 times more EP than CT system. Moreover, NTR had 19.8% higher EUE than CT0. The overall system grain yield ranged from 7.8 to 9.3 Mg ha−1 under NT0 and CTR, respectively. The NTR had 56.6% and 17.9% lesser CF and WF, respectively, than CT0. The net GHGs emissions (CO2-eq kg ha−1) under CT0 were the highest, while NTR had the lowest emissions. The NTR enhanced carbon sequestration in soil that can offset half of the system's CO2 emissions. The findings of this study might help develop a suitable strategy for resource/energy conservation and higher productivity while offsetting GHGs emissions in the Indo-Gangetic Plains.Keywords: residue, yield, indirect emissions, energy use efficiency, carbon sequestration
Procedia PDF Downloads 9213133 Adaptive Energy-Aware Routing (AEAR) for Optimized Performance in Resource-Constrained Wireless Sensor Networks
Authors: Innocent Uzougbo Onwuegbuzie
Abstract:
Wireless Sensor Networks (WSNs) are crucial for numerous applications, yet they face significant challenges due to resource constraints such as limited power and memory. Traditional routing algorithms like Dijkstra, Ad hoc On-Demand Distance Vector (AODV), and Bellman-Ford, while effective in path establishment and discovery, are not optimized for the unique demands of WSNs due to their large memory footprint and power consumption. This paper introduces the Adaptive Energy-Aware Routing (AEAR) model, a solution designed to address these limitations. AEAR integrates reactive route discovery, localized decision-making using geographic information, energy-aware metrics, and dynamic adaptation to provide a robust and efficient routing strategy. We present a detailed comparative analysis using a dataset of 50 sensor nodes, evaluating power consumption, memory footprint, and path cost across AEAR, Dijkstra, AODV, and Bellman-Ford algorithms. Our results demonstrate that AEAR significantly reduces power consumption and memory usage while optimizing path weight. This improvement is achieved through adaptive mechanisms that balance energy efficiency and link quality, ensuring prolonged network lifespan and reliable communication. The AEAR model's superior performance underlines its potential as a viable routing solution for energy-constrained WSN environments, paving the way for more sustainable and resilient sensor network deployments.Keywords: wireless sensor networks (WSNs), adaptive energy-aware routing (AEAR), routing algorithms, energy, efficiency, network lifespan
Procedia PDF Downloads 3613132 Applying And Connecting The Microgrid Of Artificial Intelligence In The Form Of A Spiral Model To Optimize Renewable Energy Sources
Authors: PR
Abstract:
Renewable energy is a sustainable substitute to fossil fuels, which are depleting and attributing to global warming as well as greenhouse gas emissions. Renewable energy innovations including solar, wind, and geothermal have grown significantly and play a critical role in meeting energy demands recently. Consequently, Artificial Intelligence (AI) could further enhance the benefits of renewable energy systems. The combination of renewable technologies and AI could facilitate the development of smart grids that can better manage energy distribution and storage. AI thus has the potential to optimize the efficiency and reliability of renewable energy systems, reduce costs, and improve their overall performance. The conventional methods of using smart micro-grids are to connect these micro-grids in series or parallel or a combination of series and parallel. Each of these methods has its advantages and disadvantages. In this study, the proposal of using the method of connecting microgrids in a spiral manner is investigated. One of the important reasons for choosing this type of structure is the two-way reinforcement and exchange of each inner layer with the outer and upstream layer. With this model, we have the ability to increase energy from a small amount to a significant amount based on exponential functions. The geometry used to close the smart microgrids is based on nature.This study provides an overview of the applications of algorithms and models of AI as well as its advantages and challenges in renewable energy systems.Keywords: artificial intelligence, renewable energy sources, spiral model, optimize
Procedia PDF Downloads 813131 Photovoltaic Solar Energy in Public Buildings: A Showcase for Society
Authors: Eliane Ferreira da Silva
Abstract:
This paper aims to mobilize and sensitize public administration leaders to good practices and encourage investment in the PV system in Brazil. It presents a case study methodology for dimensioning the PV system in the roofs of the public buildings of the Esplanade of the Ministries, Brasilia, capital of the country, with predefined resources, starting with the Sustainable Esplanade Project (SEP), of the exponential growth of photovoltaic solar energy in the world and making a comparison with the solar power plant of the Ministry of Mines and Energy (MME), active since: 6/10/2016. In order to do so, it was necessary to evaluate the energy efficiency of the buildings in the period from January 2016 to April 2017, (16 months) identifying the opportunities to reduce electric energy expenses, through the adjustment of contracted demand, the tariff framework and correction of existing active energy. The instrument used to collect data on electric bills was the e-SIC citizen information system. The study considered in addition to the technical and operational aspects, the historical, cultural, architectural and climatic aspects, involved by several actors. Identifying the reductions of expenses, the study directed to the following aspects: Case 1) economic feasibility for exchanges of common lamps, for LED lamps, and, Case 2) economic feasibility for the implementation of photovoltaic solar system connected to the grid. For the case 2, PV*SOL Premium Software was used to simulate several possibilities of photovoltaic panels, analyzing the best performance, according to local characteristics, such as solar orientation, latitude, annual average solar radiation. A simulation of an ideal photovoltaic solar system was made, with due calculations of its yield, to provide a compensation of the energy expenditure of the building - or part of it - through the use of the alternative source in question. The study develops a methodology for public administration, as a major consumer of electricity, to act in a responsible, fiscalizing and incentive way in reducing energy waste, and consequently reducing greenhouse gases.Keywords: energy efficiency, esplanade of ministries, photovoltaic solar energy, public buildings, sustainable building
Procedia PDF Downloads 13213130 Evaluating the Potential of Microwave Treatment as a Rock Pre-Conditioning Method in Achieving a More Sustainable Mining
Authors: Adel Ahmadi Hosseini, Fatemeh Tavanaei, Alessandro Navarra, Ferri Hassani
Abstract:
Mining engineering, as a part of geoscience, must address modern concerns. Traditional mining methods incorporate drill and blast technologies, which are followed by different issues, including excessive noise, vibration, air pollution, and safety hazards. Over the past two decades, mining engineers have sought alternative solutions to move from drill and blast to continuous methods to prevent such issues and improve sustainability in mining. Among the suggested methods, microwave treatment has shown promising results by creating micro/macro cracks in the rock structure prior to the operations. This research utilizes an energy-based analysis methodology to evaluate the efficiency of the microwave treatment in improving mining operations. The data analysis shows that increasing the input microwave energy dosage intensifies the rock damage. However, this approach can decrease the energy efficiency of the method by more than 50% in some cases. In this study, rock samples were treated with three power levels (3 kW, 7 kW, and 12 kW) and two energy dosages (20 kWh/t and 50 kWh/t), resulting in six conditions. To evaluate the impact of microwave treatment on the geomechanical behavior of the rocks, Unconfined Compressive Strength (UCS) tests were conducted on the microwave-treated samples, yielding stress-strain curves. Using the stress-strain curves, the effect of the different powers and energy dosages of microwaves are discussed. This research shows the potential of using microwave treatment to lead the industry to more sustainable mining.Keywords: microwave treatment, microwave energy dosage, sustainable mining, rock fragmentation
Procedia PDF Downloads 4013129 Optimizing Wind Turbine Blade Geometry for Enhanced Performance and Durability: A Computational Approach
Authors: Nwachukwu Ifeanyi
Abstract:
Wind energy is a vital component of the global renewable energy portfolio, with wind turbines serving as the primary means of harnessing this abundant resource. However, the efficiency and stability of wind turbines remain critical challenges in maximizing energy output and ensuring long-term operational viability. This study proposes a comprehensive approach utilizing computational aerodynamics and aeromechanics to optimize wind turbine performance across multiple objectives. The proposed research aims to integrate advanced computational fluid dynamics (CFD) simulations with structural analysis techniques to enhance the aerodynamic efficiency and mechanical stability of wind turbine blades. By leveraging multi-objective optimization algorithms, the study seeks to simultaneously optimize aerodynamic performance metrics such as lift-to-drag ratio and power coefficient while ensuring structural integrity and minimizing fatigue loads on the turbine components. Furthermore, the investigation will explore the influence of various design parameters, including blade geometry, airfoil profiles, and turbine operating conditions, on the overall performance and stability of wind turbines. Through detailed parametric studies and sensitivity analyses, valuable insights into the complex interplay between aerodynamics and structural dynamics will be gained, facilitating the development of next-generation wind turbine designs. Ultimately, this research endeavours to contribute to the advancement of sustainable energy technologies by providing innovative solutions to enhance the efficiency, reliability, and economic viability of wind power generation systems. The findings have the potential to inform the design and optimization of wind turbines, leading to increased energy output, reduced maintenance costs, and greater environmental benefits in the transition towards a cleaner and more sustainable energy future.Keywords: computation, robotics, mathematics, simulation
Procedia PDF Downloads 5913128 Co-Gasification Process for Green and Blue Hydrogen Production: Innovative Process Development, Economic Analysis, and Exergy Assessment
Authors: Yousaf Ayub
Abstract:
A co-gasification process, which involves the utilization of both biomass and plastic waste, has been developed to enable the production of blue and green hydrogen. To support this endeavor, an Aspen Plus simulation model has been meticulously created, and sustainability analysis is being conducted, focusing on economic viability, energy efficiency, advanced exergy considerations, and exergoeconomics evaluations. In terms of economic analysis, the process has demonstrated strong economic sustainability, as evidenced by an internal rate of return (IRR) of 8% at a process efficiency level of 70%. At present, the process has the potential to generate approximately 1100 kWh of electric power, with any excess electricity, beyond meeting the process requirements, capable of being harnessed for green hydrogen production via an alkaline electrolysis cell (AEC). This surplus electricity translates to a potential daily hydrogen production of around 200 kg. The exergy analysis of the model highlights that the gasifier component exhibits the lowest exergy efficiency, resulting in the highest energy losses, amounting to approximately 40%. Additionally, advanced exergy analysis findings pinpoint the gasifier as the primary source of exergy destruction, totaling around 9000 kW, with associated exergoeconomics costs amounting to 6500 $/h. Consequently, improving the gasifier's performance is a critical focal point for enhancing the overall sustainability of the process, encompassing energy, exergy, and economic considerations.Keywords: blue hydrogen, green hydrogen, co-gasification, waste valorization, exergy analysis
Procedia PDF Downloads 6613127 Experimental Study of Energy Absorption Efficiency (EAE) of Warp-Knitted Spacer Fabric Reinforced Foam (WKSFRF) Under Low-Velocity Impact
Authors: Amirhossein Dodankeh, Hadi Dabiryan, Saeed Hamze
Abstract:
Using fabrics to reinforce composites considerably leads to improved mechanical properties, including resistance to the impact load and the energy absorption of composites. Warp-knitted spacer fabrics (WKSF) are fabrics consisting of two layers of warp-knitted fabric connected by pile yarns. These connections create a space between the layers filled by pile yarns and give the fabric a three-dimensional shape. Today because of the unique properties of spacer fabrics, they are widely used in the transportation, construction, and sports industries. Polyurethane (PU) foams are commonly used as energy absorbers, but WKSF has much better properties in moisture transfer, compressive properties, and lower heat resistance than PU foam. It seems that the use of warp-knitted spacer fabric reinforced PU foam (WKSFRF) can lead to the production and use of composite, which has better properties in terms of energy absorption from the foam, its mold formation is enhanced, and its mechanical properties have been improved. In this paper, the energy absorption efficiency (EAE) of WKSFRF under low-velocity impact is investigated experimentally. The contribution of the effect of each of the structural parameters of the WKSF on the absorption of impact energy has also been investigated. For this purpose, WKSF with different structures such as two different thicknesses, small and large mesh sizes, and position of the meshes facing each other and not facing each other were produced. Then 6 types of composite samples with different structural parameters were fabricated. The physical properties of samples like weight per unit area and fiber volume fraction of composite were measured for 3 samples of any type of composites. Low-velocity impact with an initial energy of 5 J was carried out on 3 samples of any type of composite. The output of the low-velocity impact test is acceleration-time (A-T) graph with a lot deviation point, in order to achieve the appropriate results, these points were removed using the FILTFILT function of MATLAB R2018a. Using Newtonian laws of physics force-displacement (F-D) graph was drawn from an A-T graph. We know that the amount of energy absorbed is equal to the area under the F-D curve. Determination shows the maximum energy absorption is 2.858 J which is related to the samples reinforced with fabric with large mesh, high thickness, and not facing of the meshes relative to each other. An index called energy absorption efficiency was defined, which means absorption energy of any kind of our composite divided by its fiber volume fraction. With using this index, the best EAE between the samples is 21.6 that occurs in the sample with large mesh, high thickness, and meshes facing each other. Also, the EAE of this sample is 15.6% better than the average EAE of other composite samples. Generally, the energy absorption on average has been increased 21.2% by increasing the thickness, 9.5% by increasing the size of the meshes from small to big, and 47.3% by changing the position of the meshes from facing to non-facing.Keywords: composites, energy absorption efficiency, foam, geometrical parameters, low-velocity impact, warp-knitted spacer fabric
Procedia PDF Downloads 17013126 Energy Benefits of Urban Platooning with Self-Driving Vehicles
Authors: Eduardo F. Mello, Peter H. Bauer
Abstract:
The primary focus of this paper is the generation of energy-optimal speed trajectories for heterogeneous electric vehicle platoons in urban driving conditions. Optimal speed trajectories are generated for individual vehicles and for an entire platoon under the assumption that they can be executed without errors, as would be the case for self-driving vehicles. It is then shown that the optimization for the “average vehicle in the platoon” generates similar transportation energy savings to optimizing speed trajectories for each vehicle individually. The introduced approach only requires the lead vehicle to run the optimization software while the remaining vehicles are only required to have adaptive cruise control capability. The achieved energy savings are typically between 30% and 50% for stop-to-stop segments in cities. The prime motivation of urban platooning comes from the fact that urban platoons efficiently utilize the available space and the minimization of transportation energy in cities is important for many reasons, i.e., for environmental, power, and range considerations.Keywords: electric vehicles, energy efficiency, optimization, platooning, self-driving vehicles, urban traffic
Procedia PDF Downloads 182