Search results for: general linear regression model
23637 Assessing the Impacts of Urbanization on Urban Precincts: A Case of Golconda Precinct, Hyderabad
Authors: Sai AKhila Budaraju
Abstract:
Heritage sites are an integral part of cities and carry a sense of identity to the cities/ towns, but the process of urbanization is a carrying potential threat for the loss of these heritage sites/monuments. Both Central and State Governments listed the historic Golconda fort as National Important Monument and the Heritage precinct with eight heritage-listed buildings and two historical sites respectively, for conservation and preservation, due to the presence of IT Corridor 6kms away accommodating more people in the precinct is under constant pressure. The heritage precinct possesses high property values, being a prime location connecting the IT corridor and CBD (central business district )areas. The primary objective of the study was to assess and identify the factors that are affecting the heritage precinct through Mapping and documentation, Identifying and assessing the factors through empirical analysis, Ordinal regression analysis and Hedonic Pricing Model. Ordinal regression analysis was used to identify the factors that contribute to the changes in the precinct due to urbanization. Hedonic Pricing Model was used to understand and establish a relation whether the presence of historical monuments is also a contributing factor to the property value and to what extent this influence can contribute. The above methods and field visit indicates the Physical, socio-economic factors and the neighborhood characteristics of the precinct contributing to the property values. The outturns and the potential elements derived from the analysis of the Development Control Rules were derived as recommendations to Integrate both Old and newly built environments.Keywords: heritage planning, heritage conservation, hedonic pricing model, ordinal regression analysis
Procedia PDF Downloads 19323636 Replicating Brain’s Resting State Functional Connectivity Network Using a Multi-Factor Hub-Based Model
Authors: B. L. Ho, L. Shi, D. F. Wang, V. C. T. Mok
Abstract:
The brain’s functional connectivity while temporally non-stationary does express consistency at a macro spatial level. The study of stable resting state connectivity patterns hence provides opportunities for identification of diseases if such stability is severely perturbed. A mathematical model replicating the brain’s spatial connections will be useful for understanding brain’s representative geometry and complements the empirical model where it falls short. Empirical computations tend to involve large matrices and become infeasible with fine parcellation. However, the proposed analytical model has no such computational problems. To improve replicability, 92 subject data are obtained from two open sources. The proposed methodology, inspired by financial theory, uses multivariate regression to find relationships of every cortical region of interest (ROI) with some pre-identified hubs. These hubs acted as representatives for the entire cortical surface. A variance-covariance framework of all ROIs is then built based on these relationships to link up all the ROIs. The result is a high level of match between model and empirical correlations in the range of 0.59 to 0.66 after adjusting for sample size; an increase of almost forty percent. More significantly, the model framework provides an intuitive way to delineate between systemic drivers and idiosyncratic noise while reducing dimensions by more than 30 folds, hence, providing a way to conduct attribution analysis. Due to its analytical nature and simple structure, the model is useful as a standalone toolkit for network dependency analysis or as a module for other mathematical models.Keywords: functional magnetic resonance imaging, multivariate regression, network hubs, resting state functional connectivity
Procedia PDF Downloads 15123635 Harmonic Pollution Caused by Non-Linear Load: Analysis and Identification
Authors: K. Khlifi, A. Haddouk, M. Hlaili, H. Mechergui
Abstract:
The present paper provides a detailed analysis of prior methods and approaches for non-linear load identification in residential buildings. The main goal of this analysis is to decipher the distorted signals and to estimate the harmonics influence on power systems. We have performed an analytical study of non-linear loads behavior in the residential environment. Simulations have been performed in order to evaluate the distorted rate of the current and follow his behavior. To complete this work, an instrumental platform has been realized to carry out practical tests on single-phase non-linear loads which illustrate the current consumption of some domestic appliances supplied with single-phase sinusoidal voltage. These non-linear loads have been processed and tracked in order to limit their influence on the power grid and to reduce the Joule effect losses. As a result, the study has allowed to identify responsible circuits of harmonic pollution.Keywords: distortion rate, harmonic analysis, harmonic pollution, non-linear load, power factor
Procedia PDF Downloads 14323634 Using Machine Learning to Classify Different Body Parts and Determine Healthiness
Authors: Zachary Pan
Abstract:
Our general mission is to solve the problem of classifying images into different body part types and deciding if each of them is healthy or not. However, for now, we will determine healthiness for only one-sixth of the body parts, specifically the chest. We will detect pneumonia in X-ray scans of those chest images. With this type of AI, doctors can use it as a second opinion when they are taking CT or X-ray scans of their patients. Another ad-vantage of using this machine learning classifier is that it has no human weaknesses like fatigue. The overall ap-proach to this problem is to split the problem into two parts: first, classify the image, then determine if it is healthy. In order to classify the image into a specific body part class, the body parts dataset must be split into test and training sets. We can then use many models, like neural networks or logistic regression models, and fit them using the training set. Now, using the test set, we can obtain a realistic accuracy the models will have on images in the real world since these testing images have never been seen by the models before. In order to increase this testing accuracy, we can also apply many complex algorithms to the models, like multiplicative weight update. For the second part of the problem, to determine if the body part is healthy, we can have another dataset consisting of healthy and non-healthy images of the specific body part and once again split that into the test and training sets. We then use another neural network to train on those training set images and use the testing set to figure out its accuracy. We will do this process only for the chest images. A major conclusion reached is that convolutional neural networks are the most reliable and accurate at image classification. In classifying the images, the logistic regression model, the neural network, neural networks with multiplicative weight update, neural networks with the black box algorithm, and the convolutional neural network achieved 96.83 percent accuracy, 97.33 percent accuracy, 97.83 percent accuracy, 96.67 percent accuracy, and 98.83 percent accuracy, respectively. On the other hand, the overall accuracy of the model that de-termines if the images are healthy or not is around 78.37 percent accuracy.Keywords: body part, healthcare, machine learning, neural networks
Procedia PDF Downloads 10323633 Estimation of Missing Values in Aggregate Level Spatial Data
Authors: Amitha Puranik, V. S. Binu, Seena Biju
Abstract:
Missing data is a common problem in spatial analysis especially at the aggregate level. Missing can either occur in covariate or in response variable or in both in a given location. Many missing data techniques are available to estimate the missing data values but not all of these methods can be applied on spatial data since the data are autocorrelated. Hence there is a need to develop a method that estimates the missing values in both response variable and covariates in spatial data by taking account of the spatial autocorrelation. The present study aims to develop a model to estimate the missing data points at the aggregate level in spatial data by accounting for (a) Spatial autocorrelation of the response variable (b) Spatial autocorrelation of covariates and (c) Correlation between covariates and the response variable. Estimating the missing values of spatial data requires a model that explicitly account for the spatial autocorrelation. The proposed model not only accounts for spatial autocorrelation but also utilizes the correlation that exists between covariates, within covariates and between a response variable and covariates. The precise estimation of the missing data points in spatial data will result in an increased precision of the estimated effects of independent variables on the response variable in spatial regression analysis.Keywords: spatial regression, missing data estimation, spatial autocorrelation, simulation analysis
Procedia PDF Downloads 38223632 Nowcasting Indonesian Economy
Authors: Ferry Kurniawan
Abstract:
In this paper, we nowcast quarterly output growth in Indonesia by exploiting higher frequency data (monthly indicators) using a mixed-frequency factor model and exploiting both quarterly and monthly data. Nowcasting quarterly GDP in Indonesia is particularly relevant for the central bank of Indonesia which set the policy rate in the monthly Board of Governors Meeting; whereby one of the important step is the assessment of the current state of the economy. Thus, having an accurate and up-to-date quarterly GDP nowcast every time new monthly information becomes available would clearly be of interest for central bank of Indonesia, for example, as the initial assessment of the current state of the economy -including nowcast- will be used as input for longer term forecast. We consider a small scale mixed-frequency factor model to produce nowcasts. In particular, we specify variables as year-on-year growth rates thus the relation between quarterly and monthly data is expressed in year-on-year growth rates. To assess the performance of the model, we compare the nowcasts with two other approaches: autoregressive model –which is often difficult when forecasting output growth- and Mixed Data Sampling (MIDAS) regression. In particular, both mixed frequency factor model and MIDAS nowcasts are produced by exploiting the same set of monthly indicators. Hence, we compare the nowcasts performance of the two approaches directly. To preview the results, we find that by exploiting monthly indicators using mixed-frequency factor model and MIDAS regression we improve the nowcast accuracy over a benchmark simple autoregressive model that uses only quarterly frequency data. However, it is not clear whether the MIDAS or mixed-frequency factor model is better. Neither set of nowcasts encompasses the other; suggesting that both nowcasts are valuable in nowcasting GDP but neither is sufficient. By combining the two individual nowcasts, we find that the nowcast combination not only increases the accuracy - relative to individual nowcasts- but also lowers the risk of the worst performance of the individual nowcasts.Keywords: nowcasting, mixed-frequency data, factor model, nowcasts combination
Procedia PDF Downloads 33123631 Efficient Estimation for the Cox Proportional Hazards Cure Model
Authors: Khandoker Akib Mohammad
Abstract:
While analyzing time-to-event data, it is possible that a certain fraction of subjects will never experience the event of interest, and they are said to be cured. When this feature of survival models is taken into account, the models are commonly referred to as cure models. In the presence of covariates, the conditional survival function of the population can be modelled by using the cure model, which depends on the probability of being uncured (incidence) and the conditional survival function of the uncured subjects (latency), and a combination of logistic regression and Cox proportional hazards (PH) regression is used to model the incidence and latency respectively. In this paper, we have shown the asymptotic normality of the profile likelihood estimator via asymptotic expansion of the profile likelihood and obtain the explicit form of the variance estimator with an implicit function in the profile likelihood. We have also shown the efficient score function based on projection theory and the profile likelihood score function are equal. Our contribution in this paper is that we have expressed the efficient information matrix as the variance of the profile likelihood score function. A simulation study suggests that the estimated standard errors from bootstrap samples (SMCURE package) and the profile likelihood score function (our approach) are providing similar and comparable results. The numerical result of our proposed method is also shown by using the melanoma data from SMCURE R-package, and we compare the results with the output obtained from the SMCURE package.Keywords: Cox PH model, cure model, efficient score function, EM algorithm, implicit function, profile likelihood
Procedia PDF Downloads 14423630 Horizontal and Vertical Illuminance Correlations in a Case Study for Shaded South Facing Surfaces
Authors: S. Matour, M. Mahdavinejad, R. Fayaz
Abstract:
Daylight utilization is a key factor in achieving visual and thermal comfort, and energy savings in integrated building design. However, lack of measured data related to this topic has become a major challenge with the increasing need for integrating lighting concepts and simulations in the early stages of design procedures. The current paper deals with the values of daylight illuminance on horizontal and south facing vertical surfaces; the data are estimated using IESNA model and measured values of the horizontal and vertical illuminance, and a regression model with an acceptable linear correlation is obtained. The resultant illuminance frequency curves are useful for estimating daylight availability on south facing surfaces in Tehran. In addition, the relationship between indirect vertical illuminance and the corresponding global horizontal illuminance is analyzed. A simple parametric equation is proposed in order to predict the vertical illumination on a shaded south facing surface. The equation correlates the ratio between the vertical and horizontal illuminance to the solar altitude and is used with another relationship for prediction of the vertical illuminance. Both equations show good agreement, which allows for calculation of indirect vertical illuminance on a south facing surface at any time throughout the year.Keywords: Tehran daylight availability, horizontal illuminance, vertical illuminance, diffuse illuminance
Procedia PDF Downloads 20523629 Development of a Context Specific Planning Model for Achieving a Sustainable Urban City
Authors: Jothilakshmy Nagammal
Abstract:
This research paper deals with the different case studies, where the Form-Based Codes are adopted in general and the different implementation methods in particular are discussed to develop a method for formulating a new planning model. The organizing principle of the Form-Based Codes, the transect is used to zone the city into various context specific transects. An approach is adopted to develop the new planning model, city Specific Planning Model (CSPM), as a tool to achieve sustainability for any city in general. A case study comparison method in terms of the planning tools used, the code process adopted and the various control regulations implemented in thirty two different cities are done. The analysis shows that there are a variety of ways to implement form-based zoning concepts: Specific plans, a parallel or optional form-based code, transect-based code /smart code, required form-based standards or design guidelines. The case studies describe the positive and negative results from based zoning, Where it is implemented. From the different case studies on the method of the FBC, it is understood that the scale for formulating the Form-Based Code varies from parts of the city to the whole city. The regulating plan is prepared with the organizing principle as the transect in most of the cases. The various implementation methods adopted in these case studies for the formulation of Form-Based Codes are special districts like the Transit Oriented Development (TOD), traditional Neighbourhood Development (TND), specific plan and Street based. The implementation methods vary from mandatory, integrated and floating. To attain sustainability the research takes the approach of developing a regulating plan, using the transect as the organizing principle for the entire area of the city in general in formulating the Form-Based Codes for the selected Special Districts in the study area in specific, street based. Planning is most powerful when it is embedded in the broader context of systemic change and improvement. Systemic is best thought of as holistic, contextualized and stake holder-owned, While systematic can be thought of more as linear, generalisable, and typically top-down or expert driven. The systemic approach is a process that is based on the system theory and system design principles, which are too often ill understood by the general population and policy makers. The system theory embraces the importance of a global perspective, multiple components, interdependencies and interconnections in any system. In addition, the recognition that a change in one part of a system necessarily alters the rest of the system is a cornerstone of the system theory. The proposed regulating plan taking the transect as an organizing principle and Form-Based Codes to achieve sustainability of the city has to be a hybrid code, which is to be integrated within the existing system - A Systemic Approach with a Systematic Process. This approach of introducing a few form based zones into a conventional code could be effective in the phased replacement of an existing code. It could also be an effective way of responding to the near-term pressure of physical change in “sensitive” areas of the community. With this approach and method the new Context Specific Planning Model is created towards achieving sustainability is explained in detail this research paper.Keywords: context based planning model, form based code, transect, systemic approach
Procedia PDF Downloads 33823628 Breast Cancer Detection Using Machine Learning Algorithms
Authors: Jiwan Kumar, Pooja, Sandeep Negi, Anjum Rouf, Amit Kumar, Naveen Lakra
Abstract:
In modern times where, health issues are increasing day by day, breast cancer is also one of them, which is very crucial and really important to find in the early stages. Doctors can use this model in order to tell their patients whether a cancer is not harmful (benign) or harmful (malignant). We have used the knowledge of machine learning in order to produce the model. we have used algorithms like Logistic Regression, Random forest, support Vector Classifier, Bayesian Network and Radial Basis Function. We tried to use the data of crucial parts and show them the results in pictures in order to make it easier for doctors. By doing this, we're making ML better at finding breast cancer, which can lead to saving more lives and better health care.Keywords: Bayesian network, radial basis function, ensemble learning, understandable, data making better, random forest, logistic regression, breast cancer
Procedia PDF Downloads 5323627 Evaluation of Newly Synthesized Steroid Derivatives Using In silico Molecular Descriptors and Chemometric Techniques
Authors: Milica Ž. Karadžić, Lidija R. Jevrić, Sanja Podunavac-Kuzmanović, Strahinja Z. Kovačević, Anamarija I. Mandić, Katarina Penov-Gaši, Andrea R. Nikolić, Aleksandar M. Oklješa
Abstract:
This study considered selection of the in silico molecular descriptors and the models for newly synthesized steroid derivatives description and their characterization using chemometric techniques. Multiple linear regression (MLR) models were established and gave the best molecular descriptors for quantitative structure-retention relationship (QSRR) modeling of the retention of the investigated molecules. MLR models were without multicollinearity among the selected molecular descriptors according to the variance inflation factor (VIF) values. Used molecular descriptors were ranked using generalized pair correlation method (GPCM). In this method, the significant difference between independent variables can be noticed regardless almost equal correlation between dependent variable. Generated MLR models were statistically and cross-validated and the best models were kept. Models were ranked using sum of ranking differences (SRD) method. According to this method, the most consistent QSRR model can be found and similarity or dissimilarity between the models could be noticed. In this study, SRD was performed using average values of experimentally observed data as a golden standard. Chemometric analysis was conducted in order to characterize newly synthesized steroid derivatives for further investigation regarding their potential biological activity and further synthesis. This article is based upon work from COST Action (CM1105), supported by COST (European Cooperation in Science and Technology).Keywords: generalized pair correlation method, molecular descriptors, regression analysis, steroids, sum of ranking differences
Procedia PDF Downloads 34723626 Control of a Stewart Platform for Minimizing Impact Energy in Simulating Spacecraft Docking Operations
Authors: Leonardo Herrera, Shield B. Lin, Stephen J. Montgomery-Smith, Ziraguen O. Williams
Abstract:
Three control algorithms: Proportional-Integral-Derivative, Linear-Quadratic-Gaussian, and Linear-Quadratic-Gaussian with the shift, were applied to the computer simulation of a one-directional dynamic model of a Stewart Platform. The goal was to compare the dynamic system responses under the three control algorithms and to minimize the impact energy when simulating spacecraft docking operations. Equations were derived for the control algorithms and the input and output of the feedback control system. Using MATLAB, Simulink diagrams were created to represent the three control schemes. A switch selector was used for the convenience of changing among different controllers. The simulation demonstrated the controller using the algorithm of Linear-Quadratic-Gaussian with the shift resulting in the lowest impact energy.Keywords: controller, Stewart platform, docking operation, spacecraft
Procedia PDF Downloads 5123625 Geometrically Non-Linear Axisymmetric Free Vibration Analysis of Functionally Graded Annular Plates
Authors: Boutahar Lhoucine, El Bikri Khalid, Benamar Rhali
Abstract:
In this paper, the non-linear free axisymmetric vibration of a thin annular plate made of functionally graded material (FGM) has been studied by using the energy method and a multimode approach. FGM properties vary continuously as well as non-homogeneity through the thickness direction of the plate. The theoretical model is based on the classical plate theory and the Von Kármán geometrical non-linearity assumptions. An approximation has been adopted in the present work consisting of neglecting the in-plane deformation in the formulation. Hamilton’s principle is used to derive the governing equation of motion. The problem is solved by a numerical iterative procedure in order to obtain more accurate results for vibration amplitudes up to 1.5 times the plate thickness. The numerical results are given for the first axisymmetric non-linear mode shape for a wide range of vibration amplitudes and they are presented either in tabular form or in graphical form to show the effect that the vibration amplitude and the variation in material properties have significant effects on the frequencies and the bending stresses in large amplitude vibration of the functionally graded annular plate.Keywords: non-linear vibrations, annular plates, large amplitudes, functionally graded material
Procedia PDF Downloads 36323624 Nondestructive Testing for Reinforced Concrete Buildings with Active Infrared Thermography
Authors: Huy Q. Tran, Jungwon Huh, Kiseok Kwak, Choonghyun Kang
Abstract:
Infrared thermography (IRT) technique has been proven to be a good method for nondestructive evaluation of concrete material. In the building, a broad range of applications has been used such as subsurface defect inspection, energy loss, and moisture detection. The purpose of this research is to consider the qualitative and quantitative performance of reinforced concrete deteriorations using active infrared thermography technique. An experiment of three different heating regimes was conducted on a concrete slab in the laboratory. The thermal characteristics of the IRT method, i.e., absolute contrast and observation time, are investigated. A linear relationship between the observation time and the real depth was established with a well linear regression R-squared of 0.931. The results showed that the absolute contrast above defective area increases with the rise of the size of delamination and the heating time. In addition, the depth of delamination can be predicted by using the proposal relationship of this study.Keywords: concrete building, infrared thermography, nondestructive evaluation, subsurface delamination
Procedia PDF Downloads 28323623 Modeling Fertility and Production of Hazelnut Cultivars through the Artificial Neural Network under Climate Change of Karaj
Authors: Marziyeh Khavari
Abstract:
In recent decades, climate change, global warming, and the growing population worldwide face some challenges, such as increasing food consumption and shortage of resources. Assessing how climate change could disturb crops, especially hazelnut production, seems crucial for sustainable agriculture production. For hazelnut cultivation in the mid-warm condition, such as in Iran, here we present an investigation of climate parameters and how much they are effective on fertility and nut production of hazelnut trees. Therefore, the climate change of the northern zones in Iran has investigated (1960-2017) and was reached an uptrend in temperature. Furthermore, the descriptive analysis performed on six cultivars during seven years shows how this small-scale survey could demonstrate the effects of climate change on hazelnut production and stability. Results showed that some climate parameters are more significant on nut production, such as solar radiation, soil temperature, relative humidity, and precipitation. Moreover, some cultivars have produced more stable production, for instance, Negret and Segorbe, while the Mervill de Boliver recorded the most variation during the study. Another aspect that needs to be met is training and predicting an actual model to simulate nut production through a neural network and linear regression simulation. The study developed and estimated the ANN model's generalization capability with different criteria such as RMSE, SSE, and accuracy factors for dependent and independent variables (environmental and yield traits). The models were trained and tested while the accuracy of the model is proper to predict hazelnut production under fluctuations in weather parameters.Keywords: climate change, neural network, hazelnut, global warming
Procedia PDF Downloads 13223622 Nonlinear Mathematical Model of the Rotor Motion in a Thin Hydrodynamic Gap
Authors: Jaroslav Krutil, Simona Fialová, , František Pochylý
Abstract:
A nonlinear mathematical model of mutual fluid-structure interaction is presented in the work. The model is applicable to the general shape of sealing gaps. An in compressible fluid and turbulent flow is assumed. The shaft carries a rotational and procession motion, the gap is axially flowed through. The achieved results of the additional mass, damping and stiffness matrices may be used in the solution of the rotor dynamics. The usage of this mathematical model is expected particularly in hydraulic machines. The method of control volumes in the ANSYS Fluent was used for the simulation. The obtained results of the pressure and velocity fields are used in the mathematical model of additional effects.Keywords: nonlinear mathematical model, CFD modeling, hydrodynamic sealing gap, matrices of mass, stiffness, damping
Procedia PDF Downloads 53523621 Survey of Methods for Solutions of Spatial Covariance Structures and Their Limitations
Authors: Joseph Thomas Eghwerido, Julian I. Mbegbu
Abstract:
In modelling environment processes, we apply multidisciplinary knowledge to explain, explore and predict the Earth's response to natural human-induced environmental changes. Thus, the analysis of spatial-time ecological and environmental studies, the spatial parameters of interest are always heterogeneous. This often negates the assumption of stationarity. Hence, the dispersion of the transportation of atmospheric pollutants, landscape or topographic effect, weather patterns depends on a good estimate of spatial covariance. The generalized linear mixed model, although linear in the expected value parameters, its likelihood varies nonlinearly as a function of the covariance parameters. As a consequence, computing estimates for a linear mixed model requires the iterative solution of a system of simultaneous nonlinear equations. In other to predict the variables at unsampled locations, we need to know the estimate of the present sampled variables. The geostatistical methods for solving this spatial problem assume covariance stationarity (locally defined covariance) and uniform in space; which is not apparently valid because spatial processes often exhibit nonstationary covariance. Hence, they have globally defined covariance. We shall consider different existing methods of solutions of spatial covariance of a space-time processes at unsampled locations. This stationary covariance changes with locations for multiple time set with some asymptotic properties.Keywords: parametric, nonstationary, Kernel, Kriging
Procedia PDF Downloads 25523620 Timetabling Communities’ Demands for an Effective Examination Timetabling Using Integer Linear Programming
Authors: N. F. Jamaluddin, N. A. H. Aizam
Abstract:
This paper explains the educational timetabling problem, a type of scheduling problem that is considered as one of the most challenging problem in optimization and operational research. The university examination timetabling problem (UETP), which involves assigning a set number of exams into a set number of timeslots whilst fulfilling all required conditions, has been widely investigated. The limitation of available timeslots and resources with the increasing number of examinations are the main reasons in the difficulty of solving this problem. Dynamical change in the examination scheduling system adds up the complication particularly in coping up with the demand and new requirements by the communities. Our objective is to investigate these demands and requirements with subjects taken from Universiti Malaysia Terengganu (UMT), through questionnaires. Integer linear programming model which reflects the preferences obtained to produce an effective examination timetabling was formed.Keywords: demands, educational timetabling, integer linear programming, scheduling, university examination timetabling problem (UETP)
Procedia PDF Downloads 33723619 The Asymmetric Proximal Support Vector Machine Based on Multitask Learning for Classification
Authors: Qing Wu, Fei-Yan Li, Heng-Chang Zhang
Abstract:
Multitask learning support vector machines (SVMs) have recently attracted increasing research attention. Given several related tasks, the single-task learning methods trains each task separately and ignore the inner cross-relationship among tasks. However, multitask learning can capture the correlation information among tasks and achieve better performance by training all tasks simultaneously. In addition, the asymmetric squared loss function can better improve the generalization ability of the models on the most asymmetric distributed data. In this paper, we first make two assumptions on the relatedness among tasks and propose two multitask learning proximal support vector machine algorithms, named MTL-a-PSVM and EMTL-a-PSVM, respectively. MTL-a-PSVM seeks a trade-off between the maximum expectile distance for each task model and the closeness of each task model to the general model. As an extension of the MTL-a-PSVM, EMTL-a-PSVM can select appropriate kernel functions for shared information and private information. Besides, two corresponding special cases named MTL-PSVM and EMTLPSVM are proposed by analyzing the asymmetric squared loss function, which can be easily implemented by solving linear systems. Experimental analysis of three classification datasets demonstrates the effectiveness and superiority of our proposed multitask learning algorithms.Keywords: multitask learning, asymmetric squared loss, EMTL-a-PSVM, classification
Procedia PDF Downloads 13423618 Meta Model for Optimum Design Objective Function of Steel Frames Subjected to Seismic Loads
Authors: Salah R. Al Zaidee, Ali S. Mahdi
Abstract:
Except for simple problems of statically determinate structures, optimum design problems in structural engineering have implicit objective functions where structural analysis and design are essential within each searching loop. With these implicit functions, the structural engineer is usually enforced to write his/her own computer code for analysis, design, and searching for optimum design among many feasible candidates and cannot take advantage of available software for structural analysis, design, and searching for the optimum solution. The meta-model is a regression model used to transform an implicit objective function into objective one and leads in turn to decouple the structural analysis and design processes from the optimum searching process. With the meta-model, well-known software for structural analysis and design can be used in sequence with optimum searching software. In this paper, the meta-model has been used to develop an explicit objective function for plane steel frames subjected to dead, live, and seismic forces. Frame topology is assumed as predefined based on architectural and functional requirements. Columns and beams sections and different connections details are the main design variables in this study. Columns and beams are grouped to reduce the number of design variables and to make the problem similar to that adopted in engineering practice. Data for the implicit objective function have been generated based on analysis and assessment for many design proposals with CSI SAP software. These data have been used later in SPSS software to develop a pure quadratic nonlinear regression model for the explicit objective function. Good correlations with a coefficient, R2, in the range from 0.88 to 0.99 have been noted between the original implicit functions and the corresponding explicit functions generated with meta-model.Keywords: meta-modal, objective function, steel frames, seismic analysis, design
Procedia PDF Downloads 24323617 Motion Planning and Posture Control of the General 3-Trailer System
Authors: K. Raghuwaiya, B. Sharma, J. Vanualailai
Abstract:
This paper presents a set of artificial potential field functions that improves upon; in general, the motion planning and posture control, with theoretically guaranteed point and posture stabilities, convergence and collision avoidance properties of the general 3-trailer system in a priori known environment. We basically design and inject two new concepts; ghost walls and the distance optimization technique (DOT) to strengthen point and posture stabilities, in the sense of Lyapunov, of our dynamical model. This new combination of techniques emerges as a convenient mechanism for obtaining feasible orientations at the target positions with an overall reduction in the complexity of the navigation laws. Simulations are provided to demonstrate the effectiveness of the controls laws.Keywords: artificial potential fields, 3-trailer systems, motion planning, posture
Procedia PDF Downloads 42623616 Semigroups of Linear Transformations with Fixed Subspaces: Green’s Relations and Ideals
Authors: Yanisa Chaiya, Jintana Sanwong
Abstract:
Let V be a vector space over a field and W a subspace of V. Let Fix(V,W) denote the set of all linear transformations on V with fix all elements in W. In this paper, we show that Fix(V,W) is a semigroup under the composition of maps and describe Green’s relations on this semigroup in terms of images, kernels and the dimensions of subspaces of the quotient space V/W where V/W = {v+W : v is an element in V} with v+W = {v+w : w is an element in W}. Let dim(U) denote the dimension of a vector space U and Vα = {vα : v is an element in V} where vα is an image of v under a linear transformation α. For any cardinal number a let a'= min{b : b > a}. We also show that the ideals of Fix(V,W) are precisely the sets. Fix(r) ={α ∊ Fix(V,W) : dim(Vα/W) < r} where 1 ≤ r ≤ a' and a = dim(V/W). Moreover, we prove that if V is a finite-dimensional vector space, then every ideal of Fix(V,W) is principle.Keywords: Green’s relations, ideals, linear transformation semi-groups, principle ideals
Procedia PDF Downloads 29223615 Linear fractional differential equations for second kind modified Bessel functions
Authors: Jorge Olivares, Fernando Maass, Pablo Martin
Abstract:
Fractional derivatives have been considered recently as a way to solve different problems in Engineering. In this way, second kind modified Bessel functions are considered here. The order α fractional differential equations of second kind Bessel functions, Kᵥ(x), are studied with simple initial conditions. The Laplace transform and Caputo definition of fractional derivatives are considered. Solutions have been found for ν=1/3, 1/2, 2/3, -1/3, -1/2 and (-2/3). In these cases, the solutions are the sum of two hypergeometric functions. The α fractional derivatives have been for α=1/3, 1/2 and 2/3, and the above values of ν. No convergence has been found for the integer values of ν Furthermore when α has been considered as a rational found m/p, no general solution has been found. Clearly, this case is more difficult to treat than those of first kind Bessel Function.Keywords: Caputo, modified Bessel functions, hypergeometric, linear fractional differential equations, transform Laplace
Procedia PDF Downloads 34323614 The role of Financial Development and Institutional Quality in Promoting Sustainable Development through Tourism Management
Authors: Hashim Zameer
Abstract:
Effective tourism management plays a vital role in promoting sustainability and supporting ecosystems. A common principle that has been in practice over the years is “first pollute and then clean,” indicating countries need financial resources to promote sustainability. Financial development and the tourism management both seems very important to promoting sustainable development. However, without institutional support, it is very difficult to succeed. In this context, it seems prominently significant to explore how institutional quality, tourism development, and financial development could promote sustainable development. In the past, no research explored the role of tourism development in sustainable development. Moreover, the role of financial development, natural resources, and institutional quality in sustainable development is also ignored. In this regard, this paper aims to investigate the role of tourism development, natural resources, financial development, and institutional quality in sustainable development in China. The study used time-series data from 2000–2021 and employed the Bayesian linear regression model because it is suitable for small data sets. The robustness of the findings was checked using a quantile regression approach. The results reveal that an increase in tourism expenditures stimulates the economy, creates jobs, encourages cultural exchange, and supports sustainability initiatives. Moreover, financial development and institution quality have a positive effect on sustainable development. However, reliance on natural resources can result in negative economic, social, and environmental outcomes, highlighting the need for resource diversification and management to reinforce sustainable development. These results highlight the significance of financial development, strong institutions, sustainable tourism, and careful utilization of natural resources for long-term sustainability. The study holds vital insights for policy formulation to promote sustainable tourism.Keywords: sustainability, tourism development, financial development, institutional quality
Procedia PDF Downloads 8323613 Non-Linear Control in Positioning of PMLSM by Estimates of the Load Force by MRAS Method
Authors: Maamar Yahiaoui, Abdelrrahmene Kechich, Ismail Elkhallile Bousserhene
Abstract:
This article presents a study in simulation by means of MATLAB/Simulink software of the nonlinear control in positioning of a linear synchronous machine with the esteemed force of load, to have effective control in the estimator in all tests the wished trajectory follows and the disturbance of load start. The results of simulation prove clearly that the control proposed can detect the reference of positioning the value estimates of load force equal to the actual value.Keywords: mathematical model, Matlab, PMLSM, control, linearization, estimator, force, load, current
Procedia PDF Downloads 60823612 Teaching: Using Co-teaching as an Instructional Model
Authors: Beverley Gallimore
Abstract:
The Individuals with Disabilities Education Act of 2004 (IDEA) has helped to improve outcomes for students with special education needs. Through IDEA, students with Special Education Needs (SEN) have opportunities for more equitable education within the General Education classroom. However, students with disabilities lack access to instructions that can help them to maximize their fullest learning potential. Recently, educational stakeholders have emphasized Integrated Co-teaching as a tool to increase engagement and learning outcomes for students with disabilities in general education classrooms. As a result of this new approach, general and special education teachers are working collaboratively to teach students with disabilities. However, co-teaching models are not properly designed and structured to effectively benefit students with disabilities. Teachers must be oriented correctly in the co-teaching models if it is to be beneficial for students.Keywords: CO-teaching, differentiation, equitable, collaborative
Procedia PDF Downloads 8123611 Machine Learning Models for the Prediction of Heating and Cooling Loads of a Residential Building
Authors: Aaditya U. Jhamb
Abstract:
Due to the current energy crisis that many countries are battling, energy-efficient buildings are the subject of extensive research in the modern technological era because of growing worries about energy consumption and its effects on the environment. The paper explores 8 factors that help determine energy efficiency for a building: (relative compactness, surface area, wall area, roof area, overall height, orientation, glazing area, and glazing area distribution), with Tsanas and Xifara providing a dataset. The data set employed 768 different residential building models to anticipate heating and cooling loads with a low mean squared error. By optimizing these characteristics, machine learning algorithms may assess and properly forecast a building's heating and cooling loads, lowering energy usage while increasing the quality of people's lives. As a result, the paper studied the magnitude of the correlation between these input factors and the two output variables using various statistical methods of analysis after determining which input variable was most closely associated with the output loads. The most conclusive model was the Decision Tree Regressor, which had a mean squared error of 0.258, whilst the least definitive model was the Isotonic Regressor, which had a mean squared error of 21.68. This paper also investigated the KNN Regressor and the Linear Regression, which had to mean squared errors of 3.349 and 18.141, respectively. In conclusion, the model, given the 8 input variables, was able to predict the heating and cooling loads of a residential building accurately and precisely.Keywords: energy efficient buildings, heating load, cooling load, machine learning models
Procedia PDF Downloads 9623610 Forecasting the Sea Level Change in Strait of Hormuz
Authors: Hamid Goharnejad, Amir Hossein Eghbali
Abstract:
Recent investigations have demonstrated the global sea level rise due to climate change impacts. In this study climate changes study the effects of increasing water level in the strait of Hormuz. The probable changes of sea level rise should be investigated to employ the adaption strategies. The climatic output data of a GCM (General Circulation Model) named CGCM3 under climate change scenario of A1b and A2 were used. Among different variables simulated by this model, those of maximum correlation with sea level changes in the study region and least redundancy among themselves were selected for sea level rise prediction by using stepwise regression. One models of Discrete Wavelet artificial Neural Network (DWNN) was developed to explore the relationship between climatic variables and sea level changes. In these models, wavelet was used to disaggregate the time series of input and output data into different components and then ANN was used to relate the disaggregated components of predictors and predictands to each other. The results showed in the Shahid Rajae Station for scenario A1B sea level rise is among 64 to 75 cm and for the A2 Scenario sea level rise is among 90 to 105 cm. Furthermore the result showed a significant increase of sea level at the study region under climate change impacts, which should be incorporated in coastal areas management.Keywords: climate change scenarios, sea-level rise, strait of Hormuz, forecasting
Procedia PDF Downloads 27123609 Adaptive Neuro Fuzzy Inference System Model Based on Support Vector Regression for Stock Time Series Forecasting
Authors: Anita Setianingrum, Oki S. Jaya, Zuherman Rustam
Abstract:
Forecasting stock price is a challenging task due to the complex time series of the data. The complexity arises from many variables that affect the stock market. Many time series models have been proposed before, but those previous models still have some problems: 1) put the subjectivity of choosing the technical indicators, and 2) rely upon some assumptions about the variables, so it is limited to be applied to all datasets. Therefore, this paper studied a novel Adaptive Neuro-Fuzzy Inference System (ANFIS) time series model based on Support Vector Regression (SVR) for forecasting the stock market. In order to evaluate the performance of proposed models, stock market transaction data of TAIEX and HIS from January to December 2015 is collected as experimental datasets. As a result, the method has outperformed its counterparts in terms of accuracy.Keywords: ANFIS, fuzzy time series, stock forecasting, SVR
Procedia PDF Downloads 24723608 Sorting Maize Haploids from Hybrids Using Single-Kernel Near-Infrared Spectroscopy
Authors: Paul R Armstrong
Abstract:
Doubled haploids (DHs) have become an important breeding tool for creating maize inbred lines, although several bottlenecks in the DH production process limit wider development, application, and adoption of the technique. DH kernels are typically sorted manually and represent about 10% of the seeds in a much larger pool where the remaining 90% are hybrid siblings. This introduces time constraints on DH production and manual sorting is often not accurate. Automated sorting based on the chemical composition of the kernel can be effective, but devices, namely NMR, have not achieved the sorting speed to be a cost-effective replacement to manual sorting. This study evaluated a single kernel near-infrared reflectance spectroscopy (skNIR) platform to accurately identify DH kernels based on oil content. The skNIR platform is a higher-throughput device, approximately 3 seeds/s, that uses spectra to predict oil content of each kernel from maize crosses intentionally developed to create larger than normal oil differences, 1.5%-2%, between DH and hybrid kernels. Spectra from the skNIR were used to construct a partial least squares regression (PLS) model for oil and for a categorical reference model of 1 (DH kernel) or 2 (hybrid kernel) and then used to sort several crosses to evaluate performance. Two approaches were used for sorting. The first used a general PLS model developed from all crosses to predict oil content and then used for sorting each induction cross, the second was the development of a specific model from a single induction cross where approximately fifty DH and one hundred hybrid kernels used. This second approach used a categorical reference value of 1 and 2, instead of oil content, for the PLS model and kernels selected for the calibration set were manually referenced based on traditional commercial methods using coloration of the tip cap and germ areas. The generalized PLS oil model statistics were R2 = 0.94 and RMSE = .93% for kernels spanning an oil content of 2.7% to 19.3%. Sorting by this model resulted in extracting 55% to 85% of haploid kernels from the four induction crosses. Using the second method of generating a model for each cross yielded model statistics ranging from R2s = 0.96 to 0.98 and RMSEs from 0.08 to 0.10. Sorting in this case resulted in 100% correct classification but required models that were cross. In summary, the first generalized model oil method could be used to sort a significant number of kernels from a kernel pool but was not close to the accuracy of developing a sorting model from a single cross. The penalty for the second method is that a PLS model would need to be developed for each individual cross. In conclusion both methods could find useful application in the sorting of DH from hybrid kernels.Keywords: NIR, haploids, maize, sorting
Procedia PDF Downloads 302